
Harvard University
Harvard University Biostatistics Working Paper Series

Year  Paper 

A Predictive Enrichment Procedure to Identify
Potential Responders to a New Therapy for

Randomized, Comparative, Controlled
Clinical Studies

Junlong Li, Harvard University
Lihui Zhao, Northwestern University
Lu Tian, Stanford University
Tianxi Cai, Harvard University
Brian Claggett, Brigham & Women’s Hospital
Andrea Callegaro, GlaxoSmithKline Vaccines
Benjamin Dizier, GlaxoSmihtKline Vaccines
Bart Spiessens, GlaxoSmithKline Vaccines
Fernando Ulloa-Montoya, GlaxoSmithKline Vaccines
L. J. Wei, Harvard University

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/harvardbiostat/paper169

Copyright c©2014 by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61321975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A predictive enrichment procedure to identify potential
responders to a new therapy for randomized, comparative

controlled clinical studies

Junlong Li1, Lihui Zhao2, Lu Tian3, Tianxi Cai1, Brian Claggett4, Andrea Callegaro5,
Benjamin Dizier5, Bart Spiessens5, Fernando Ulloa-Montoya5 and Lee-Jen Wei1

Abstract

To evaluate a new therapy versus a control via a randomized, comparative clinical study

or a series of trials, due to heterogeneity of the study patient population, a pre-specified,

predictive enrichment procedure may be implemented to identify an “enrichable” subpopula-

tion. For patients in this subpopulation, the therapy is expected to have a desirable overall

risk-benefit profile. To develop and validate such a “therapy-diagnostic co-development”

strategy, a three-step procedure may be conducted with three independent data sets from a

series of similar studies or a single trial. At the first stage, we create various candidate scor-

ing systems based on the baseline information of the patients via, for example, parametric

models using the first data set. Each individual score reflects an anticipated average treat-

ment difference for future patients who share similar baseline profiles. A large score indicates

that these patients tend to benefit from the new therapy. At the second step, a potentially

promising, enrichable subgroup is identified using the totality of evidence from these scoring

systems. At the final stage, we validate such a selection via two-sample inference procedures

for assessing the treatment effectiveness statistically and clinically with the third data set,

the so-called holdout sample. When the study size is not large, one may combine the first

two steps using a “cross-training-evaluation” process. The entire enrichment procedure is

illustrated with the data from a cardiovascular trial to evaluate a beta-blocker versus the

placebo for treating chronic heart failure patients.

Keywords: Cox model; Cross-validation; Stratified medicine; Survival analysis; Therapy-

diagnostic co-development
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1 Introduction

In a typical randomized clinical trial, generally the assessment of a new therapy versus a control

with respect to the risk-benefit profile is made for the entire study patient population. Due to

heterogeneity of the study population, the conclusion of a positive (or negative) study on an

average sense does not guarantee the new therapy benefits (or does not benefit) uniformly for

all patients in the study population (Rothwell, 1995; Rothwell et al., 2005; Kent and Hayward,

2007). Recently various enrichment strategies were suggested and implemented in comparative

trials (Freidlin and Simon, 2005; Jiang et al., 2007; Wang et al., 2007; Simon, 2008; Karuri

and Simon, 2012; U.S. Food and Drug Administration, 2012). For predictive enrichment, the

idea is to apply a systematic, pre-specified procedure to identify and validate a subpopulation

whose patients would significantly benefit from the new therapy clinically and statistically. This

procedure may be utilized in a single study or a series of trials conducted under similar settings.

A properly executed predictive enrichment procedure generally consists of three stages: at

the first stage using data set A, we utilize all the relevant baseline information to fit the data

with various prediction models to create several competing scoring systems for stratifying future

patients. The individual score is an estimated average treatment difference for future patients

with similar baseline profiles. A large score indicates that the patient has a high chance to

benefit from the new therapy. At the second stage with data set B, we evaluate and compare

these scoring systems and then develop a rule for identifying an enrichable subpopulation. At

the last step with data set C, the holdout sample, we validate such a selection rule via proper

two-sample inference procedures for comparing the two treatments for the enrichable subset

of patients in C. Ideally each step would be conducted via an independent data set from the

same underlying study population and interventions. With the data from a single comparative

study, one may split the entire data set into two independent parts and use the first part as A

& B for scoring system building and evaluation, as well as the identification of an enrichable

subpopulation via a conventional “cross-training-evaluation” scheme. We then use the second

part of the data as C to examine if there is a strong evidence that patients in the enrichable

subpopulation would respond favorably to the new therapy compared with the control.

As an illustrative example, consider the data from a clinical trial “Beta-Blocker Evaluation of

Survival Trial (BEST)” to investigate if bucindolol, a beta-blocker, would benefit patients with

advanced chronic heart failure (Eichhorn et al., 2001). There were 2708 patients enrolled and
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followed for an average of two years. One of the primary goals of the study was to examine if the

beta-blocker could reduce the overall hospitalization and mortality rates of the patients. With

the time to either death or the first hospitalization as the endpoint, the Kaplan-Meier curves

are given in Figure 1. The p-value based on the standard two-sample log-rank test is 0.14, with

a hazard ratio estimate of 0.93 and its corresponding 0.95 confidence interval of (0.85, 1.02). For

this outcome variable, the evidence that the beta-blocker was better than the control for the

entire study population is not strong.

[Figure 1 about here.]

Now, suppose that we had a pre-specified, aforementioned enrichment strategy at the begin-

ning of the study with respect to this endpoint. We first split the entire data set into two parts,

using the data from the first 900 patients on the data listing for BEST provided by US National

Institutes of Health as A & B for building and evaluating scoring systems to identify a potentially

enrichable subpopulation. We assume that this set of observations is a random sample from the

BEST database. Then, we use the data from the remaining 1807 patients as the holdout sample

C to examine if the beta-blocker would benefit the patients of the selected subpopulation by

reducing the rate of death or the first hospitalization compared with the standard control. For

this study, there are 16 clinically relevant baseline covariates: age, sex, left ventricular ejection

fraction (LVEF), estimated glomerular filtration rate adjusted for body surface area (eGFR),

systolic blood pressure (SBP), class of heart failure (Class III versus Class IV), obesity (Body

mass index > 30 versus ≤ 30), resting heart rate, smoking status (ever versus never), history of

hypertension, history of diabetes, ischemic heart failure etiology, presence of atrial fibrillation

and race (white versus non-white). As in Castagno et al. (2010), we used 3 indicator variables

to discretize eGFR values into 4 categories, with cut-points of 45, 60, and 75. In general, the

baseline covariates may consist of clinical and genetic markers of the patients.

We will use this example to illustrate the proposed procedure step by step. Although the

endpoint of the study is the (possibly censored) time to a specific event, the procedure can be

trivially generalized to the case with a non-censored endpoint, for example, a binary, continuous

or ordinal categorical observation. In Section 2, with data set A of BEST described above, we

use a single set of regression models, which relate the event time to its 16 baseline covariates, to

estimate an average treatment difference (e.g., the hazard ratio of placebo versus beta-blocker)

for patients who share similar baseline covariate profiles. This creates a continuous scoring
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system. If the model is a reasonably good approximation to the truth, a future patient with

a large score is expected to benefit from the new therapy. An enrichable subpopulation would

consist of patients whose scores are greater than an appropriately chosen threshold value. To

avoid the problem of potential over-fitting, we discuss methods to choose this threshold value

with an independent data set B in Section 3. Since there is only one study for evaluating the beta-

blocker in our illustrative example, the size of the data set at each step may not be large enough

for obtaining a reliable scoring system. In Section 4, we present a “cross-training-evaluation”

process by implementing the above two steps iteratively with various competing models and

regularized estimation procedures to create the scoring systems. The final recommendation

for an enrichable subgroup is then obtained by considering the totality of evidence from all of

the candidate scoring systems and the related threshold values. In Section 5, we validate our

selection by applying two-sample inference procedures to the enrichable subgroup in the holdout

sample. Note that the primary criteria utilized for identifying a threshold value in Section 4

should be closely related to those for the final validation with the holdout sample. For instance,

if the final primary assessment of the enrichable subgroup is based on the standard two-sample

interval estimation procedure for the hazard ratio with the holdout sample, the choice of the

threshold value in Section 4 would be made via the corresponding predicted interval estimate

for the hazard ratio. That is, we choose the threshold value such that the predicted interval

estimate suggests that using the data from the potential enrichable subgroup in the holdout

sample, the beta-blocker can be demonstrated to have a clinically meaningful advantage over

the control via the confidence interval estimate.

There are numerous novel proposals in the literature for identifying future patients to be

treated by the new therapy (Qian and Murphy, 2011; Zhang et al., 2012a,b; Zhao et al., 2013).

Generally, each proposal is based on maximizing a specific utility function. For example, using

data from the BEST study, one may recommend treating future patients whose hazard ratio

scores are greater than one with beta-blocker, and leaving the rest untreated. However, such

a selection procedure may not be applied directly to our problem. For instance, we may not

be able to validate the superiority of the beta-blocker over the control using the data from the

holdout sample (especially if the enrichable subgroup includes a sizable subset of patients for

whom the benefit of beta-blocker is not clinically meaningful). Furthermore, the selection of a

robust, enrichable subgroup may depend on the totality of evidence, which is based on more
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than one utility function and multiple competing scoring systems as proposed in this article.

2 Creating a patient-specific scoring system for quantifying the

between-group differences

In this section, we present the predictive enrichment scheme under the survival analysis setting.

Let T be a time-to-event outcome, U be a p× 1 vector of baseline covariates and G denote the

group indicator with 1 for the new therapy group and 0 for control. Furthermore, it is assumed

that T may be censored by a censoring variable C, which is independent of T and U . For each

patient, we observe (X,∆, G, U), where X = min(T,C) and ∆ denotes the censoring indicator

with ∆ = 1 if X is observed and 0 otherwise. The observations, {(Xi,∆i, Gi, Ui), i = 1, · · · , n1},

from data set A consist of n1 independent and identical copies of (X,∆, G, U). Conditional on

U , let the population parameter for the group contrast, i.e. the treatment difference, be denoted

by D(U) and a large value of D(U) indicates that the new therapy is better than the control for

prolonging the event time. For example, D(U) may be the difference of two event time medians

or the model-based “constant” hazard ratio for the control versus the new therapy (Cox, 1972).

For U = u, we first consider D(u) being the hazard ratio for patients with baseline vector u.

To estimate D(u) with the data set A, one may utilize semi-parametric or parametric regression

models. For example, we may fit the data from each treatment group with a Cox model to

obtain D̂(u) to approximate D(u). Specifically, for patients in Group G = k (k = 0, 1), consider

the Cox model:

P (T > t|U = u,G = k) = g
(
logΛk(t) + β

′
ku
)
, (2.1)

where t > 0, g(x) = exp{−ex}, Λk(·) is the group-specific underlying cumulative baseline hazard

function and βk denotes the vector of unknown coefficients.

To obtain an estimate of βk from (2.1) when the dimension of U is high, we may utilize

a regularized estimation procedure, for example, via lasso, adaptive lasso, elastic net or ridge

regression (Verweij and Van Houwelingen, 1994; Tibshirani et al., 1997; Fan and Li, 2002; Zhang

and Lu, 2007; Friedman et al., 2010; Simon et al., 2011) with the partial likelihood function

L(βk). Taking the elastic net procedure as an example, β̂k is a minimizer of

log{L(βk)}+ λ1||βk||1 + λ2||βk||2 ,
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where ||βk||1 and ||βk||2 denote the L1− and L2−norm of βk, respectively. Here, λ1 and λ2 are

the non-negative regularization parameters, which can be selected by a standard cross-validation

procedure (Tibshirani, 1996). Note that the estimation procedure becomes the standard lasso

method by setting λ2 = 0. On the other hand, when λ1 = 0, the resulting procedure is the

standard ridge regression.

Now, assuming that the underlying hazard functions for two treatment groups are propor-

tional to each other, one may summarize the treatment difference based on D̂(u) = exp{β̂′
0u}/ exp{β̂′

1u}.

It is important to note that (2.1) is simply a working model, which is an approximation to the

truth. The proportional hazard assumption may not be valid. Therefore, D̂(·) may not be able

to capture the patient-specific treatment differences. In fact, even if the two Cox models are

correctly specified, D̂(·) can only estimate D(·) up to a positive constant. On the other hand,

this scoring system may work reasonably well for ranking the future patients with respect to

the benefit from the new therapy. As an example, with the data from the first 900 patients in

the BEST study discussed in Section 1, we randomly choose a subset of 450 patients and fit the

corresponding data with the above procedure under the ridge regression setting. The resulting

β̂0 and β̂1 are given in the Table 1. For each given covariate vector u, we then obtain D̂(u).

With such a scoring system, we can rank patients in a given data set. There is a one-to-one

correspondence between the scores and their ranks. Thus, we can use relative ranks as scores to

identify an enrichabe subgroup.

[Table 1 about here.]

An alternative and model-free between-group contrast measures can be considered , for

example, the difference or ratio of two median survival times. However, due to censoring, we

may not be able to estimate median survival time well with the observed data. Instead of the

median, the mean survival time is another good summary of the survival time distribution,

but again, due to censoring it cannot be estimated well either. On the other hand, unlike

the median, we can modify the mean with so-called restricted mean survival time (RMST) as a

summary to accommodate the study follow-up time, say, τ0 (Irwin, 1949; Karrison, 1987; Zucker,

1998; Murray and Tsiatis, 1999; Chen and Tsiatis, 2001; Anderson et al., 2004; Tsiatis et al.,

2008; Zhang and Schaubel, 2011; Royston and Parmar, 2011; Tian et al., 2012; Zhao et al.,

2012). The RMST is simply the population average of the event-free times for τ0-year follow

up. This quantity can be easily estimated by the area under the Kaplan-Meier curve up to τ0
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and the corresponding one- or two-sample inference procedures can be made accordingly. For

example, for the entire data from BEST, if we let τ0 = 3.5 (years), the estimated RMSTs for

beta-blocker and the control are 1.51 and 1.42 (years), respectively. The p-value for testing the

equality of the underlying two RMSTs based on their empirical counterparts is 0.19 and a 0.95

confidence interval for the difference of the RMSTs is (−0.11, 0.30). Note that unlike the hazard

ratio, this between-group difference measure is model-free and the inferential results are readily

interpretable clinically.

To construct a scoring system using the difference of RMSTs, one may use the regression

models studied by Anderson et al. (2004) and Tian et al. (2014). Alternatively, we may use the

Cox models above to estimate D(u), the difference of two RMSTs given U = u. The resulting

estimate

D̂(u) =

∫ τ0

0

{
g1(log Λ̂1(t) + β̂

′
1u)− g0(log Λ̂0(t) + β̂

′
0u)
}
dt ,

where

Λ̂k(t) =

n1∑
i=1

∫ t

0

dN
(k)
i (s)∑n1

j=1 Y
(k)
j (s)eβ̂

′
kZj

,

which denotes the estimated cumulative hazard function for k = 0, 1 with

N
(k)
i (t) = I(Xi ≤ t, Gi = k)∆i, i = 1, . . . , n1

and

Y
(k)
j (t) = I(Xj ≥ t, Gj = k), j = 1, . . . , n1.

Note that instead of fitting the data from each treatment group with a Cox model, respec-

tively, one may use a single model including the treatment indicator, main covariate effects,

and treatment and covariate interactions with those regularized estimation procedures discussed

above to fit the entire data set A to create the scoring system. In Section 4, we will provide

more details about other models with various regularized estimation procedures for building the

scoring systems. Moreover, for uncensored outcome variables, one may use the generalized lin-

ear working models with various regularized estimation procedures to construct patient-specific

scoring systems.
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3 Choosing an enrichable subpopulation with a scoring system

From data set A, we obtain a scoring system based on D̂(·) and define its corresponding rank

score Q̂(·) = 1 − F̂{D̂(·)}, where F̂ (·) is the empirical distribution function of D̂(U). If the

working models utilized for establishing the individual scores are reasonably good approximations

to the truth, we expect that a patient whose rank score is large would more likely to benefit from

the new therapy. Therefore, it seems natural to consider an enrichable subgroup of patients in

data set B, whose Q̂(·) ≥ 1−q0, where q0 is an appropriately selected threshold value representing

the fraction of the enrichable subpopulation with respect to the entire study population. That

is, given 0 < q0 < 1, the selected enrichable subgroup based on q0 consist of patients whose rank

scores exceed the 100(1− q0)th percentile.

Now, the question is how to choose this threshold value q0 at this stage. To answer this

question, we need to know how we will validate the potentially promising subgroup using a

threshold value q0, with the data from the holdout sample C. As an example, let us consider

the hazard ratio estimate based Q̂(·) as the score created by two Cox models with the ridge

regression method discussed in Section 2. We apply the above binary rule to identify a set E of

patients in the holdout sample-whose ranks of the hazard ratios are greater than n3q0, where

n3 is the sample size of the holdout sample. With the observations from E , we test the null

hypothesis that there is no difference between the new therapy and control via the logarithm

of the two-sample hazard ratio estimator H̃Rq0 . If the resulting standardized test statistic Z is

significantly large, then one claims that this selected subgroup is successfully validated.

Now for each given q, let HRq be the limit of H̃Rq and σ2q be the asymptotic variance of
√
n3qlog(H̃Rq). Then the effective size of the above Z-test is √qlog(HRq)/σq. With the data

from data set B, the Z-test statistic for the holdout sample may be predicted via

√
n3q log(ĤRq)/σ̂q , (3.1)

where ĤRq is the estimate for the hazard ratio from observations whose Q̂(·) ≥ 1 − q in data

set B and σ̂q is the corresponding estimate for σq.

Utilizing the data from the first 900 patients in the BEST study, we considered using the

hazard ratio scores created from Model (2.1) with ridge regression procedure and the data from

450 patients excluded from those utilized for fitting the models discussed in the previous section

to obtain the predicted Z-test scores. Figure 2 gives the curve of such predicted Z-test scores
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over q, where 0 < q < 1. Although the right tail of this curve may not be stable due to the small

sample size, this predicted Z-test score curve is quite informative for choosing an appropriate

threshold value q0. For example, the Z-test score achieves its maximal value of 2.98 when

q = 0.6. This means that if we apply q0 = 0.6 as the threshold value to the holdout sample, this

would be a good approximation to the observed two-sample standardized test statistic resulted

in the final validation stage. If one would like to choose a larger enrichable subgroup, we may

select a larger threshold value q0 but with a compromise of a smaller Z-test score.

[Figure 2 about here.]

Alternatively, we may utilize a 0.95 confidence interval estimate for the two-sample hazard

ratio as the inferential tool for decision making with the holdout sample. As in the aforemen-

tioned hypothesis testing case, one can estimate the expected bounds of the confidence interval

based on the data in B. For example, the expected value for the lower bound of a one-sided 0.95

confidence interval can be predicted as

Lq = exp{log(ĤRq)− 1.645σ̂q/
√
n3q}. (3.2)

Figure 3 gives the corresponding curve based on (3.2), which provides information about the

size of the treatment effect over q. If we choose q0 = 0.6, the predicted lower bound would be

about 1.1. Thus, we expect that for the holdout sample, it is likely that the observed lower

bound of 0.95 one-sided interval for HRq would be around 1.1.

[Figure 3 about here.]

4 Using a “cross-training-evaluation” procedure iteratively to iden-

tify an enrichable subgroup

For each given scoring system, with two independent data sets A and B, the predicted Z-test

score or the confidence interval lower bound curve as in Figure 2 or Figure 3 may not be stable

due to small sample sizes. An alternative is to use the conventional “cross-training-evaluation”

procedure iteratively for model fitting and evaluation. Specifically, we randomly divide the

combined data set from the first and second stages into two independent pieces, A and B evenly,

9
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as the training and the evaluation sets. As before, we use the data from A to build the scoring

system and the data from B to obtain the predicted Z-test score curve as a function of q. By

repeating such random cross-validation process M times, the final curve Z̄q can be obtained by

averaging those predicted Z-test score curves. Note that similar procedure can be performed

based on K-fold cross-validation.

With the data from the first 900 patients in BEST, using this random cross-validation pro-

cedure with two Cox working models and ridge regression setting as discussed in the previous

sections, the resulting Z̄q curve with M = 100 is given in Figure 4. Note that this curve is much

more smoother than that in Figure 2 using a single training and an evaluation data set. The Z̄q

has its highest value of 2.3 at q = 0.6.

[Figure 4 about here.]

Now, we may consider various working models and regularized estimation procedures to

create candidate scoring systems using data set A and then construct, for example, the Z̄q curves

using data set B iteratively via the above random cross-validation scheme. We use the data from

BEST to illustrate how to implement this process. In Table 2, we list several working, Cox-type

models with various regularized estimation criteria for analyzing survival data. For instance, a

procedure labeled as “Two.Cox_Ridge” means that we fit the data from each treatment group

via a Cox model additively with baseline covariates using the partial likelihood function and

the L2 penalty as described in the previous section. On the other hand, a procedure labeled as

“One.Cox_Lasso” means that we fit the data from two treatment groups together via a single

Cox model with main covariate effects and the first order treatment and covariate interactions

and the L1 penalty. Note that “ALasso” stands for adaptive lasso, a new version of lasso, where

adaptive weights are used for penalizing different coefficients based on the L1 penalty (Zou,

2006).

[Table 2 about here.]

For the data from the first 900 patients in BEST, we utilize the same setup to implement the

scoring system building and evaluation iteratively as the case “Two.Cox_ridge”. The resulting

predicted Z̄q curves for all these candidate scoring systems are given in Figure 5. Note that

the largest Z̄q score is with the blue curve evaluated at q = 0.6. If the size of the enrichable

subgroup and the significance level are acceptable, we then choose the scoring system which

generated the blue curve to identify the enriched subgroup. For this case, it is based on two
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Cox models with the ridge regression. It is interesting to observe that scores built with two

separate models appear to perform uniformly better compared to those constructed by fitting

an overall interaction model in this data set. This suggests that fitting a more flexible model

could potentially lead to better performance. We then use the two Cox models with ridge

regression procedure on the entire data set of the first 900 patients in BEST to obtain the

final scoring system for ranking the future patients with respect to the benefit of beta-blocker

compared with the control. The enrichable subgroup would consist of patients whose scores are

among the top 60% of the entire study population. This final selected enriched subgroup will

then be formally validated using the data from the holdout sample.

[Figure 5 about here.]

Now, if we are interested in using the size of the treatment difference for the final assessment

of the treatment benefit, Figure 6 provides the corresponding average curves of the lower bounds

of the 0.95 one-sided confidence interval estimates under the same setting. It appears that the

above choice based on the blue curve is appropriate.

[Figure 6 about here.]

If we are interested in utilizing the difference of RMSTs (up to 3.5 years) for quantifying

the treatment contrast, with the data from BEST and under the same setting discussed above,

Figure 7 gives the average predicted Z̄q curves with various scoring systems listed in Table 2

for testing the hypothesis that there is no difference between two treatment groups using the

difference of two estimated RMSTs. It is interesting to note that the choice of the blue curve

with q0 = 0.6 would give us a reasonably sized of the enrichable subgroup and largest predicted

Z-test score. Similar conclusions can be made via the expected lower bound of the 0.95 one-sided

confidence interval estimates, which is provided in Figure 8.

[Figure 7 about here.]

[Figure 8 about here.]

It is important to note that the selection rule for an enrichable subgroup at this stage may

depend on the totality of evidence based on various criteria rather than a single one. For instance,

if the primary analysis for the holdout sample is based on the test for the hazard ratio being one,

one would use Figure 5 first to choose a set of subgroups with different sizes, whose predicted
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Z-test scores ranging from 2.0 to 2.4. Then among those subgroups, we can then examine how

these subgroups behave with respect to other features (say, with respect to the difference of the

RMSTs) and make a final recommendation on the choice of the enrichable subpouplation.

5 Using the holdout sample for the final validation of the selected

enrichable subgroup

In Section 4, we choose a specific scoring system and a threshold value q0 for selecting a po-

tentially promising subgroup. We apply this rule to the data in the holdout sample. For this

selected subgroup of patients in data set C, one can then make inferences about the relative

merits between two treatment groups.

As an example, for the data from BEST, the holdout sample is obtained from the remaining

1807 patients. If we are interested in making inference about the “constant” hazard ratio, we use

the scoring system generated from two independent Cox models with ridge regression and the

threshold value q0 of 0.6. With the data from corresponding enrichable subgroup in the holdout

sample, the right panel of Figure 9 provides the Kaplan-Meier curves for two treatment groups,

p-value of the two sample test based on the hazard ratio estimates and the lower bound of the

one-sided 0.95 confidence interval for the hazard ratio. The beta-blocker for patients in this

enriched subgroup appears to prolong the event time compared with the control. On the other

hand, the left panel shows the non-significant inferential results for the non-enrichable subgroup.

[Figure 9 about here.]

Now, if we are interested in quantifying the treatment contrast using the difference of RMSTs

up to τ0 = 3.5 years, the right panel of Figure 10 provides the comparison results for the

enrichable subgroup and the left panel gives the results for non-enrichable subset. For the

enrichable subgroup, the one-sided p-value is 0.05 with the lower bound of the confidence interval

of 0. Note that for the entire study population, the corresponding one-sided p-value via the test

statistic based on the difference of two estimated RMSTs is 0.10 and one-sided 0.95 confidence

interval is (−0.08,+∞).

[Figure 10 about here.]

With the event time data from the BEST study, we created two sets of patient-specific scores

using the hazard ratio and the RMST difference as the treatment effect summary measures. If
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we choose the “optimal” threshold values based on their average predicted Z-test scores from

Figures 5 and 7, respectively, to define the enrichable subgroups, these two resulting subgroups

in the holdout sample are almost identical to each other. This may suggest that the selection of

the enrichable subgroup is quite robust to the choice of the summary measure.

6 Remarks

If there are two clinical trials conducted under the same setting, the data from one study can be

used for building and evaluating the scoring systems via the “cross-training-evaluation” procedure

described in the paper. Then we use the data from the second study for the assessment of the

treatment effectiveness with pre-specified two-sample inference procedures to the sample of the

selected enrichable population. It is important to note that the criteria for evaluating scoring

systems and selection of the potentially promising subgroup should be consistent with those

utilized for the holdout sample. Like the conventional cross-validation procedure for model

building and selection, it is not clear how to choose the size of the data set at each stage of the

process. Empirically we find that the final validation set size should be relatively large compared

to that for the training and evaluation to obtain greater precision of the inference procedures

conducted for the holdout sample (Shao, 1993).

It is interesting to note that for our analysis of the data from BEST, the statistical significance

of the two sample test (either for the hazard ratio or difference of two RMSTs) with the holdout

sample for the enrichable subgroup is not as impressive as its predicted counterpart obtained at

the training-evaluation stage. This may be partially due to the phenomenon of over-optimistic

even with cross-validation which does not correct for the overfitting due to the selection of an

optimal q or an optimal model among all candidate models for building the scoring system. It

is also important to keep in mind that the Z score in the holdout sample is a random variable

by nature and would be difficult to predict with great precision, especially when the covariates

are marginally predictive of the treatment effects.

The choice of a summary measure for the between-group difference is crucial. The hazard

ratio is a heavily model-based treatment contrast measure. Although the proportional hazards

assumption seems to be reasonable in the BEST study example, it is likely to be violated in

general. On the other hand, a model-free and clinically meaningful two-sample contrast measure

such as the difference of two medians or RMSTs seems more appropriate when there is no strong
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evidence to support a model-based summary at the beginning of the study.

The selection of an enrichable subpopulation should be made from a risk-benefit perspective.

Therefore, the outcome measure of the treatment effectiveness needs to reflect the disease burden

or progression over the entire study follow-up period (Claggett et al., 2012). For analyzing the

data from BEST, one may choose an endpoint which reflects the patient’s entire profile of

morbidity and mortality, not only the event time for the first hospitalization or death.
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Figure 1: Kaplan-Meier curves for the time to death or the first hospitalization (Beta-blocker
versus placebo) with the data from BEST
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Figure 2: Predicted Z-test score curve based on hazard ratio estimates with the data from 450
patients randomly chosen from the first 900 patients in BEST study

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Proportion of patients (q)

−
1

0
1

2
3

P
re

di
ct

ed
 Z

−
te

st
 s

co
re

18

http://biostats.bepress.com/harvardbiostat/paper169



Figure 3: Predicted lower bound of one-sided 0.95 confidence interval curve based on hazard
ratio estimates with the data from 450 patients randomly chosen from the first 900 patients in
BEST study
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Figure 4: The predicted Z̄q curve using the data from the first 900 patients entered BEST study
based on 100 random cross-validation by fitting two Cox models with ridge regression
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Figure 5: The predicted Z̄q curves for testing treatment difference with two-sample hazard ratio
estimates based on 100 random cross-validation with various candidate scoring systems listed in
Table 2.
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Figure 6: The average predicted lower bound curves of 0.95 one-sided confidence interval esti-
mates for two-sample hazard ratios based on 100 random cross-validation with various candidate
scoring systems listed in Table 2.
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Figure 7: The predicted Z̄q curves for testing treatment difference with the difference of two
estimated RMSTs based on 100 random cross-validation with candidate scoring systems listed
in Table 2
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Figure 8: The average predicted lower bound curves of 0.95 one-sided confidence interval esti-
mates for two estimated RMSTs based on 100 random cross-validation with candidate scoring
systems in Table 2.
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Figure 9: Two-sample inferences for the hazard ratio
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Figure 10: Two-sample inferences for the difference if two RMSTs up to 3.5 year follow-up
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Table 1: Regression coefficient estimates by fitting two Cox models with ridge regression pro-
cedure using a randomly chosen subset of 450 patients from the first 900 patients in the BEST
study

Covariate β̂0 (Placebo) β̂1 (Beta-blocker)
Age 0.003 -0.004
Male -0.001 -0.102
LVEF -0.011 -0.016
I(45 < eGFS ≤ 60) -0.141 -0.353
I(60 < eGFS ≤ 75) -0.170 -0.599
I(eGFS > 75) -0.243 -0.880
SBP -0.002 -0.005
Class IV Heart Failure -0.322 1.153
I(BMI > 30) -0.0002 0.016
Ever Smoker -0.088 -0.054
Heart Rate 0.004 -0.007
History of Hypertension 0.051 0.023
History of Diabetes 0.070 0.114
Ischemic Etiology 0.049 0.244
Atrial Fibrillation 0.124 0.035
White Race 0.024 -0.062

Table 2: List of candidate scoring systems

Scoring system Working model Regularized estimation
Two.Cox_Lasso Two Cox models Lasso
Two.Cox_Ridge Two Cox models Ridge
Two.Cox_ALasso Two Cox models Adaptive Lasso
Two.Cox_ElaNet Two Cox models Elastic Net
One.Cox_Lasso One Cox interaction model Lasso
One.Cox_Ridge One Cox interaction model Ridge
One.Cox_ALasso One Cox interaction model Adaptive Lasso
One.Cox_ElaNet One Cox interaction model Elastic Net
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