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Adaptive Pair-Matching in the SEARCH Trial
and Estimation of the Intervention Effect

Laura Balzer, Maya L. Petersen, and Mark J. van der Laan

Abstract

In randomized trials, pair-matching is an intuitive design strategy to protect study
validity and to potentially increase study power. In a common design, candidate
units are identified, and their baseline characteristics used to create the best n/2
matched pairs. Within the resulting pairs, the intervention is randomized, and
the outcomes measured at the end of follow-up. We consider this design to be
adaptive, because the construction of the matched pairs depends on the baseline
covariates of all candidate units. As consequence, the observed data cannot be
considered as n/2 independent, identically distributed (i.i.d.) pairs of units, as cur-
rent practice assumes. Instead, the observed data consist of n dependent units.
This paper explores the consequences of adaptive pair-matching in randomized
trials for estimation of the average treatment effect, given the baseline covariates
of the n study units. We contrast the unadjusted estimator with targeted minimum
loss-based estimation (TMLE) and show substantial efficiency gains from match-
ing and further gains with adjustment. This work is motivated by the Sustainable
East Africa Research in Community Health (SEARCH) study, a community ran-
domized trial to evaluate the impact of immediate and streamlined antiretroviral
therapy on HIV incidence in rural East Africa.



1 Introduction

Pair-matching helps balance treatment groups with respect to important determinants of the out-
come at baseline [1, 2]. In observational studies, matching can help control for confounding. In
randomized trials, there is no confounding; the probability of receiving the intervention or the
control is a known constant. Nonetheless, covariate imbalance is common in small trials, and data
sparsity may limit our ability to control for these characteristics during the analysis. Thereby,
matching is sometimes implemented in randomized trials to protect study credibility. For example,
the “face validity” [3] of a randomized trial for violence prevention could be compromised if neigh-
borhoods with highest baseline violence were all randomized, by chance, to the control level of the
intervention. Matching is also implemented to improve study power. By decreasing variation in
the outcome within pairs, matching may, but is not guaranteed to, increase study efficiency. The
conflicting recommendations on pair-matching have inspired a heated debate in the literature for
over sixty years ([3–15]).

Much of the work in the design and the analysis of pair-matched trials has assumed that the
observed data consist of n/2 independent and identically distributed (i.i.d.) units (e.g. [15–20]).
Such a data structure could arise by randomly sampling n/2 matched pairs from some target
population of pre-existing matched units. In practice, however, the existence of such a target
population is rare. Alternatively, this data structure could arise by (i) sampling a unit from the
target population, (ii) measuring its baseline covariates, (iii) repeatedly sampling units until the
baseline covariates of the second were sufficiently close to the first, (iv) randomizing the intervention
within the matched pair, (v) measuring the outcomes, and (vi) repeating this process n/2 times.
This pair-matching scheme may be impractical and is likely to be resource intensive. Theoretically,
this design also yields less information for estimating the (population) average treatment effect
than a design randomly pairing two sampled units [21].

A different pair-matching scheme was implemented in the Sustainable East Africa Research in
Community Health (SEARCH) trial. SEARCH is an multinational, interdisciplinary consortium to
evaluate the health, economic and educational impact of a community-based strategy for immediate
and streamlined antiretroviral therapy (ART) for all HIV-positive persons. In the trial, 54 candidate
communities were identified from rural Uganda and Kenya. These clusters satisfied the study’s
inclusion criteria, which included community size, health care infrastructure and sufficient distance
from other potential study units. Thirty-two communities were then pair-matched within region
and on baseline predictors of HIV transmission and health care delivery. The intervention has
been randomized within the resulting 16 matched pairs and the 5-year cumulative incidence of HIV
will be measured at the conclusion of the trial. This process only occurred once. Thereby, the
observed data do not consist of n = 32 i.i.d. random variables or of n/2 = 16 i.i.d. paired random
variables. Instead, the observed data consist of n dependent units. We consider this design to be
adaptive, because partitioning of the study communities into matched pairs was a function of the
baseline covariates of all candidates. For examples of other types of adaptive designs, see Wei et al.
[22], Tamura et al. [23], Collins et al. [24], Chambaz and van der Laan [25].

To the best of our understanding, adaptive pair-matching has been implemented in several other
cluster randomized trials. Examples include the Mwanza trial to prevent HIV [26], the PRISM
trial to prevent postpartum depression [27] and the SPACE study to promote physical activity [28].
Indeed, this design has motivated the development of so-called optimal matching algorithms to
pair units based on similarity in their measured covariates [29, 30]. Previously, van der Laan et al.
[31] explored the consequences of adaptive pair-matching for estimation of the population average
treatment effect. This paper explores the consequences of adaptive pair-matching for estimation
of the sample average conditional treatment effect. Specifically, we focus on the average treatment
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effect for the n study units, given their measured covariates. This parameter avoids assuming some
hypothetical infinite target population of units, is readily interpretable as the intervention effect for
the sample at hand, and often leads to more precise estimates. The sample average treatment effect
was originally proposed in Neyman [32] for a completely randomized trial and later considered in
Imai et al. [14], Imai [20], Abadie and Imbens [33] for a pair-matched trial. The sample average
treatment effect, given the covariate distribution, was initially proposed in Abadie and Imbens [34]
and detailed in Abadie and Imbens [33], Imbens [35].

In pair-matched trials, the intervention effect is commonly estimated with the unadjusted pair-
wise difference in outcomes with possible weighting for cluster size. The recommendations of
whether and how to adjust for baseline covariates in pair-matched trials have been conflicting
[3, 14, 15, 19, 20, 36]. For example, Hayes and Moulton [15] discuss a two-stage approach of first
fitting a regression model with terms for the pairs and covariates, but not the intervention, and then
contrasting the observed versus expected outcomes within matched pairs. Alternatively, random
effects models and generalized estimating equations allow for a single regression with possible ad-
justment for individual and cluster-level covariates. Such estimation techniques require substantive
modeling assumptions and may be unreliable in small trials, when the number of model parameters
quickly approaches the number of units. As a result, some researchers, such as Imai et al. [14], advo-
cate design-based estimation, which relies only on the unadjusted difference in weighted means. To
the best of our knowledge, this is the first paper to propose targeted minimum loss-based estimation
(TMLE) for the sample average treatment effect, given the vector of measured covariates, in an
adaptive pair-matched trial. Without risking bias due to regression misspecification [37–39], TMLE
allows for further adjustment of baseline covariates (beyond that attained by matching alone) and
thereby can provide an efficient estimate of the intervention effect.

The remaining article is outlined as follows. We first describe the adaptive design and the
resulting data structure. Second, we motivate the use of the sample average treatment effect, given
the vector of measured covariates, as the causal parameter of interest. For brevity, we will refer
to this causal parameter as the conditional treatment effect. Third, we present two estimators
of the corresponding statistical parameter: the unadjusted difference in outcomes within matched
pairs and targeted minimum loss-based estimation (TMLE). The latter estimator allows for further
adjustment of important baseline covariates, beyond that attained with matching. We also provide
conservative variance estimators and finite sample simulations. We conclude with some practical
recommendations. Throughout, the SEARCH trial is used as the motivating example and detailed
proofs are relegated to the Appendix.

2 The Estimation Problem

The SEARCH consortium will estimate the impact of immediate ART, initiated at all CD4 counts
and delivered by a streamlined care system, on the 5-year cumulative incidence of HIV. In each study
community, an annual health campaign will offer multi-disease prevention and treatment services,
including HIV testing and referral [40]. Community members, failing to attend the campaign,
will be offered home-based HIV testing. In communities randomized to Arm A, all individuals
testing positive for HIV will be immediately eligible for ART with streamlined delivery. Elements
of streamlined care include enhanced services for linkage, adherence and retention. In communities
randomized to Arm B, all individuals testing positive for HIV will be offered ART according to in-
country guidelines. HIV incidence as well as other health, economic and educational outcomes will
be measured among approximately 320,000 individuals, followed longitudinally for the 5 years of the
trial. The SEARCH study aims to understand the impact this community-based “test-and-treat”
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program on both HIV-positive individuals and their greater communities [41–48].
For the purposes of understanding the adaptive design, we focus on the cluster-level data and

a single-time point setting. Let N denote the number of candidate communities considered for
inclusion in the study; n denote the number of communities selected for the SEARCH trial, and
n/2 denote the number of matched pairs. Let W represent the pre-intervention community-level
covariates, which include region, proximity to trucking routes, occupational mix and baseline pop-
ulation HIV RNA levels [49]. A subset of the baseline covariates were used to select the n/2 best
matched pairs of communities from the N possible candidates. Within the resulting pairs, the
intervention was randomized. The treatment variable A is a binary indicator, equalling one if the
community was assigned to Arm A (all individuals testing positive for HIV are immediately offered
ART with streamlined care delivery) and equalling zero if the community was assigned to Arm
B (all individuals testing positive for HIV are offered ART according to in-country guidelines).
Finally, the outcome Y is the 5-year cumulative incidence of HIV, measured through longitudinal
follow-up. Thereby, the data structure for a SEARCH community is O = (W,A, Y ).

The adaptive design has important implications for estimation and inference [31]. Mainly,
the partitioning of the sample into n/2 pairs was a function of the baseline covariates of all N
candidates. Adaptive pair-matching induces a statistical dependence between units, and the data
generating process occurs only once. Nonetheless, given the covariates of all candidate communities
WN = (W1, . . . ,WN ), the observed data can be represented as n/2 independent random variables:

Ōj =
(
Oj1, Oj2

)
=
(
(Wj1, Aj1, Yj1), (Wj2, Aj2, Yj2)

)
where the index j = 1, . . . , n/2 denotes the partitioning of the candidates {1, . . . , N} into matched
pairs according to similarity on their baseline covariates WN . Throughout the subscripts j1 and
j2 denote the first and second communities within matched pair j. We place no assumptions
on the joint distribution of covariates P0(WN ), where subscript 0 denotes the true but unknown
distribution. The treatment assignment mechanism is known; with probability 0.5, the first unit is
randomized to the intervention and the second to the control and vice versa:

P0(Aj1 = 1, Aj2 = 0 |WN ) = P0(Aj1 = 0, Aj2 = 1 |WN ) = 0.5

Study communities are assumed to be causally independent (i.e. no contamination or spillover
effects). In other words, we assume that the baseline covariates and intervention assignment of
one community do not affect the outcome of another study community. Recent work, relaxing this
assumption and considering a network of interacting units, is elaborated in van der Laan [50]. The
conditional distribution of the observed data, given the baseline covariates of the candidate units,
factorizes as

P0(O1, . . . , On |W1, . . . ,W
N ) =

n/2∏
j=1

{
P0(Aj1, Aj2 |WN )P0(Yj1 | Aj1,Wj1)P0(Yj2 | Aj2,Wj2)

}

= 0.5

n/2∏
j=1

{
P0(Yj1 | Aj1,Wj1)P0(Yj2 | Aj2,Wj2)

}
= P0(O1, . . . , On |W1, . . . ,Wn) = Pn0 (On|Wn)

Throughout, Pn0 denotes the true conditional distribution of the observed data, given the baseline
covariates of the n study units Wn = (W1, . . . ,Wn). There are no other restrictions on the set of
possible observed data distributions, and the resulting statistical model M is semiparametric.
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2.1 The Conditional Treatment Effect

The goal of the SEARCH trial is to estimate the effect of a strategy for immediate and streamlined
ART for all HIV diagnosed persons on the 5-year cumulative HIV incidence in rural East African
communities with annual HIV testing. The corresponding causal effect is often taken to be the
population average treatment effect E[Y 1]−E[Y 0] or its relative counterpart E[Y 1]/E[Y 0], where
Y a denotes the counterfactual cumulative incidence under treatment level A = a. This causal
parameter is the difference in the expected outcomes if all communities (in some hypothetical
target population) were to receive the intervention and if all communities (in some hypothetical
target population) were to receive the control.

For the SEARCH trial, this parameter is not the most appropriate. In particular, it relies on the
notion of some hypothetical target population of clusters. Instead, the SEARCH team identified 54
candidates communities from Western Uganda (Mbarara region), Eastern Uganda (Tororo region)
and the Southern Nyanza Province in Kenya. These communities were selected to satisfy the
study’s inclusion criteria and to minimize possible contamination or spillover effects. From these
candidates, the 16 best matched pairs were formed. Therefore, we focus on estimation of the sample
average treatment effect, given the vector of baseline covariates:

ψF =
1

n

n∑
i=1

E[Y 1
i − Y 0

i |Wn]

where Y a
i denotes the counterfactual cumulative incidence under intervention level A = a for unit i.

This parameter is the average treatment effect for n SEARCH communities, given their measured
baseline covariates. It avoids the notion of an infinite target population and is readily interpretable
as the intervention effect for the study communities. Greater generalizability is up to the reader
and not implicitly assumed in the parameter specification. By obviating estimation of the covariate
distribution, estimators of the sample parameter will also often be more precise than those of the
population parameter [20, 32–35].

2.2 Estimation

Since the intervention is randomized within matched pairs, the causal parameter is readily identi-
fiable from the conditional distribution of the observed data. The statistical estimand is

Ψ(Pn0 ) =
1

n

n∑
i=1

[
E0(Yi | Ai = 1,Wi)− E0(Yi|Ai = 0,Wi)

]

=
1

n

n∑
i=1

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
where Q̄0(A,W ) denotes the conditional mean outcome, given the intervention A and covariates
W . In other words, the target parameter is the average difference in the strata-specific expected
HIV incidence under the intervention and control for the n study communities. This estimand is
still random through the vector of covariates Wn = (W1, . . . ,Wn). The true value ψ0 depends on
the sample of n units.

An intuitive estimator is the difference in the average outcomes among units receiving the
intervention and among units receiving the control:

Ψ̂unadj(Pn) =

∑n
i=1AiYi∑n
i=1Ai

−
∑n

i=1(1−Ai)Yi∑n
i=1(1−Ai)

= Q̄n(1)− Q̄n(0)
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where Pn denotes the empirical distribution and Q̄n(A) = En(Y |A) denotes an unadjusted estimate
of the treatment-specific mean. This estimator is equivalent to the average difference in outcomes
within matched pairs:

Ψ̂unadj(Pn) =
1

n/2

n/2∑
j=1

(
Yj1 − Yj2

)
where the observations within matched pair j have been ordered such that the first corresponds
to the intervention, Aj1 = 1, and the second the control, Aj2 = 0. Since the intervention is
randomized, the unadjusted estimator is unbiased for the parameter of interest, given the vector
of covariates Wn. (See Appendix A for the accompanying proof.) This estimator is also unbiased
for the population average treatment effect as well as for the sample average treatment effect,
given the vector of counterfactual outcomes (Y 1

i , Y
1
i : i = 1, . . . n) [20, 32]. Unfortunately, this

simple difference-in-means estimator is inefficient as it fails to control for measured covariates.
Despite recent advances in matching algorithms, there is likely to be some residual imbalance
on pre-intervention determinants of the outcome within matched pairs. Furthermore, even if we
succeeded in matching well on all available characteristics, there might be an additional baseline
covariate that is predictive of the outcome, but was unavailable during the matching process. In
the SEARCH trial, for example, baseline population HIV RNA levels are thought to be a major
driver of incidence but were unavailable during matching.

To the best of our knowledge, this is the first paper to propose targeted minimum loss-based
estimation (TMLE) for the conditional treatment effect in an adaptive pair-matched trial. TMLE
can provide an unbiased and efficient estimate of the intervention effect. The TMLE for Ψ(Pn0 ) is
given by the following substitution estimator:

Ψ̂adj(Pn) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
where Q̄∗n(A,W ) denotes a targeted estimate of the conditional mean function E0(Y |A,W ). Briefly,
this targeting step is used to achieve the optimal bias-variance trade-off for the parameter of interest
and to solve the efficient score equation [51]. We refer the reader to van der Laan and Rose [52] for
a detailed discussion and worked examples of TMLE. In an adaptive pair-matched trial, TMLE for
Ψ(Pn0 ) can be implemented as follows.

1. Estimate the conditional mean function Q̄0(A,W ) by regressing the outcome Y on the treat-
ment A and covariates W , while ignoring the dependence in the data. For a binary outcome
or a bounded continuous outcome, the negative log likelihood is a valid loss function and
provides stability in the context of sparsity [53, 54].

2. Update the initial estimator Q̄n(A,W ) with a logistic fluctuation sub-model:

Logit
[
Q̄n(ε)

]
= Logit

[
Q̄n
]

+ εH(A), where H(A) =

(
I(A = 1)

P0(A = 1)
− I(A = 0)

P0(A = 0)

)
In practice, run logistic regression of the outcome Y on the covariate H(A), using the initial
estimate as offset. Plugging the estimated coefficient εn into the fluctuation model yields
targeted estimates Q̄∗n(A,W ).

3. Obtain the expected outcome for each unit under the intervention Q̄∗n(1,Wi) and under the
control Q̄∗n(0,Wi).

4. Take the sample average of the differences in the expected outcomes:

Ψ̂adj(Pn) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
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Initial estimation of Q̄0(A,W ) can also be based on linear regression, which can yield more power
than non-linear (logistic) regression in randomized trials. In particular, Rubin and van der Laan [37]
detail the use of least squares regression to optimize the fit of Q̄0(A,W ) to have the lowest possible
variance. If linear regression is used, then the following fluctuation sub-model is appropriate for
Step 2:

Q̄n(ε) = Q̄n + εH(A)

In practice, many cluster randomized trials, such as SEARCH, have a limited number of (con-
ditionally) independent units. As a result, the number of parameters in the regression model can
quickly approach the number of observations. Therefore, the curse of dimensionality can pre-
vent adjustment for all the measured covariates W or the inclusion of multiple interaction terms.
Nonetheless, adjustment for a single or few covariates can safely yield efficiency gains without risk.
Furthermore, when the regression model for Q̄0(A,W ) includes an intercept and the exposure A
as a main term, the initial estimator is already targeted [39]. In other words, one can obtain an
unbiased and more efficient estimate by simply fitting Q̄0(A,W ) with main terms linear or logistic
regression and then taking the sample average of the differences in the expected outcomes under
the treatment and control [37–39, 55].

2.3 Statistical Inference

As established in Appendix B, both the unadjusted estimator and the TMLE are asymptotically
linear and normally distributed. Briefly, an estimator is asymptotically linear if the difference
between the estimator and the estimand behaves (in first order) as an empirical mean of a function,
known as the influence curve, of the unit data [52]. Then the limit distribution of the standardized
estimator is normal with mean 0 and variance given by the variance of its influence curve. Given
an estimate of the influence curve and thereby an estimate of the variance, the standard normal
distribution can be used for confidence interval construction and hypothesis testing in large studies.

The influence curve of the unadjusted estimator Ψ̂unadj(Pn) of Ψ(Pn0 ) is conservatively approx-
imated by the difference in residuals within matched pairs:

ˆICunadj(Ōj) = Yj1 − Q̄n(1)−
(
Yj2 − Q̄n(0)

)
where Q̄n(A) denotes an unadjusted estimate of the treatment-specific mean and again observations
in matched pair j have been ordered such that the first corresponds to intervention (Aj1 = 1) and
the second to the control (Aj2 = 0). A conservative variance estimator is then given by the sample
variance of the estimated influence curve σ̂2

unadj , divided by n/2. This is equivalent to the sample
variance of the within pair differences, divided by n/2. The latter is commonly recommended for
pair-matched randomized trials [15]. As others have noted [20, 33–35] and we prove in Appendix
B, this variance estimator will often be conservative. The true variance relies on the unknown
conditional mean function Q̄0(A,W ). If this mean is consistently estimated, then this variance
estimator will also be consistent; otherwise, the variance estimator will be conservative. In practice,
the baseline covariatesW , used for matching and possibly adjustment, are predictive of the outcome,
and thereby the unadjusted treatment-specific mean Q̄n(A) will not be a consistent for Q̄0(A,W )
and the variance will be overestimated on average. To obtain a less conservative variance estimator
for Ψ̂unadj(Pn), Abadie and Imbens [33] proposed a matching estimator, involving the variance of
pairs-of-pairs with similar covariates. Additionally, Imai [20] derived upper and lower bounds on
the conditional variance, given the vector of paired counterfactuals.

Our approach to reduce the true variance of the estimator and obtain a less conservative variance
estimate is through adjustment for measured covariates with TMLE. The influence curve of the

6

http://biostats.bepress.com/ucbbiostat/paper320



proposed TMLE Ψ̂adj(Pn) is also conservatively approximated by the difference in the residuals
within matched pairs:

ˆICadj(Ōj) = Yj1 − Q̄∗n(1,Wj1)−
(
Yj2 − Q̄∗n(0,Wj2)

)
where Q̄∗n(A,W ) denotes a targeted estimate of the conditional mean function and again observa-
tions have again been ordered within matched pairs. A conservative variance estimator is then given
by the sample variance of the estimated influence curve σ̂2

adj , divided by n/2. Assuming the baseline
covariates W are predictive of the outcome, the estimated conditional mean function, adjusting for
both the exposure and covariates Q̄∗n(A,W ), should be closer to the true mean Q̄0(A,W ) than the
unadjusted estimate Q̄n(A). As a result the asymptotic variance of the TMLE will often be smaller
than that of the unadjusted estimator. Furthermore, in most practical settings, the variance of the
unadjusted residuals σ̂2

unadj will be larger than the variance of the adjusted residuals σ̂2
adj . Intu-

itively, the sum of squared unadjusted residuals is often greater than the sum of squared adjusted
residuals. Thereby, both theoretically and in finite samples, TMLE is expected yield more precise
and powerful estimates of the conditional treatment effect than the unadjusted estimator.

For both estimators, asymptotically conservative 95% confidence intervals can be constructed as
ψ̂± 1.96 σ̂/

√
n/2 where σ̂ is the standard deviation of the estimated influence curve. Likewise, we

can test the null hypothesis of no effect with test statistic T =
√
n/2ψ̂/σ̂. For trials with limited

numbers of (conditionally) independent units, appropriate alternatives to the standard normal
distribution include the Student’s t-distribution with n/2-1 degrees of freedom and the permutation
distribution. In an adaptive pair-matched trial, the permutation distribution is approximated by
randomizing the intervention assignment within the fixed matched pairs and recalculating the test
statistic. As noted by Imbens [35], the variance of estimators of the sample average treatment effect
cannot be estimated with the bootstrap, because the statistical estimand depends on the sample
and thereby changes over the bootstrapped samples.

We also briefly note that a randomized trial with adaptive pair-matching will often be more
efficient for estimation of the conditional treatment effect than a non-matched trial (i.e. a trial with
complete randomization). The designs will only have the same efficiency bound if the conditional
mean outcome is consistently estimated: Q̄∗n(A,W ) = Q̄0(A,W ). In practice, we expect there to be
some deviations between the true and estimated means. If these deviations are positively correlated
within matched pairs, the asymptotic variance of the TMLE will be smaller in the adaptive trial
than in the completely randomized design. In finite samples, we also expect there to be an efficiency
gain from adaptive pair-matching. Mainly, if we succeed in matching pairs on predictive covariates,
then the sample covariance of residuals within matched pairs will be positive and the adaptive
design will yield more precise and powerful estimates. We refer the reader to Appendices C-D for
further details and associated proofs.

3 Simulations

We present the following set of simulations to demonstrate implementation of the above estimators,
the potential gain in efficiency with adaptive pair-matching and the further gain with adjustment
during the analysis. While these simulations are not intended to represent the full complexities
of the SEARCH trial, they explore some of the challenges faced, such as rare outcomes and the
inability to match on all baseline covariates. All simulations were done in R v3.0.1 [56].
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3.1 Data Generating Process & Estimators

For n = 32 units, three baseline covariates W = (W1,W2,W3) were independently drawn from a
normal distribution with mean 0 and standard deviation 1. A fourth covariate Z was generated as
a function of these baseline covariates and random noise UZ :

Z = expit
[
− 0.25 + 0.5∗W1 +W2 + 2∗W3 + 0.5∗UZ

]
/4

where the expit function is the inverse of the logistic function and UZ was drawn independently
from a normal with mean 0 and standard deviation 1. The covariate Z represents an important
pre-intervention determinant of the outcome and was not available to the matching process. To
imitate adaptive pair-matching, the nonbipartite matching algorithm (nbpMatching v1.3.6 [30])
was applied to the set of n covariates Wn = (W1, . . . ,Wn) with Wi = (W1i,W2i,W3i). Within
the resulting n/2 matched pairs, the exposure A was randomized. Finally, the outcome Y was
generated as

Y = expit
[
β0 + 0.5∗W1 + 0.5∗W2 + 0.5∗W3 + 7∗Z −A+ 0.25∗A∗Z

]
/15 + UY

where random noise UY was drawn independently from a uniform distribution with minimum 0 and
maximum 0.025. The intercept β0 was set to either -2 or 0.5 to examine the performance of the
estimators when the outcome was quite rare (“Simulation A”) or more common (“Simulation B”).
To simulate the null scenario, the treatment was randomly assigned within pairs but the outcomes
generated as if all communities received the control (A = 0). For comparison, we also simulated
equivalent data for a non-matched randomized trial with balanced allocation of the intervention.

Over 5000 data sets, we examined the performance of the unadjusted estimator and TMLE
with various adjustment sets. Specifically, we estimated the conditional mean outcome adjusting
for only the exposure A and the covariate Z, which is an important determinant of the outcome
but not used in matching. We also estimated the conditional mean function adjusting for the
exposure A, the matching covariates W and the remaining covariate Z. Linear and logistic main
terms regression models were used. Thereby, the fluctuation step of the TMLE algorithm did not
provide an update [39]. Inference was based on the sample variance of the estimated influence
curve and the Student’s t-distribution with n/2− 1 degrees of freedom. The corresponding TMLE
implementation and proof of statistical inference for the non-matched randomized trial is given in
Appendix C.

3.2 Results

Recall the true value of the statistical estimand depends on the n = 32 communities in the sample.
Table 1 shows the minimum, mean and maximum value of the conditional treatment effect ψ0 over
the 5,000 simulated data sets. For comparison, the table also gives the corresponding summaries
of the exposure-specific effects: ψ0(a) = 1

n

∑n
i=1E0(Y |Ai = a,Wi, Zi). This estimand is the sample

average of the conditional mean outcome, given exposure A = a and covariates (W,Z). For Simula-
tion A, representing a quite rare outcome, the average values of the effect under the exposure ψ0(1)
and the control ψ0(0) were 0.024 and 0.032, respectively. The corresponding mean value of the
intervention effect ψ0 was -0.009 , translating to 26.41% reduction in the incidence of the outcome
(on average). For Simulation B, representing a more common outcome, the average values of the
conditional effect under the exposure ψ0(1) and the control ψ0(0) were 0.05 and 0.061, respectively.
The corresponding average value of the target parameter ψ0 was -0.011, translating to a 17.90%
reduction in the incidence of the outcome (on average).
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ψ0(1) ψ0(0) ψ0 = ψ0(1)− ψ0(0)
min mean max min mean max min mean max

Simulation A 0.018 0.024 0.031 0.023 0.032 0.043 -0.012 -0.009 -0.005
Simulation B 0.038 0.050 0.061 0.050 0.061 0.069 -0.013 -0.011 -0.007

Table 1: Summary of the true value of the exposure-specific effects ψ0(a) = 1/n
∑

iE0(Yi | Ai = a,Wi, Zi)
and the target parameter ψ0 over 5,000 simulations of n = 32 communities. The rows indicate the setting
with Simulation A corresponding to a quite rare outcome and Simulation B corresponding to a more
common outcome. Recall the true value is dependent on the sample.

For Simulation A, Table 2 illustrates the performance of the estimators over 5,000 simulated data
sets. All estimators are unbiased. Nonetheless, the average deviation between the point estimate
and the sample-specific true value tended to be smaller with adaptive pair-matching than without.
As expected, there was an efficiency gain with matching. The standard deviation (square root of the
variance of the point estimates) of the unadjusted estimator was 1.57 times higher without matching
than with matching. Likewise, the attained power (proportion of simulated trials where the null
hypothesis was correctly rejected) jumped from 31% to 64% with matching. As expected, adaptive
pair-matching on the three covariates W reduced variability in the outcomes within matched pairs.
The coefficient of variation, measuring of the variability in outcomes between units in the absence
of the intervention, was k = 0.53, while the matched-pair coefficient of variation, measuring of the
variability in outcomes within matched pairs in the absence of the intervention, was km = 0.29 [15].

There was also an efficiency gain from adjustment. For the non-matched design, the standard
deviation of the unadjusted estimator was 1.57 times higher than the standard deviation of the
TMLE, using linear regression to adjust for Z. The corresponding power increased from 31% to
69%. For the adaptive design, the standard deviation of the unadjusted estimator was 1.13 times
higher than the standard deviation of the TMLE, using linear regression to adjust for Z. The
corresponding attained power increased from 64% to 74%. For both designs, there was a further
precision gained by using logistic regression to adjust for Z. With a very sparse outcome, logistic
regression can be more stable than linear regression and is guaranteed to yield parameter estimates
that respect the statistical model [53, 54]. While there was some power gain from adjusting for
all four covariates (W,Z), there was also a risk in over-fitting the regression model and under-
estimating the variance. With a main terms regression model for the conditional mean outcome,
there were 5 parameters with only 16 conditionally independent units. As a result, the confidence
interval coverage (proportion of studies containing the true parameter value) was less than the
nominal rate of 95% for the fully adjusted estimator. Likewise, the type I error rate (proportion
of studies falsely rejecting the null hypothesis) was greater than α = 0.05 for the fully adjusted
estimator. Conversely, for both the unadjusted estimator and the TMLE only adjusting for Z,
there is good confidence interval coverage and type I error rates. Indeed, there was some evidence
of over-coverage of confidence intervals and conservative Type I error rates for the unadjusted
estimator in both designs.

The results for Simulation B, representing a more common outcome, are given in Table 3 and
largely echoed the above findings. Because the exposure was randomized, all estimators were
unbiased. As before, there was a substantial efficiency gain with matching. Adaptive matching
on the three covariates W = (W1,W2,W3) reduced variability in the outcomes within pairs. The
coefficient of variation was k = 0.27, while the matched-pair coefficient of variation was km = 0.14.
Again, there was also a substantial precision gain from adjustment. With a more common outcome,
however, there was a greater gain in power from adjusting for Z with linear regression than logistic
regression for both designs. Here, minimizing the sum of squared residuals helped to minimize
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Simulation A Bias Std. Dev. Std. Error t-stat CI Cov. Power α

No Matching
Unadj. -1.13E-4 5.39E-3 5.34E-3 -1.64 0.96 0.31 0.04
TMLE linear for Z -7.50E-5 3.44E-3 3.23E-3 -2.71 0.95 0.69 0.05
TMLE logit for Z -8.01E-5 3.29E-3 2.98E-3 -2.94 0.94 0.75 0.05
TMLE linear for (W,Z) -1.15E-4 3.28E-3 2.74E-3 -3.21 0.92 0.80 0.08
TMLE logit for (W,Z) -1.35E-4 3.12E-3 2.43E-3 -3.62 0.91 0.87 0.09

Adaptive Pair-Matching
Unadj. -4.37E-5 3.44E-3 3.46E-3 -2.54 0.96 0.64 0.04
TMLE linear for Z -4.18E-5 3.04E-3 3.03E-3 -2.92 0.96 0.74 0.05
TMLE logit for Z -5.68E-5 2.97E-3 2.78E-3 -3.20 0.94 0.80 0.05
TMLE linear for (W,Z) -3.66E-5 2.98E-3 2.85E-3 -3.11 0.95 0.79 0.06
TMLE logit for (W,Z) -7.80E-5 2.92E-3 2.58E-3 -3.45 0.93 0.84 0.06

Table 2: For Simulation A, summary of the estimator performance over 5,000 simulations of n = 32
communities: The rows indicate the estimator and the columns the performance metric with bias as the
average deviation between the point estimate and sample-specific true value, standard deviation (“Std.
Dev.”) as the square root of the variance of the point estimates, standard error estimates (“Std. Error”)
as the average standard error estimate, t-stat as the average value of the test statistic, 95% confidence
interval coverage (“CI Cov.”) as the proportion of intervals containing the true parameter value, the
attained power as the proportion of studies correctly rejecting the null hypothesis, and the Type I error
rate α as the proportion of studies falsely rejecting the null hypothesis. The null scenario was simulated
by randomly assigning the intervention, but generating the outcomes under the control (A = 0).

the empirical variance of the influence curve and thereby maximize the empirical efficiency [37].
For both the unadjusted estimator and the estimator adjusting only for Z, the standard error
estimates were closely aligned with the true standard deviation. Again, there was a risk of over-
fitting with the fully adjusted regression model for the conditional mean outcome. Due to the curse
of dimensionality, inference was slightly optimistic. As a result, the confidence interval coverage
was less than nominal for the non-matched design, and Type I error rates were too high for both
designs.

4 Discussion

To our knowledge, this is the first paper to study and articulate the consequences of adaptive
pair-matching for estimation of the sample average treatment effect, given the baseline covariates.
This work was motivated by SEARCH trial, which aims to estimate the effect of immediate ART,
delivered in a streamlined fashion, on the five-year cumulative incidence of HIV in communities
with annual testing. The decision to pair-match communities in the trial was motivated by a desire
to protect study credibility and by the potential to increase study power. Through careful definition
of the data generating experiment, we recognized that the design would not yield n/2 i.i.d. paired
units, as current practice assumes. Instead, by constructing the matched pairs as a function of the
baseline covariates of all candidate communities, the adaptive design results in n dependent units
and n/2 conditionally independent units. To the best of our understanding, adaptive pair-matching
is a common design and has been implemented in other cluster randomized trials (e.g. [26–28]). It
has also motivated the creation of R packages, such as nbpMatching [30], to match units on several
covariates simultaneously.

We focused on estimation of the average treatment effect for the sample given the baseline
covariates. This causal parameter avoids the assumption of a hypothetical target population of
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Simulation B Bias Std. Dev. Std. Error t-stat CI Cov. Power α

No Matching
Unadj. -6.66E-5 6.34E-3 6.20E-3 -1.78 0.96 0.36 0.04
TMLE linear for Z -9.02E-5 3.54E-3 3.28E-3 -3.36 0.95 0.86 0.05
TMLE logit for Z -1.27E-4 3.74E-3 3.58E-3 -3.08 0.96 0.81 0.05
TMLE linear for (W,Z) -1.53E-4 3.15E-3 2.62E-3 -4.25 0.92 0.95 0.08
TMLE logit for (W,Z) -3.70E-4 3.63E-3 3.07E-3 -3.71 0.93 0.90 0.08

Adaptive Pair-Matching
Unadj. -7.45E-5 3.59E-3 3.61E-3 -3.10 0.96 0.80 0.05
TMLE linear for Z -8.37E-5 3.00E-3 2.98E-3 -3.77 0.96 0.92 0.05
TMLE logit for Z -1.10E-4 3.10E-3 3.32E-3 -3.37 0.97 0.89 0.05
TMLE linear for (W,Z) -9.70E-5 2.91E-3 2.76E-3 -4.07 0.95 0.95 0.06
TMLE logit for (W,Z) -2.30E-4 3.13E-3 3.19E-3 -3.56 0.96 0.90 0.06

Table 3: For Simulation B, summary of the estimator performance over 5,000 simulations of n = 32
communities: The rows indicate the estimator and the columns the performance metric with bias as the
average deviation between the point estimate and sample-specific true value, standard deviation (“Std.
Dev.”) as the square root of the variance of the point estimates, standard error estimates (“Std. Error”)
as the average standard error estimate, t-stat as the average value of the test statistic, 95% confidence
interval coverage (“CI Cov.”) as the proportion of intervals containing the true parameter value, the
attained power as the proportion of studies correctly rejecting the null hypothesis, and the Type I error
rate α as the proportion of studies falsely rejecting the null hypothesis. The null scenario was simulated
by randomly assigning the intervention, but generating the outcomes under the control (A = 0).

clusters and is simply the intervention effect for the n study units. Also, by obviating estimation
of the covariate distribution, estimators of the conditional parameter will often be less variable
than that of the population parameter. We contrasted the unadjusted estimator, commonly used,
with TMLE adjusting for baseline covariates. We provided a step-by-step implementation of the
latter estimator and detailed proofs of inference. In fact, both estimators can be implemented by
ignoring the dependence in the data, and asymptotically conservative inference obtained with the
sample variance of the pairwise differences in residuals. We showed that the unadjusted estimator
was less efficient both in theory and in practice. We further showed that adaptive pair-matching
would often yield a more precise estimates of the conditional effect than a completely randomized
trial.

Finite sample simulations were used to evaluate estimator performance and verify our theo-
retical results. Since the intervention was randomized, all estimators were unbiased. There was
an efficiency gain with matching and a further gain with adjustment. When the outcome was
quite rare, adjusting for the single baseline covariate with logistic regression yielded more power
than adjustment with linear regression. When the outcome was more common, the converse was
observed. While the variance estimators are asymptotically conservative, there was some risk of
over-adjusting in small trials. Indeed, with only 16 (conditionally) independent units, adjusting for
all 4 baseline covariates was risky and resulted in under-coverage of the confidence intervals and
higher than nominal Type I error rates.

For unbiased and powerful estimation of the conditional treatment effect in randomized trials,
we recommend adaptive pair-matching with TMLE to adjust for a single or few pre-exposure
covariates. Adaptive pair-matching is an intuitive strategy to group candidate units on similarity
in their baseline covariates and will often yield more precise estimates and thereby power than the
non-matched trial. Adjusting for an important measured covariate during the analysis can lead to
further gains in efficiency with little risk to optimistic inference. Depending on the number of pairs,
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it may also be possible to adjust for other covariates, including those used in matching. Future
work will involve investigating the impact of adaptive stratification on estimation and inference for
both the population and sample average treatment effect.

Appendix A: The unadjusted estimator is unbiased

Recall the unadjusted estimator, commonly implemented, is the difference in the outcomes within
matched pairs:

Ψ̂unadj(Pn) =
1

n/2

n/2∑
j=1

[
Aj1Yj1 − (1−Aj1)Yj1 +Aj2Yj2 − (1−Aj2)Yj2

]
If observations within matched pairs have been ordered such that the first corresponds to interven-

tion and the second to the control, the estimator can be expressed 1
n/2

∑n/2
j=1(Yj1− Yj2). Given the

vector of covariates Wn = (W1, . . . ,Wn), the unadjusted estimator is unbiased for the statistical
estimand:

E0

[
Ψ̂unadj(Pn) |Wn

]
=

1

n/2

n/2∑
j=1

[
E0[Aj1Yj1 |Wn]− E0[(1−Aj1)Yj1 |Wn]

+ E0[Aj2Yj2 |Wn]− E0[(1−Aj2)Yj2 |Wn]

]

=
1

n/2

n/2∑
j=1

[
Q̄0(1,Wj1)E0(Aj1 |Wn)− Q̄0(0,Wj1)E0((1−Aj1) |Wn)

+ Q̄0(1,Wj2)E0(Aj2 |Wn)− Q̄0(0,Wj2)E0((1−Aj2) |Wn)

]

=
1

n/2

n/2∑
j=1

1

2

[
Q̄0(1,Wj1)− Q̄0(0,Wj2) + Q̄0(1,Wj2)− Q̄0(0,Wj2)

]

=
1

n

n∑
i=1

Q̄0(1,Wi)− Q̄0(0,Wi) = Ψ(Pn0 ).

Thus, Ψ̂unadj(Pn) is an unbiased estimator of Ψ(Pn0 ), conditional on Wn.

Appendix B: Statistical Inference for the proposed TMLE

In this subsection, we establish that the proposed TMLE is an asymptotically linear estimator
of the conditional average treatment effect in an adaptive pair-matched trial, where n/2 matched
pairs are created as a function of baseline covariates of n candidate units. We then consider the
adaptive design, where n/2 matched pairs are created as function of the baseline covariates of
N > n candidate units and the remaining (N − n) units discarded. The latter adaptive design is
a generalization of the first and the derived theorems are applicable. The theoretical results also
apply to the unadjusted estimator, which can be considered a special case.

Let Pn0 denote the conditional distribution of On = (O1, . . . , On), given the vector of covariates
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Wn = (W1, . . . ,Wn). The statistical estimand is a function of this conditional distribution:

Ψ(Pn0 ) =
1

n

n∑
i=1

Q̄0(1,Wi)− Q̄0(0,Wi),

where Q̄0(A,W ) = E0(Y |A,W ) denotes the conditional expectation of the outcome, given the
exposure A and the covariates W . The TMLE for Ψ(Pn0 ) is defined by following plug-in estimator:

Ψ(Q̄∗n) =
1

n

n∑
i=1

Q̄∗n(1,Wi)− Q̄∗n(0,Wi),

where Q̄∗n(A,W ) denotes targeted estimates of the conditional mean function Q̄0(A,W ). Let ψ0

denote the true parameter value and ψ∗n denote the estimate.
Let us define the following function of the observed data structure O = (W,A, Y ):

D∗(Q̄, g0)(O) ≡
(
I(A = 1)

g0(A)
− I(A = 0)

g0(A)

)(
Y − Q̄(A,W )

)
,

where the marginal probability of receiving the intervention or the control is g0(A) = P0(A) = 0.5
in a randomized trial with two arms. By construction, TMLE solves D∗(Q̄, g0)(O) at the targeted
update Q̄∗n:

PnD
∗(Q̄∗n, g0)(Oi) =

1

n

n∑
i=1

D∗(Q̄∗n, g0)(Oi) = 0,

where Pn denotes the empirical distribution, placing mass (1/n) on each Oi, i = 1, . . . , n. It is of
interest to note that this equality can be rewritten as

1

n/2

n/2∑
j=1

{
Q̄∗n(1,Wj1)− Q̄∗n(0,Wj2)

}
=

1

n/2

n/2∑
j=1

{Yj1 − Yj2} ,

where observations in pair j have again been ordered such that the first corresponds to the in-
tervention Aj1 = 1 and the second to the control Aj2 = 0. Thus, the TMLE has the interesting
property that if it is used to predict the counterfactual effect Y 1 − Y 0 for each pair j, then the
average of these j-specific effects equals the unadjusted estimator.

Let Pn0 f = E[f(On) | Wn] denote the conditional expectation of a function f of the data On,
given the covariate vector Wn. For all Q̄(A,W ), we have

Pn0 D
∗(Q̄, g0)(Oi) = Q̄0(1,Wi)− Q̄0(0,Wi)−

(
Q̄(1,Wi)− Q̄(0,Wi)

)
.

Therefore, the statistical estimand Ψ(Pn0 ) minus the TMLE Ψ(Q̄∗n) can be written as the empirical
mean of the above conditional expectation:

Ψ(Pn0 )−Ψ(Q̄∗n) =
1

n

n∑
i=1

Pn0 D
∗(Q̄∗n, g0)(Oi).

Combining the latter equality with PnD
∗(Q̄∗n, g0)(Oi) = 0 yields

(ψ∗n − ψ0) = Pn

{
D∗(Q̄∗n, g0)(Oi)− Pn0 D∗(Q̄∗n, g0)(Oi)

}
=

1

n

n∑
i=1

{
D∗(Q̄∗n, g0)(Oi)− Pn0 D∗(Q̄∗n, g0)(Oi)

}
.
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We can re-write this equality in terms of the empirical distribution Pn/2, which puts mass 1/(n/2)
on each paired data point Ōj = (Oj1, Oj2):

(ψ∗n − ψ0) = Pn/2

{
D̄∗(Q̄∗n, g0)− Pn0 D̄∗(Q̄∗n, g0)

}

=
1

n/2

n/2∑
j=1

{
D̄∗(Q̄∗n, g0)(Ōj)− Pn0 D̄∗(Q̄∗n, g0)

}
where D̄∗(Q̄, g0)(Ōj) =

1

2

{
D∗(Q̄, g0)(Oj1) +D∗(Q̄, g0)(Oj2)

}
Now let F be a set of multivariate real valued functions so that Q̄∗n(A,W ) is an element of F

with probability 1. Define the process (Zn(Q̄) : Q̄ ∈ F) by

Zn(Q̄) =
1√
n/2

n/2∑
j=1

{
D̄∗(Q̄, g0)(Ōj)− Pn0 D̄∗(Q̄, g0)

}

Conditional on the covariate vector Wn = (W1, . . . ,Wn), Zn(Q̄) is a sum of n/2 independent
mean zero random variables D̄∗(Q̄, g0)(Ōj) − Pn0 D̄

∗(Q̄, g0), j = 1, . . . , n/2. Below we establish
asymptotic equicontinuity of (Zn(Q̄) : Q̄ ∈ F) so that Zn(Q̄∗n)− Zn(Q̄) → 0 in probability. Then,
we can conclude that

√
n/2(ψ∗n − ψ0) =

1√
n/2

n/2∑
j=1

{
D̄∗(Q̄, g0)(Ōj)− Pn0 D̄∗(Q̄, g0)

}
+ oP (1).

Since the main term on the right-hand side, conditional on Wn, is a sum of independent mean
zero random variables, we can apply the central limit theorem for sums of independent random
variables.

Let us define the following function of the paired data Ōj = (Oj1, Oj2):

ICj(Q̄, Q̄0, g0) ≡ D̄∗(Q̄, g0)(Ōj)− Pn0 D̄∗(Q̄, g0),

where the notation recognizes that Pn0 D̄
∗(Q̄, g0) also depends on the true conditional mean Q̄0(A,W ) =

E0(Y |A,W ). We assume that

Σ0 = lim
n→∞

1

n/2

n/2∑
j=1

Pn0 ICj(Q̄, Q̄0, g0)2

exists as a limit. Then, we have shown
√
n/2(ψ∗n − ψ0)⇒d N(0,Σ0).

To establish the asymptotic equicontinuity result, we use a few fundamental building blocks.
Let Fd = {f1 − f2 : f1, f2 ∈ F}. Let σ2

n(f) = Pn0 Zn(f)2 be the conditional variance. Note that
Zn(f)/σn(f) is a sum of n/2 independent mean zero bounded random variables and the variance of

this sum equals 1. Bernstein’s inequality states that P (|
∑

j Yj |> x) ≤ 2 exp
(
−1

2
x2

v+Mx/3

)
, where

v ≥ VAR
∑

j Yj . Thus, by Bernstein’s inequality, conditional on Wn, we have

P

(
| Zn(f) |
σn(f)

> x

)
≤ 2 exp

(
−1

2

x2

1 +Mx/3

)
≤ K exp(−Cx2),
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for a universal K and C. This implies ‖ Zn(f)/σn(f) ‖ψ2≤ (1 +K/C)0.5, where for a given convex
function ψ with ψ(0) = 0, ‖ X ‖ψ≡ inf{C > 0 : Eψ(| X | /C) ≤ 1} is the so called Orlics norm,
and ψ2(x) = exp(x2) − 1. Thus ‖ Zn(f) ‖ψ2≤ C1σn(f) for f ∈ Fd. This result allows us to apply
Theorem 2.2.4 in van der Vaart and Wellner [57]: for each δ > 0 and η > 0, we now have

‖ sup
σn(f)≤δ

| Zn(f) |‖ψ2≤ K
{∫ η

0
ψ−1

2 (N(ε, σn,Fd)dε+ δψ−1
2 (N2(η, σn,Fd)),

}
, (1)

where N(ε, σn,Fd) is the number of balls of size ε w.r.t. norm ‖ f ‖= σn(f) to cover Fd.
Convergence of a sequence of random variables to zero with respect to ψ2-orlics norm implies

convergence in expectation to zero and thereby convergence of that sequence of random variables
to zero in probability. Let δn be a sequence converging to zero, and let ηn also converge to zero but
slowly enough so that the term δnψ

−1
2 (N2(ηn, σn,Fd)) converges to zero as n→∞. By assumption,∫ δn

0 ψ−1
2 (N(ε, σn,Fd)dε converges to zero. Thus,

lim
δn→0

{∫ δn

0
ψ−1

2 (N(ε, σn,Fd)dε+ δnψ
−1
2 (N2(ηn, σn,Fd))

}
= 0.

This proves that

E

(
sup

{f :σn(f)≤δn}
| Zn(f) |

)
→ 0.

Thus, if σn(Q̄∗n − Q̄) → 0 in probability, then Zn(Q̄∗n − Q̄) → 0 in probability. This proves the
following theorem.

Theorem 1 Consider the TMLE Ψ(Q̄∗n) of the statistical estimand Ψ(Pn0 ) = 1/n
∑n

i=1{Q̄0(1,Wi)−
Q̄0(0,Wi)}. Let Pn0 f represent the conditional expectation of a function f of On, given the vector
of covariates Wn. This conditional expectation, Pn0 f , is thus still random through Wn. Let F be a
set of multivariate real valued functions so that Q̄∗n is an element of F with probability 1. Define

Zn(Q̄) =
1√
n/2

n/2∑
j=1

ICj(Q̄, Q̄0, g0)

where

ICj(Q̄, Q̄0, g0) ≡ D̄∗(Q̄, g0)(Ōj)− Pn0 D̄∗(Q̄, g0)

D̄∗(Q̄, g0)(Ōj) =
1

2

{
D∗(Q̄, g0)(Oj1) +D∗(Q̄, g0)(Oj2)

}
D∗(Q̄, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)(
Yi − Q̄(Ai,Wi)

)
.

where g0(A) = P0(A) is known. We make the following assumptions.

Uniform bound: Assume supQ̄∈F supO | D∗(Q̄, g0) |< M < ∞, where the second supremum is
over a set that contains the support of each Oi.

Convergence of variances: Assume that for a specified {σ2
0(Q̄) : Q̄ ∈ F}, for any Q̄ ∈ F ,

1
n/2

∑n/2
j=1 P

n
0 ICj(Q̄, Q̄0, g0)2 → σ2

0(Q̄) a.s (i.e, for almost every (Wn, n ≥ 1)).
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Convergence of Q̄∗n to some limit: For any Q̄1, Q̄2 ∈ F , we define

σ2
n(Q̄1 − Q̄2) =

1

n/2

n/2∑
j=1

Pn0
{
ICj(Q̄1, Q̄0, g0)− ICj(Q̄2, Q̄0, g0)

}2
,

where we note that the right-hand side indeed only depends on Q̄1, Q̄2 through its difference
Q̄1 − Q̄2.

Assume that for a particular Q̄∗ ∈ F , σ2
n(Q̄∗n − Q̄∗)→ 0 in probability as n→∞.

Entropy condition: Let Fd = {f1 − f2 : f1, f2 ∈ F}. Let N(ε, σn,Fd) be the covering number of
the class Fd w.r.t norm/dissimilarity ‖ f ‖= σn(f). Assume that the class F satisfies

lim
δn→0

∫ δn

0

√
logN(ε, σn,Fd)dε = 0

Asymptotic equicontinuity of process: Then,

Zn(Q̄∗n)− Zn(Q̄∗) converges to zero in probability, as n→∞.

First order linear approximation: As a consequence,√
n/2(ψ∗n − ψ0) = Zn(Q̄∗) + oP (1).

Asymptotic normality: In addition, Zn(Q̄∗) converges to N(0, σ2
0(Q̄∗)), so that√

n/2(ψ∗n − ψ0) converges in distribution to N(0, σ2
0(Q̄∗)).

The asymptotic variance σ2
0(Q̄∗) equals the limit of

σ2
0,n =

1

n/2

n/2∑
j=1

Pn0

{
ICj(Q̄

∗
n, Q̄0, g0)(Ōj)

}2

If Yi is d-dimensional outcome, then the application of the above theorem to each component
of ψ∗n yields the desired asymptotic linearity for the d-dimensional ψ∗n and thereby the asymptotic
normality as well.

Appendix B.1: Conservative variance estimation

The above result suggests the following estimator of the asymptotic variance of the standardized
TMLE:

Σ̂ =
1

n/2

n/2∑
j=1

{
ICj(Q̄

∗
n, Q̄n,np, g0)(Ōj)

}2

where Q̄n,np is a consistent estimator of Q̄0. Unfortunately, such a variance estimator relies upon
consistent estimation of the conditional mean function Q̄0, which is particular concerning when n
is small. However, we will now show that one can obtain a conservative variance estimate, which
does not rely on a consistent estimator of the conditional mean function Q̄0.
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The asymptotic variance of the standardized estimator
√
n/2(ψ∗n − ψ0) can be expressed as

Σ0 = lim
n→∞

1

n/2

n/2∑
j=1

Pn0

[
ICj(Q̄

∗, Q̄0, g0)(Ōj)

]2

= lim
n→∞

1

n/2

n/2∑
j=1

Pn0

[
D̄∗(Q̄∗, g0)(Ōj)

]2

−
[
Pn0 D̄

∗(Q̄∗, g0)(Ōj)

]2

.

The latter term is zero when Q̄∗(A,W ) = Q̄0(A,W ):

Pn0 D̄
∗(Q̄∗, g0)(Ōj) =

1

2

{
Q̄0(1,Wj1)− Q̄0(0,Wj1)−

(
Q̄∗(1,Wj1)− Q̄∗(0,Wj1)

)
+ Q̄0(1,Wj2)− Q̄0(0,Wj2)−

(
Q̄∗(1,Wj2)− Q̄∗(0,Wj2)

)}
Thus, the true variance Σ0 is always less than or equal to an upper bound Σu

0 , where

Σu
0 = lim

n→∞

1

n/2

n/2∑
j=1

Pn0

{
D̄∗(Q̄∗, g0)(Ōj)

}2

Again, if the conditional mean is consistently estimated Q̄∗(A,W ) = Q̄0(A,W ), Σu
0 = Σ0.

We can consistently estimate the upper bound Σu
0 with

Σ̂u =
1

n/2

n/2∑
j=1

{
D̄∗(Q̄∗n, g0)(Ōj)

}2

Recall

D̄∗(Q̄, g0)(Ōj) =
1

2

{
D∗(Q̄, g0)(Oj1) +D∗(Q̄, g0)(Oj2)

}
=

1

2

[(
I(Aj1 = 1)

g0(Aj1)
− I(Aj1 = 0)

g0(Aj1)

)(
Yj1 − Q̄(Aj1,Wj1)

)
+

(
I(Aj2 = 1)

g0(Aj2)
− I(Aj2 = 0)

g0(Aj2)

)(
Yj2 − Q̄(Aj2,Wj2)

)]
Ordering the observations within pairs, such that index j1 corresponds to the unit randomized to
the intervention (Aj1 = 1) and j2 corresponds to the unit randomized to the control (Aj2 = 0), it
follows that

D̄∗(Q̄, g0)(Ōj) = Yj1 − Q̄(1,Wj1)−
(
Yj2 − Q̄(0,Wj2)

)
,

allowing us to represent the conservative variance estimator Σ̂u as the difference in residuals within
matched pairs:

Σ̂u =
1

n/2

n/2∑
j=1

{
Yj1 − Q̄∗n(1,Wj1)−

(
Yj2 − Q̄∗n(0,Wj2)

)}2

.
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Appendix B.2: Generalization to N > n candidate units

Now consider the common adaptive design, where first N candidate units are selected, the best
n/2 matched pairs selected as a function of the covariate vector WN = (W1, . . . ,Wn, . . . ,W

N ), and
the remaining N − n units discarded. In the SEARCH trial, for example, 16 matched pairs were
formed as a function of the baseline covariates of 54 candidate communities. As a result of this
adaptive design, the treatment assignment mechanism depends on the N candidate communities.
Nonetheless, in a randomized trial, the conditional likelihood of the observed data factorizes as

PN0 (O1, . . . , On|W1, . . . ,WN ) =
n∏
j=1

g0(Aj1, Aj2|W1, . . . ,WN )P0(Yj1|Aj1,Wj1)P0(Yj2|Aj2,Wj2)

= 0.5

n∏
j=1

P0(Yj1|Aj1,Wj1)P0(Yj2|Aj2,Wj2)

= P0(O1, . . . , On |W1, . . . ,Wn) = Pn0 (On|Wn)

Therefore, given the baseline covariates of the n study units Wn = (W1, . . .Wn), we still have n/2
conditionally independent observations. Furthermore, recall that the statistical estimand corre-
sponds to the sample average treatment effect for the n units included in the study:

Ψ(Pn0 ) =
1

n

n∑
i=1

Q̄0(1,Wi)− Q̄0(0,Wi)

Since we condition on Wn = (W1, . . . ,Wn) in the target parameter and corresponding TMLE,
the actual distribution that generated these n covariates is not important. Recall we make no
assumptions about the joint distribution of P0(WN ). We only need to assume that the conditional
variance still converges. As a result, we can apply the same TMLE and asymptotics. As detailed in
van der Laan et al. [31], this is a much different result than when the target parameter is the marginal
(population) average treatment effect. In the latter case, the so-called adaptive missingness has
important implications for estimation and inference to a target population of units.

Appendix C: Comparison with independent randomization

In this section, we consider estimation and inference for the sample average conditional treatment
effect in a trial where the intervention is completely randomized. We consider implementation of the
TMLE and the corresponding asymptotics. We conclude with an efficiency comparison between a
trial randomizing the intervention with adaptive pairs and a trial with independent randomization.

Appendix C.1: TMLE for the conditional effect with independent randomization

Let Q̄n(A,W ) be an initial estimator of Q̄0(A,W ), which can be obtained by regressing the outcome
Yi on exposure Ai and covariates Wi, i = 1, . . . , n. For a binary or bounded continuous outcome,
the negative log-likelihood is a valid loss function:

−L(Q̄)(O) = Y log Q̄(A,W ) + (1− Y ) log(1− Q̄(A,W ))

Now consider the logistic fluctuation submodel:

Logit
[
Q̄n(ε)

]
= Logit

[
Q̄n
]

+ εH(A)

where H(A) =

(
I(A = 1)

g0(A)
− I(A = 0)

g0(A)

)
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In a randomized trial with two arms, the probability of receiving the intervention or control g0(A =
a) = P0(A = a) = 0.5. Let εn be the minimizer of the empirical mean of the loss function:

εn = arg min
ε
PnL(Q̄n(ε)) =

1

n

n∑
i=1

L(Q̄n(ε))(Oi)

The TMLE of the conditional mean function Q̄0 is defined by plugging in the estimated coefficient
εn into the fluctuation model Q̄∗n = Q̄n(εn). The TMLE of Ψ(Pn0 ) is defined as the corresponding
plug-in estimator:

Ψ(Q̄∗n) =
1

n

n∑
i=1

{
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

}
As before, initial estimation of the conditional mean function Q̄0(A,W ) can also be based on least
squares regression and targeting achieved with the following fluctuation submodel:

Q̄n(ε) = Q̄n + εH(A)

Recall the definition of D∗(Q̄, g0)(O) as a function of the observed data structure O = (W,A, Y ):

D∗(Q̄, g0)(O) =

(
I(A = 1)

g0(A)
− I(A = 0)

g0(A)

)
(Y − Q̄(A,W )),

where the probability of receiving the intervention or the control is g0(A) = P0(A) = 0.5 in a
randomized trial. By construction, TMLE solves D∗(Q̄, g0)(O) at the targeted update Q̄∗n:

PnD
∗(Q̄∗n, g0) =

1

n

n∑
i=1

D∗(Q̄∗n, g0)(Oi) = 0

where Pn denotes the empirical distribution, placing mass (1/n) on each Oi, i = 1, . . . , n. For all
Q̄(A,W ), we also have

Pn0 D
∗(Q̄, g0)(Oi) = Q̄0(1,Wi)− Q̄0(0,Wi)−

(
Q̄(1,Wi)− Q̄(0,Wi)

)
,

where Pn0 f = E
[
f(On)|Wn

]
denotes the conditional expectation of f of the data On, given the

covariates vector Wn. Therefore, the statistical estimand Ψ(Pn0 ) minus the TMLE Ψ(Q̄∗n) can be
written as the empirical mean of the above conditional expectation:

Ψ(Pn0 )−Ψ(Q̄∗n) =
1

n

n∑
i=1

Pn0 D
∗(Q̄∗n, g0)(Oi).

Combining the latter equality with PnD
∗(Q̄∗n, g0) = 0 yields

√
n(ψ∗n − ψ0) =

1√
n

n∑
i=1

{
D∗(Q̄∗n, g0)(Oi)− Pn0 D∗(Q̄∗n, g0)

}
.

Recall F is the set of multivariate real-valued functions such that Q̄∗n(A,W ) is an element of F
with probability 1. Define the process (Zn(Q̄) : Q̄ ∈ F) by

Zn(Q̄) =
1√
n

n∑
i=1

{
D∗(Q̄, g0)(Oi)− Pn0 D∗(Q̄, g0)

}
,
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Conditional on the covariate vector Wn = (W1, . . . ,Wn), Zn(Q̄) is a sum of n independent mean
zero random variables D∗(Q̄, g0)(Oi) − Pn0 D∗(Q̄, g0), i = 1, . . . , n. Below we establish asymptotic
equicontinuity of (Zn(Q̄) : Q̄ ∈ F) so that Zn(Q̄∗n) − Zn(Q̄) → 0 in probability. Then, we can
conclude that

√
n(ψ∗n − ψ0) =

1√
n

n∑
i=1

{
D∗(Q̄, g0)(Oi)− Pn0 D∗i (Q̄, g0)

}
+ oP (1).

Since the main term on the right-hand side, conditional on Wn, is a sum of independent mean
zero random variables, we can apply the central limit theorem for sums of independent random
variables.

Let us define the following function of the unit data Oi = (Wi, Ai, Yi):

ICi(Q̄, Q̄0, g0) ≡ D∗(Q̄, g0)(Oi)− Pn0 D∗(Q̄, g0),

where the notation recognizes that Pn0 D̄
∗(Q̄, g0) also depends on the true conditional mean Q̄0(A,W ) =

E0(Y |A,W ). We assume that

Σ0 = lim
n→∞

1

n

n∑
i=1

Pn0 ICi(Q̄, Q̄0, g0)2

exists as a limit. Then, we have shown
√
n(ψ∗n − ψ0)⇒d N(0,Σ0).

To establish the asymptotic equicontinuity result, we use a few fundamental building blocks.
Let Fd = {f1 − f2 : f1, f2 ∈ F}. Let σ2

n(f) = Pn0 Zn(f)2 be the conditional variance. Note that
Zn(f)/σn(f) is a sum of n independent mean zero bounded random variables and the variance of

this sum equals 1. Bernstein’s inequality states that P (|
∑

j Yj |> x) ≤ 2 exp
(
−1

2
x2

v+Mx/3

)
, where

v ≥ VAR
∑

j Yj . Thus, by Bernstein’s inequality, conditional on Wn, we have

P

(
| Zn(f) |
σn(f)

> x

)
≤ 2 exp

(
−1

2

x2

1 +Mx/3

)
≤ K exp(−Cx2),

for a universal K and C. This implies ‖ Zn(f)/σn(f) ‖ψ2≤ (1 +K/C)0.5, where for a given convex
function ψ with ψ(0) = 0, ‖ X ‖ψ≡ inf{C > 0 : Eψ(| X | /C) ≤ 1} is the so called Orlics norm,
and ψ2(x) = exp(x2) − 1. Thus ‖ Zn(f) ‖ψ2≤ C1σn(f) for f ∈ Fd. This result allows us to apply
Theorem 2.2.4 in van der Vaart and Wellner [57]: for each δ > 0 and η > 0, we now have

‖ sup
σn(f)≤δ

| Zn(f) |‖ψ2≤ K
{∫ η

0
ψ−1

2 (N(ε, σn,Fd)dε+ δψ−1
2 (N2(η, σn,Fd)),

}
, (2)

where N(ε, σn,Fd) is the number of balls of size ε w.r.t. norm ‖ f ‖= σn(f) to cover Fd.
Convergence of a sequence of random variables to zero with respect to ψ2-orlics norm implies

convergence in expectation to zero and thereby convergence of that sequence of random variables
to zero in probability. Let δn be a sequence converging to zero, and let ηn also converge to zero but
slowly enough so that the term δnψ

−1
2 (N2(ηn, σn,Fd)) converges to zero as n→∞. By assumption,∫ δn

0 ψ−1
2 (N(ε, σn,Fd)dε converges to zero. Thus,

lim
δn→0

{∫ δn

0
ψ−1

2 (N(ε, σn,Fd)dε+ δnψ
−1
2 (N2(ηn, σn,Fd))

}
= 0.
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This proves that

E

(
sup

{f :σn(f)≤δn}
| Zn(f) |

)
→ 0.

Thus, if σn(Q̄∗n − Q̄) → 0 in probability, then Zn(Q̄∗n − Q̄) → 0 in probability. This proves the
following theorem.

Theorem 2 Consider the TMLE Ψ(Q̄∗n) for the statistical estimand Ψ(Pn0 ) = 1/n
∑n

i=1{Q̄0(1,Wi)−
Q̄0(0,Wi)} defined above for a trial with independent randomization. Let Pn0 f represents a con-
ditional expectation of a function f of On, given Wn. This conditional expectation is thus still
random through Wn. Let F be a set of multivariate real valued functions so that Q̄∗n is an element
of F with probability 1. Define

Zn(Q̄) =
1√
n

n∑
i=1

ICi(Q̄, Q̄0, g0),

where

ICi(Q̄, Q̄0, g0) ≡ D∗(Q̄, g0)(Oi)− Pn0 D∗(Q̄, g0)

D∗(Q̄, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)
(Yi − Q̄(Ai,Wi)).

We make the following assumptions.

Uniform bound: Assume supQ̄∈F supO | D∗(Q̄, g0) |< M < ∞, where the second supremum is
over a set that contains the support of each Oi.

Convergence of variances: Assume that for a specified {σ2
0(Q̄) : Q̄ ∈ F}, for any Q̄ ∈ F ,

1
n

∑n
i=1 P

n
0 ICi(Q̄, Q̄0, g0)2 → σ2

0(Q̄) a.s (i.e, for almost every (Wn, n ≥ 1)).

Convergence of Q̄∗n to some limit: For any Q̄1, Q̄2 ∈ F , we define

σ2
n(Q̄1 − Q̄2) =

1

n

n∑
i=1

Pn0
{
ICi(Q̄1, Q̄0, g0)− ICi(Q̄2, Q̄0, g0)

}2
,

where we note that the right-hand side indeed only depends on Q̄1, Q̄2 through its difference
Q̄1 − Q̄2.

Assume that for a particular Q̄∗ ∈ F , σ2
n(Q̄∗n − Q̄∗)→ 0 in probability as n→∞.

Entropy condition: Let Fd = {f1 − f2 : f1, f2 ∈ F}. Let N(ε, σn,Fd) be the covering number of
the class Fd w.r.t norm/dissimilarity ‖ f ‖= σn(f). Assume that the class F satisfies

lim
δn→0

∫ δn

0

√
logN(ε, σn,Fd)dε = 0

Asymptotic equicontinuity of process: Then,

Zn(Q̄∗n)− Zn(Q̄∗) converges to zero in probability, as n→∞.

First order linear approximation: As a consequence,

√
n(ψ∗n − ψ0) = Zn(Q̄∗) + oP (1).
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Asymptotic normality: In addition, Zn(Q̄∗) converges to N(0, σ2
0(Q̄∗)), so that

√
n(ψ∗n − ψ0) converges in distribution to N(0, σ2

0(Q̄∗)).

The asymptotic variance σ2
0(Q̄∗) equals the limit of

σ2
0,n =

1

n

n∑
i=1

Pn0

{
ICi(Q̄

∗, Q̄0, g0)(Oi)

}2

. (3)

If Yi is a d-dimensional outcome, then application of the above theorem to each component of
ψ∗n yields the desired asymptotic linearity for the d-dimensional ψ∗n and thereby the asymptotic
normality as well.

Appendix C.2: Conservative variance estimation

As before, we can obtain a conservative estimate of Σ0, which does not rely on a consistent estimator
of the conditional mean function Q̄0(A,W ). The asymptotic variance of the standardized estimator
in the design with independent randomization can be expressed as

Σ0 = lim
n→∞

1

n

n∑
i=1

Pn0
{
D∗(Q̄∗, g0)(Oi)

}2 −
{
Pn0 D

∗(Q̄∗, g0)(Oi)
}2

The latter term is zero when Q̄∗(A,W ) = Q̄0(A,W ):

Pn0 D
∗(Q̄∗, g0) = Q̄0(1,Wi)− Q̄0(0,Wi)−

(
Q̄∗(1,Wi)− Q̄∗(0,Wi)

)
Thus, the true variance Σ0 is always less than or equal to an upper bound Σu

0 , where

Σu
0 = lim

n→∞

1

n

n∑
i=1

Pn0

{
D∗(Q̄∗, g0)(Oi)

}2

We can consistently estimate the upper bound Σu
0 with

Σ̂u =
1

n

n∑
i=1

{
D∗(Q̄∗n, g0)(Oi)

}2

=
4

n

n∑
i=1

(
Yi − Q̄∗n(Ai,Wi)

)2
.

where we have used that the treatment assignment mechanism g0(A) = P0(A) = 0.5 in a randomized
trial.

Appendix D: Comparison of asymptotic variances of the TMLEs in
the independent design and the adaptive pair-matched design

The above two theorems give us the following approximations for the TMLEs ψ∗n,I under indepen-
dent randomization and ψ∗n,M under adaptive pair-matching:

√
n(ψ∗n,I − ψ0) =

1√
n

n∑
i=1

{
D∗(Q̄, g0)(Oi)− Pn0 D∗(Q̄, g0)(Oi)

}
+ oP (1)

√
n/2(ψ∗n,M − ψ0) =

1√
n/2

n/2∑
j=1

{
D̄∗(Q̄, g0)(Ōj)− Pn0 D̄∗(Q̄, g0)(Ōj)

}
+ oP (1)
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where

D̄∗(Q̄, g0)(Ōj) =
1

2

{
D∗(Q̄, g0)(Oj1) +D∗(Q̄, g0)(Oj2)

}
D∗(Q̄, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)(
Yi − Q̄(Ai,Wi)

)
.

The corresponding asymptotic variances are

Σ0,I = lim
n→∞

1

n

∑
i

Pn0

[
D∗(Q̄, g0)(Oi)

2

]
−
[
Pn0 D

∗(Q̄, g0)(Oi)

]2

Σ0,M = lim
n→∞

1

n/2

n/2∑
j=1

Pn0

[
D̄∗(Q̄∗, g0)(Ōj)

2

]
−
[
Pn0 D̄

∗(Q̄∗, g0)(Ōj)

]2

,

respectively. Expanding out the squared terms and simplifying, the asymptotic variance of the
standardized estimator in the independent design is

Σ0,I = lim
n→∞

1

n

n∑
i=1

{
2E0

[(
Yi − Q̄0(1,Wi)

)2∣∣∣∣Ai = 1,Wn

]
+ 2E0

[(
Yi − Q̄0(0,Wi)

)2∣∣∣∣Ai = 0,Wn

]
+
[
Q̄0(1,Wi)− Q̄(1,Wi) + Q̄0(0,Wi)− Q̄(0,Wi)

]2}
Likewise, the asymptotic variance of the standardized estimator in the adaptive design is

Σ0,M = lim
n→∞

1

2n

n∑
i=1

{
2E0

[(
Yi − Q̄0(1,Wi)

)2∣∣∣∣Ai = 1,Wn

]
+ 2E0

[(
Yi − Q̄0(0,Wj1)

)2∣∣∣∣Ai = 0,Wn

]
+
[
Q̄0(1,Wi)− Q̄(1,Wi) + Q̄0(0,Wi)− Q̄(0,Wi)

]2}− ρ0

= 0.5Σ0,I − ρ0

where ρ0 is the following pairwise product

ρ0 = lim
n→∞

1

n

n/2∑
j=1

{[
Q̄0(1,Wj1)− Q̄(1,Wj1) + Q̄0(0,Wj1)− Q̄(0,Wj1)

]
×

[
Q̄0(1,Wj2)− Q̄(1,Wj2) + Q̄0(0,Wj2)− Q̄(0,Wj2)

]}
The proof is omitted here, but readily available upon request from the authors.

Thus, the asymptotic variance of the TMLE in the independent design is Σ0,I/n whereas the
asymptotic variance of the TMLE in the adaptive design is Σ0,M/(n/2) = Σ0,I/n − 2ρ0/n. When
we match well on measured and unmeasured factors, the product of the deviations between the
true conditional means and the estimated means within matched pairs is expected to be positive:

ρ0 ≥ 0

Under this condition, the adaptive design will be more efficient than the completely randomized
trial. As an example, consider the unadjusted estimator and suppose we match perfectly on W ,
which is predictive of the outcome. Then the relevant term is[

Q̄0(1,Wj)− Q̄n(1) + Q̄0(0,Wj)− Q̄n(0)
]2
> 0
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If we consistently estimate Q̄0(A,W ), then the cross-term ρ0 is zero and the efficiency bound of
the two designs is the same:

Σ0,M/(n/2) = Σ0,I/n

In finite samples, we also expect there to be an efficiency gain from pair-matching. Comparing
the proposed variance estimators, we have

Σ̂u
M =

1

n/2

n/2∑
j=1

[(
Yj1 − Q̄∗n(1,Wj1)

)
−
(
Yj2 − Q̄∗n(0,Wj2)

)]2

=
1

n/2

n/2∑
j=1

[(
Yj1 − Q̄∗n(1,Wj1)

)2
+
(
Yj2 − Q̄∗n(0,Wj2)

)2
− 2
(
Yj1 − Q̄∗n(1,Wj1)

)(
Yj2 − Q̄∗n(0,Wj2)

)]
Σ̂u
I =

4

n

n∑
i=1

(Yi − Q̄∗n(Ai,Wi))
2

=
4

n

n/2∑
j=1

(
Yj1 − Q̄∗n(1,Wj1)

)2
+
(
Yj2 − Q̄∗n(1,Wj2)

)2
As consequence, the difference in the variance estimators is

Σ̂u
I

n
−

Σ̂u
M

n/2
=

2

(n/2)2

n/2∑
j=1

(
Yj1 − Q̄∗n(1,Wj1)

)(
Yj2 − Q̄∗n(0,Wj2)

)
If we succeed in matching pairs on predictive covariates W , then the sample covariance of residuals
within matched pairs will be positive. Under this condition (expected to hold in practice), adaptive
pair-matching will yield more precise estimates in finite samples.
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