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Clustering Survival Outcomes using Dirichlet
Process Mixture

Lili Zhao, Jingchunzi Shi, Tempie H. Shearon, and Yi Li

Abstract

Motivated by the national evaluation of mortality rates at kidney transplant cen-
ters in the United States, we sought to assess transplant center long- term survival
outcomes by applying a methodology developed in Bayesian non-parametrics lit-
erature. We described a Dirichlet process model and a Dirichlet process mixture
model with a Half-Cauchy for the estimation of the risk- adjusted effects of the
transplant centers. To improve the model performance and interpretability, we
centered the Dirichlet process. We also proposed strategies to increase model’s
classification ability. Finally we derived statistical measures and created graphi-
cal tools to rate transplant centers and identify outlying centers with exceptionally
good or poor performance. The proposed method was evaluated through simula-
tion, and then applied to assess kidney transplant centers from a national organ
failure registry.
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Abstract

Motivated by the national evaluation of mortality rates at kidney trans-

plant centers in the United States, we sought to assess transplant center long-

term survival outcomes by applying a methodology developed in Bayesian non-

parametrics literature. We described a Dirichlet process model and a Dirich-

let process mixture model with a Half-Cauchy for the estimation of the risk-

adjusted effects of the transplant centers. To improve the model performance

and interpretability, we centered the Dirichlet process. We also proposed strate-

gies to increase model’s classification ability. Finally we derived statistical

measures and created graphical tools to rate transplant centers and identify

outlying centers with exceptionally good or poor performance. The proposed
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method was evaluated through simulation, and then applied to assess kidney

transplant centers from a national organ failure registry.

Key Words: Clustering survival data; DP; DPM; Mixture model;

1 INTRODUCTION

An issue of substantial importance is the monitoring and improvement of health care

centers such as hospitals, nursing homes, dialysis facilities or surgical wards. This

study is motivated by the need for the evaluation of kidney transplant centers in

the United States with respect to their mortality rates after transplantation. The

data include patients in the Scientific Registry of Transplant Recipients (SRTR) who

received their kidney from 2008 to 2011. A total of 56455 kidney transplants were

performed at 242 transplant centers.

There is a large amount of literature describing methods for the evaluation of

center performances and identification of outlying centers with extremely good or poor

performance. The application includes a variety of data: (standardized) mortality,

proportions, counts of adverse events, categorical data or continuous data measuring

quality of life. Some examples of using parametric approaches can be found in Liu

et al. (2003); Jones and Spiegelhalter (2011); Kalbfleisch and Wolfe (2013); He et al.

(2013). Among these articles, Liu et al. (2003); Jones and Spiegelhalter (2011) used

a normal hierarchical (random effects) model for the center effects. As we know,

random effects models improve estimation by borrowing information across transplant

centers, and thus shrinking estimates of the center effects toward the overall mean

and leading to a reduced variation of the estimates. However, the smaller variance

is achieved at the cost of bias and inappropriate shrinkage could prevent the centers

with exceptionally good or poor performance from being identified. For this reason,

Kalbfleisch and Wolfe (2013); He et al. (2013) prefer a model with center effects being

considered as fixed, leading to independent (no shrinkage) center estimates. It seems
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that a desirable model would combine the advantages of both the fixed and random

effects models, in the sense that it would allow borrowing strength across similar

centers, but avoid shrinking outlying centers towards the population mean.

Moreover, in both random or fixed effects models, it is not immediately clear

how unusual centers, i.e., any with exceptionally good or poor performance, can

be identified. An common strategy is to measure the deviation of each transplant

center relative to the population average using a p-value or an (adjusted) Z-score

derived from an assumed parametric or empirical null distribution (see D et al. (2012);

Kalbfleisch and Wolfe (2013)). However, ideally a model would provide an in-built

diagnostic measure for centers with unusual outcomes.

Ohlssen et al. (2007) applied a Dirichlet process (DP) model and a Dirichlet pro-

cess mixture (DPM) model to the problem of hospital comparisons using mortality

rates. These Bayesian non-parametric approaches satisfies the above requirements.

The efficiently accommodates outlying centers and allows for a more flexible distri-

bution of center effects with the possibility of skewness and multimodality. Further-

more, the embedded clustering feature in Dirichlet process models provides inherent

diagnostic measures to identify outlying centers. However, Ohlssen et al. (2007) con-

sidered mortality rates as binary outcomes. In our application, majority of data are

censored; as of Jan 31, 2013, 93% patients were still alive. Therefore, we extended

their work to survival-time data, defined from the time of kidney transplantation to

death; patients who are alive at the last follow-up time point were considered to be

right centered. Center effects were represented as random effects (frailties) in a Cox

proportional hazard model. In the Cox model, we included important patient-level

characteristics and dealt with missing data. Due to the large number of transplants

(> 50000) and the large dimension of patient-level covariates, Kalbfleisch and Wolfe

(2013) used a two-stage approach to obtain the risk-adjusted center effects. In the firs

stage, they estimated patient-level covariates from a Cox model stratified by trans-

plant centers; in the second stage, they derived center effects by fixing the covariate

effects obtained from the first stage. However, we used a fully Bayesian approach,

in which we used a Gibbs algorithm that alternates between (1) updating effects of
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covariates with a Metroplis-Hasting algorithm conditional on estimated center effects,

and then (2) updating center effects conditional on estimated covariate effects using

a DP or DPM model.

In this article, we proposed strategies to improve model performance and increase

model’s classification ability. To our knowledge, this approach has not yet been

considered for the national evaluation of survival outcomes.

The remaining of the article is organized as follows. Section 2 describes a DP

prior and a DPM prior for modelling center effects in a Cox proportional hazard

model, proposes strategies to improve model performance and creates graphical tools

to evaluate centers. Section 3 presents simulation studies and investigates shrinkage

effects for data with different clustering structures. Section 4 illustrates the analysis

on the Kidney transplant data. Section 5 is the concluding discussion.

2 MODEL

2.1 Cox Proportional Hazard Model

The data are denoted by {(tij, δij, xij), i = 1, · · · , N ; j = 1, · · · , ni}, where tij is the

observed event time for patient j in transplant center i; δij = 1 if tij is an observed

failure time and 0 if it the failure time is right censored at tij , and xij is a p-

dimensional vector of covariates.

Under the proportional hazards model, we have

λ(tij) = λ0(tij) exp{αxij + βi},

where βi is effect for center i after adjusting for the covariate vector xij. Often the

baseline hazard is assumed to be piecewise constant on a partition comprised of K
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disjoint intervals, yielding the piecewise exponential model (See, for instance, Jara

(2011), Walker and Mallick (1997), Aslanidou, Dey, and Sinha (1998), and Qiou et

al. (1999)). Assume that λ0(t) =
∑K

k=1 λkI(ak−1 < t ≤ ak), where a0 = 0 and

aK = max{tij}. Let λ = (λ1, · · · , λK), the likelihood for (α,λ, β) is given by

L(α,λ, β) =
N∏
i=1

ni∏
j=1

f(N ij, xij,∆ij;α,λ, β)

and

f(N ij, xij,∆ij;α,λ, β) =
K∏
k=1

exp{− exp{log λk + αxij + βi}∆ijk}

{exp{log{λk}+ αxij + βi}∆ijk}Nijk , (1)

where N ij = (Nij1, · · · , NijK), and Nijk takes a value of one if tij ∈ (ak−1, ak] and

δij = 1 and Nijk is zero otherwise. Define ∆ij = (∆ij1, · · · ,∆ijK), and ∆ijk =

(min{ak, tij} − ak−1)+ with x+ as max(x, 0).

The gamma process is used as a prior for the cumulative baseline hazard function

Λ0 (Kalbfleisch, 1978), i.e., Λ0 ∼ GP(c0Λ
∗
0, c0), where Λ∗0 is often assumed to be a

known parametric function. For example, Λ∗0 = ηyk0 corresponds to the Weibull

distribution, and c0 represents the degree of confidence in this prior guess.

2.2 Truncated Stick-breaking Process

In this article the attention is focused on modelling random effects (frailties) of

β1, · · · , βN . Often the random effects β′is (or eβi) are assumed to be generated from

some parametric distribution such as normal, gamma, positive stable, etc. Here we

5
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consider a Dirichlet process prior as

β1, · · · , βN ∼ G

G ∼ DP(a,G0),

where G0 corresponds to a best guess for G as a priori and a expresses confidence in

this guess.

The stick-breaking representation (Sethuraman, 1994) implies that G ∼ DP(a,G0)

is equivalent to

G =
∞∑
h=1

πhδβh , βh ∼ G0, and
∞∑
h=1

πh = 1, (2)

where πh = Vh
∏

l<h(1− Vl) is a probability weight formulated from a stick breaking

process, with Vh ∼ Beta(1, a), for h = 1, · · · ,∞, and δβ is a point mass at β. Small

values of a (such as a = 1) favor a small number of clusters and large values of a

(such as a = 10) would result in as many as 50 clusters. Since our interest lies in the

identification of a few subgroups, we fixed a = 1, a widely used choice in applications

that favors a few clusters Dunson (2010).

One potential issue with this representation of a mixture of point mass is that

it assumes a discrete distribution for the random effects so that different centers in

a cluster have exactly the same random effect values. It may be more realistic to

assume that centers in a cluster have similar, but not identical, random effect values.

To accomplish this, let βi ∼ N(µh, σ
2
h) and (µh, σ

2
h) ∼ G. That is, (2) becomes

G =
∞∑
h=1

πhN(µh, σ
2
h), (µh, σ

2
h) ∼ G0, and

∞∑
h=1

πh = 1 (3)

In this case, the random distribution, G, is characterized as a DP mixture (DPM) of

normals (Escobar and West, 1995). A mixture of normals allow a flexible continuous
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random-effects distribution of the center effects. (Readers can refer to a nice book by

Dunson (2010) for a detailed review of the DP and DPM model).

Recent research has focussed on using the constructive definition of the DP to

produce practical MCMC algorithms (Ishwaran and James, 2001). The principle is

to approximate the full process by truncating the DP(M) at a maximum number of

components H, so that

G =
H∑
h=1

πhδβh in DP and G =
H∑
h=1

πhN(µh, σ
2
h) in DPM

Closely related to a, a large H provides an accurate approximation to the full DP(M)

but requires a large computation effort. Ohlssen et al. (2007) provided strategies to

specify H. Since we are interested in detecting a few subgroups, i.e., two groups below

and two above the population average, we fixed H = 5 and found that H = 5 worked

very well for both the cases studied in the simulation and the kidney transplant data.

2.3 Hyperpriors

In PD model G0 is often chosen to have a normal distribution, i.e., G0 ∼ N(µ0, σ
2
0).

The hyperparemters (µ0, σ
2
0) can be fixed, or assigned a normal-inverse gamma hy-

perprior. A hyperprior would allow the base distribution having unknown mean

and variance and provide a shrinkage of center effects towards the overall mean.

In DPM model we assumed that µh ∼ N(µ0, σ
2
0), with a normal hyperprior for µ0

and a Half-Cauchy prior for σ2
0 (Gelman, 2006), i.e., f(σ0) ∝

(
1 + (σ0

A
)2
)−1

, with

a smaller A indicating a stronger prior information and a greater shrinkage. This

Cauchy prior behaviors well for a small number of components (clusters), such as

H = 5, and it restricts σ2
0 away from very large values and have better behavior near

zero, compared to the inverse-gamma family (Gelman, 2006). We also assumed that

1/σ2
h ∼ Gamma(e0, f0) and fixed hyperparemters (e0, f0) to be weakly informative,

since fully non-informative priors are not possible in a mixture context (Richardson
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and Green, 1997).

2.4 Centered Stick-breaking Process

In parametric hierarchical models, it is a standard practice to place a mean constraint

on the latent variable distribution for sake of identifiability and interpretability (Yang

et al., 2010; Yisheng Li and Lin, 2011). In this article we centered the Dirichlet

process to have zero mean. Following Yang et al. (2010), we estimated the mean of

the process, µmG , at the mth MCMC iteration as

µmG =
H∑
h=1

V m
h

∏
l<h

(1− V m
l )βmh ,

where V m
h and βmh are the posterior samples from the un-centered process defined in

(2), and βmi − µmG (h = 1, · · · , H) is the “centered” estimate for center i at the mth

iteration. The same idea applies to the DPM model.

Centering the process improves model performance in two aspects. First, it im-

proves MCMC convergence and mixing rates. Second, an “centered” estimate can be

interpreted as a deviation from the population average.

2.5 Posterior Computation

The blocked Sampler of Ishwaran and James (2001) was used to allocate each center

to one of the components by sampling the label Zi from a multinomial conditional

posterior. In the DP model, probabilities in the multinomial distribution are :

Pr(Zi = h|−) =
{Vh

∏
l<h(1− Vl)}

∏ni

j=1 f(N ij,∆ij, xij;α,λ, βh)∑H
r=1{Vr

∏
l<r(1− Vl)}

∏ni

j=1 f(N ij,∆ij, xij;α, λ, βr)
,
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where f(N ij,∆ij, xij;α,λ, β) is defined in (1).

In the DPM, the probabilities are

Pr(Zi = h|−) =
{Vh

∏
l<h(1− Vl)}

∏ni

j=1N
η(βi;µh, σ

2
h)∑H

r=1{Vr
∏

l<r(1− Vl)}
∏ni

j=1N
η(βi;µr, σ2

r)

We used η = 2 to facilitate efficient classification of the label indicators, and thus

avoiding all centers to be classified into a single component (cluster). We have found

that a small η (η > 1) improved the clustering performance especially when the prior

for component parameters are weak. Intuitively, η = 2 implies that each patient

information is doubled, and thus increases the effect size. It is worth mentioning that

different choices of η generally will not affect the posterior estimation of the center

effects, and estimates with η = 2 is very similar to that with η = 1. The posterior

calculations for other parameters are shown in the Appendix.

2.6 Statistical Measures to Rate Centers

A useful metric to rate transplant centers is their ranks. In each MCMC iteration, βi

(i = 1, · · · , N) was ranked; without ties, the smallest βi had rank 1 and the largest

βi has rank N . Over all MCMC interactions, we obtained a distribution of ranks for

each center. Ohlssen et al. (2007) proposed a measure to assess pairwise clustering

between centers by creating a N × N matrix of posterior probabilities of the two

centers being classified into the same cluster. We combined the above two measures

and graphically represented the N × N matrix using a heat map where transplant

centers are ordered by their posterior means of the ranks. This heat map reveals a

clustering structure of the studied centers that facilitates rating centers, as well as

identifying outlying centers.

Additionally, in order to visually detect outlying centers, we calculated the pro-

portion of centers in the same cluster as center i, denoted by PS. Together with the
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rank (percentile) statistics, we created a graph that helps identify centers that are in

isolated small clusters with exceptionally low or high ranks.

3 SIMULATION STUDIES

As discussed in Dunson (2010), the clustering is sensitive to hyperparameters, and

different hyperarameters induce different model shrinkage. However, it is not im-

mediately clear how hyperarameters affect shrinakge in survival data and what is

a desirable shrinkage for a model. In this section we conducted simulation studies

to investigate the performance of DP and DPM models that were designed to have

different degree of shrinkage.

• A DP model with fixed hyperparameters, i.e., (µ0, σ
2
0) are fixed (denoted by

DP), or a random normal-inverse gamma hyperprior for (µ0, σ
2
0) (denoted by

DP-HP).

• A DPM model with µh ∼ (µ0, σ
2
0), where µ0 has a normal hyperprior and σ2

0

has a Half-Cauchy prior with A = 1 or 5. We also assigned a very weak prior

for σ2
h, i.e., 1/σ2

h ∼ Gamma(0.01, 0.01).

The DP model, with fixed hyperparameters, do not induce shrinkage between clusters,

but shrinks centers within the same cluster to a single estimate. In contrast, DPM

allows shrinkage between- and within-clusters with a smaller A indicating a stronger

shrinkage. Intuitively, DP-HP could have a stronger shrinkage than DPM since DP-

HP has the strongest shrinkage within cluster as well as a between-cluster shrinkage

that is induced by a hyperprior.

In all simulations, survival times were generated from a Cox model (Bender et al.,

2005), S(t|centeri) = exp[−Λ0(t) exp(βi), ] where Λ0 is the cumulative hazard function

of a Weibull distribution, with a scale parameter of one and a shape parameter of 0.8,

suggesting the mortality rate decreases over time, which is observed in the Kidney
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Table 1: Simulation set-up for Scenario I-III

C1 C2 C3
Scenario I n1 = 16 n2 = 16 n3 = 16

N(0.69, 0.22) N(0, 0.22) N(0.69, 0.22)

Scenario II n1 = 8 n2 = 24 n3 = 16
N(0.69, 0.22) N(0, 0.22) N(0.69, 0.22)

Scenario III n1 = 4 n2 = 40 n3 = 4
N(0.69, 0.12) N(0, 0.22) N(0.69, 0.12)

transplant data. For an illustrative purpose, we did not include covariates in the

simulation.

We generated data under four data clustering structures, each consists of 48 centers

and each center has 20 or 40 patients. Scenario I-III have three clusters but with

different sizes (the size refers to number of centers in a cluster). Table describes

the size of the cluster and the distribution of βi’s within each cluster. For instance,

the first n1 centers form a cluster named as C1, with β′is simulated from a normal

distribution with a mean −0.69 and a standard deviation of 0.2; likewise, the next n2

centers form a cluster named as C2 and the last n3 centers form a cluster named C3.

We also include Scenario IV in the simulation, in which all βi’s were generated a single

cluster with βi ∼ N(0, 0.3). Within each cluster, the first half centers have n = 20

and other half centers have n = 40. A large βi means poor center performance. βi of

−0.69 and 0.69 correspond to a hazard ratio of 0.5 and 2 relative to the population

average, respectively. These clinically meaningful ratios are expected to be detected

in the real data analysis.

All normal priors were assumed to have a mean of zero and variance of 100. The

baseline hazard was assumed to have an exponential distribution with a rate of 1 and

c0 = 0.1, and the time axis was partitioned into 5 intervals based on the observed

quantiles. All the priors were set to be quite weak. With a burn-in of 1000 iterations,
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Table 2: Parameter estimation and performance statistics with respect to the absolute
bias (Bias), standard deviation (SD) and mean square error (MSE), based on 200
simulated datasets.

DP DPM (A = 1)
n C1 C2 C3 C1 C2 C3

I

Bias 20 0.15 0.03 0.12 0.11 0.02 0.08
40 0.08 0.02 0.06 0.06 0.02 0.02

SD 20 0.24 0.28 0.25 0.30 0.27 0.27
40 0.23 0.21 0.22 0.26 0.18 0.24

MSE 20 0.08 0.08 0.08 0.10 0.07 0.09
40 0.06 0.04 0.05 0.07 0.03 0.06

II

Bias 20 0.11 0.09 0.25 0.05 0.09 0.21
40 0.02 0.11 0.17 0.01 0.10 0.15

SD 20 0.31 0.21 0.26 0.33 0.22 0.28
40 0.29 0.15 0.25 0.28 0.17 0.25

MSE 20 0.11 0.05 0.13 0.11 0.06 0.12
40 0.09 0.04 0.09 0.08 0.04 0.08

III

Bias 20 0.35 0.00 0.30 0.28 0.01 0.25
40 0.21 0.01 0.15 0.16 0.01 0.15

SD 20 0.30 0.12 0.27 0.34 0.14 0.26
40 0.31 0.09 0.26 0.30 0.12 0.25

MSE 20 0.21 0.01 0.16 0.20 0.02 0.13
40 0.14 0.01 0.09 0.12 0.01 0.09
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Figure 1: Pairwise posterior probabilities of two centers assigned to the same cluster
under four scenarios using the DP model (the first row) and the DPM( A = 1) model
(the second row). White, red and blue color corresponds to a probability of equal to,
larger and less than 0.5, respectively; The darker the red, the closer the probability is
to 1; the darker the blue, the closer the probability is to 0. The heat map of DP-HP
DPM (A = 5) are very similar to DP and DPM (A = 1), respectively, so their heat
maps are not presented.

Table 3: DIC3 under four scenarios.

DP DP-HP
DPM DPM

(A = 1) (A = 5)

I 6174 6177 6164 6149
II 6435 6437 6413 6422
III 6320 6327 6330 6329
IV 6390 6371 6387 6386
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an additional 2000 iterations were used for inference.

Table 2 shows the parameter estimations and performance statistics with respect

to the absolute bias (Bias), standard deviation (SD) and mean square error (MSE),

based on 200 repeated datasets. As expected, centers with n = 40 have more accurate

estimates compared to centers with n = 20, as evidenced by a smaller bias, SD and

MSE. Surprisingly, parameter estimations are very similar between DP and DPM

models, so we only presented the DP and DPM (A = 1) for illustration. It is also

interesting to note that, in both DP and DPM models, estimates in a small cluster

can be significantly biased toward a large cluster.

Figure 1 displays the estimated clustering structure for the DP and DPM model

under four scenarios over 200 repeated datasets. Each heat map was created based

on 48 × 48 matrix, containing pair-wise posterior probabilities for two centers being

classified into the same cluster. Since we know the true cluster status for each center,

centers are ordered by their true IDs. A red square represents a cluster (subgroup).

It is apparent that the true clustering structure is well represented in all scenarios in

both DP and DPM models. As expected, centers with a large sample size (n = 40) are

more likely to be classified correctly than centers with a small sample size (n = 20), as

demonstrated by large centers having in a cluster and a darker blue between clusters.

Upon closer inspection, DP models generally have higher pair-wise probabilities than

DPM models, as evidenced by a darker red and a lighter blue in the DP model.

We observed that the pair-wise probabilities are less influenced by undue shrinkage

than the estimates of the center effects seen in Table 2. Here, the average pair-wise

probabilities are between 65%-70% for all three clusters. For example, in Scenario

III, probabilities for C1, C2 and C3 are 0.65, 0.70 and 0.70, respectively in the DPM

model and 0.65, 0.78 and 0.69, respectively in the DP model.

We also computed two Bayesian model comparison criteria for selecting the best

model. one is DIC3 Celeux et al. (2006) and the other is the log-pseudo marginal

likelihood (LPML) Ibrahim et al. (2001). The best model should have the smallest

DIC3 and largest LPML. We only presented DIC3 since LPML showed exactly the
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same ordering as the DIC3. As indicated by the performance statistics, when data

consist of a few clusters, a DP model is preferred if a big cluster is accompanied by

a few small outlying clusters (such as Scenario III) and a DPM is a better choice

otherwise. In the last scenario when there is only a single cluster, DP-HP is the best.

4 APPLICATION

We applied our model to data on 213 transplant centers in the US, excluding centers

with fewer than 10 patients. The number of patients per center has a median of 198

and an interquartile range of (111, 356). We selected nine patient-level covariates

using a forward selection algorithm, including Cold ischemia time, Peak renal reac-

tive antibody level (PRRA), Body mass index, Time on renal replacement therapy

(TRRT), Donor race, Recipient race, Donor history of Diabetes, Previous Solid Or-

gan Transplant, Recipient Diagnosis. Due to the retrospective nature of the analysis,

values were missing for some of those characteristics. For instance, there are 16.47%

missing data in TRRT and 2.14% missing in PRRA. In order to include patients with

partially missing covariates while reserving the original covariate distributions, we

created a binary variable for each covariate indicating if the data is missing for each

subject. For example, a continuous covariate was created into two variables with one

variable containing the original value and the other variable containing one if the data

is missing and zero otherwise. By doing so, we created 12 covariates.

The priors used in the application are the same as in the simulation studies except

that 1/σh ∼ Gamma(3, 0.5), which is also weak relative to the likelihood. With

a burn-in of 10000 iterations, an additional 20000 iterations were used for posterior

inference. We observed that the chain mixes well and the results are robust to different

choices of the initial values.

As illustrated in Table 4, A DPM model with a stronger shrinkage (e.g., A = 1)

is preferred for the kidney transplant data. In this application, we also tried a larger

15
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Table 4: Diagnosis statistics for different models

Model DIC3 (pD3) LPML
DP 41793 (113) -20897
DPM(A = 1) 41763 (137) -20883
DPM(A = 5) 41765 (138) -20884

H (H = 20 and H = 50) and considered a random a, respectively. We found that

a large H did not improve the model performance (DIC3 and LPML were the same

as fixing H = 5), and data seemed to contain little information about estimating the

parameter a, leading to the same, or slightly worse DIC3 and LPML, compared to a

fixed a (data not shown).

Figure 2 presents caterpillar plots of the center estimates and Figure 3 depicts

outlying centers at two tails, i.e., centers with very low and high percentiles and

small probabilities of being in the same cluster as other centers. In both DP and

DPM models, two transplant centers (with id 652 and 437) have the worst outcomes

(PS < 0.2 and Percentile> 0.8). It is also interesting to note that a few centers with

exceptionally good performance are observed in DPM model but not in DP model.

The heat map in Figure 4 is based on pair-wise probabilities and ordered by rank

statistics as described in Section 2.6. It appears that a few centers at the upper right

corner form an isolated cluster (this is clearer when the plot was magnified to 200%),

which performed significantly worse than the population average. Moving along the

diagonal toward the lower left corner, the next cluster consists of approximately 60

centers that performed better than the previously mentioned small outlying cluster

but still worse than the population average. No isolated subgroups of centers seem

to perform significantly better than the population average; however, a big group of

around 60 centers performed above average. We found that the DP and DPM model

identified very similar outlying centers with slightly different ordering of across the

centers.
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Figure 2: Caterpillar plots of 95% credible intervals for estimates of the center effects
in kidney transplant data using the DP model in (a) and the DPM (A = 1) model in
(b). The transplant centers were placed in the order of their posterior means. The
dotted vertical line corresponds to the population average.
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Figure 3: The x axis is the mean percentile and the y axis is the mean percentage of
centers being in the same cluster as center i for the kidney transplant data using DP
model (a) and DPM (A = 1) model (b).
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Figure 4: Heat maps representing pair-wise posterior probabilities of the two centers
are classified into the same cluster; centers are ordered based on their mean ranking
scores. (a) and (b) are from DP and DPMG model, respectively.
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5 DISCUSSION

In this article we evaluated long-term mortality rates of kidney transplant centers

from a national organ failure registry. We proposed a fully Bayesian approach to

model patient-level covariates and center effects in a Cox Proportional Hazard model.

In modelling the risk-adjusted center effects, we described a Dirichlet process model

and a Dirichlet process mixture model with a Half-Cauchy. We also derived statistical

measures and presented graphical tools to rate transplant centers and identify outlying

center with exceptionally good or poor performance.

To improve the model performance and interpretability for the survival data, we

centered the Dirichlet process. Without centering, MCMC chains exhibit very high

autocorrelation which has no hope of yielding any meaningful estimates. Centering

the DP process by constraining the mean to zero dramatically improved model conver-

gence and interpretability of the estimates of the center effects. To increase model’s

classification ability, we raised the normal density to a power of two for updating com-

ponent labels in DPM. In practice this η can be considered as a tuning parameter,

say try η = 1.5, 2or2.5, and choose the η with the best model performance assessed

by the heat map and LPML statistics. We found that this strategy dramatically im-

proved model’s classification ability and it outperformed alternative strategies, such

as forcing a common variance across components (σ2
1 = σ2

2 = · · · = σ2
H) and assigning

strongly informative priors for σ2
h(h = 1, · · · , H).

The graphical tools and statistical measures proposed in this article are particu-

larly useful to reveal a clustering structure of all transplant centers and help identify

outlying centers. We can set up hypothesis testing to further quantify the outlying

centers. This is not our focus in this article, but it would be an interesting future

work.

As discussed in Ohlssen et al. (2007), the modelling should be seen as a start-

ing point for further investigation into the reasons for unusual results or apparent

clustering. This might include checking the data for coding errors, investigation of
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covariates of centers which appear to form clusters and more detailed inspection of

transplant centers with unusual outcomes.

APPENDIX

A.1 Gibbs Sampler

In DP model,

1. Update the stick-breaking weights from conditionally conjugate beta posterior

distributions:

Vh|− ∼ Beta

(
1 +

N∑
i=1

I(Zi = h), a+
N∑
i=1

I(Zi > h)

)
, h = 1, · · · , H

2. Given the centers with labels specific to cluster h,, update βh by the adaptive

rejection algorithm and βh ∼ N(0, 100) as a priori (see Gilks et al. (1995);

Ibrahim et al. (2001)).

3. Update baseline hazard in interval k(k = 1, · · · , 5) from Gamma(1 × 0.1 +

Dk, 0.1 +
∑

i∈Rk
exp{αxij + βi}∆ijk), and Dk and Rk represents the number of

death and the number subjects at risk in interval k.

4. The vector of covariates was divided into 3 groups with 6 covariates per group,

and α was updated by groups. Within each group, the corresponding α was

updated using the adaptive Metropolis-Hastings algorithm (Haario et al., 2001).

The initial estimates of α was calculated from a Cox model stratified by centers.

The multivariate normal proposal density centered at the previous value, and

the covariance in the proposal was ”refined” by using the empirical covariance

from an extended burn-in period.
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5. Update a from a Gamma distribution

a ∼ Gamma

(
1, a0 +H − 1, b0 −

H−1∑
r=1

log(1− Vr)

)
I(0.3, 10)

The prior for a is gamma with hyperparameters a0 and b0, which are constrained

in the range from 0.3 to 10.

6. In DP-HP, given β1, · · · , βh, · · · , βH , update (µ0, σ
2
0) using the normal-inverse-

gamma conjugacy form (see Carlin and Louis (2000)).

Compared to the DP model, there are some changes in the DPM model,

2. Update βi by the adaptive rejection algorithm and with βi ∼ (µZi
, σ2

Zi
) as a

priori.

7. Gibbs sampling of component-specific parameters and hyperparameters in G0

using the Cauchy prior can be found in Gelman (2006).
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