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1 Introduction

Multistate modeling is a statistical tool that allows medical researchers to characterize the evolution of dis-

ease natural histories through discrete states, including progressive diseases (like HIV (Longini and Clark,

1989)) and episodic diseases with reversible transitions (like asthma (Saint-Pierre et al., 2003)). Many

methods exist for modeling disease processes with known transition times and trajectories (Andersen and

Keiding, 2002; Meira-Machodo et al., 2009). However, recent interest in mining large databases of elec-

tronic medical records (Dean et al., 2009) poses new statistical and computational challenges. In such data,

patients’ disease statuses are recorded only at clinic visits, and exact transition times are unknown. Our goal

is to develop a multistate disease modeling framework that accommodates the complexities of observational

data from electronic medical records. Features of this type of data include panel observation of disease tra-

jectories, duration-dependent hazard functions, misclassified disease observations, and random visit times

that may depend on the disease trajectory.

There are many options for modeling discretely observed multistate processes when visit times are non-

informative. The simplest, most tractable models for panel data are time-homogeneous continuous time

Markov chains (CTMCs) (Kalbfleisch and Lawless, 1985). However, CTMCs are limited by an assumption

of constant hazard functions that is frequently unrealistic. More flexible models used for panel data include

inhomogeneous CTMCs (Kay, 1986; Titman, 2011; Hubbard et al., 2008) that allow hazard functions to vary

with respect to time since the process origin. Although these models expand the functionality of CTMCs,

for many diseases, hazard functions vary with disease state sojourn duration, not just external time. In

these cases, semi-Markov models are appealing, yet estimation for such models proves less tractable in

the presence of reversible transitions (Chen and Tien, 2004; Kang and Lagakos, 2007). Recent research has

suggested advantages of using latent CTMCs in the discrete observation setting (Titman and Sharples, 2010;

Lange and Minin, 2013). These models have the backbone of standard CTMCs, retaining their tractability;

but multiple latent states map to each disease state, yielding duration-dependent sojourn time distributions.

Moreover, it is easy to extend latent CTMC models into continuous-time hidden Markov models (HMMs)

to allow for misclassification error. This is the disease modeling framework we will assume.

Most methods developed for panel observed multistate processes treat visit times as non-informative

— an assumption that often does not hold in observational studies. Visits scheduled in advance, even

those based on observations at previous time points, are ignorable; but times of patient-initiated, symptom-

based visits cannot be ignored in the analysis because these times depend on the underlying disease process

(Gruger et al., 1991). Non-ignorable visit times necessitate joint modeling of the disease process and visit

times. However, existing joint models of this sort, capable of analyzing panel data (Chen et al., 2010;

Chenand and Zhou, 2011; Chen and Zhou, 2013; Sweeting et al., 2010), assume pre-designated visits with

informative missingness, which is appropriate for clinical trials but not for observational clinical data with

random visit times.

In this paper, we develop a joint model of a discretely observed multistate disease process and a random

observation time process. We treat the random, patient-initiated visit times as a temporal point process,

which consists of a time series of binary events that occur in continuous time (Daley and Vere-Jones, 2003).

Due to their tractability and flexibility, inhomogeneous Poisson processes are commonly used to model

observation time point processes jointly with a longitudinal outcome, including continuous (Sun et al., 2005)

and panel-count variables (Li et al., 2013). However, in these models the dependence of observation times

and the disease process is specified by modeling the disease process conditional on the observation process.
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In contrast, we flip the conditioning, assuming that the observation process is a doubly stochastic Poisson

process with rates that depend on the disease state. Our multistate-disease-driven observation (multistate-

DDO) model can be viewed as an extension of the “preferential sampling” approach for spatial data to

multistate disease processes (Diggle et al., 2010).

Our joint modeling framework is as follows. The disease process follows a latent CTMC trajectory.

We condition on all scheduled visits and assume that patient-initiated DDO times accrue according to a

Markov-modulated Poisson process (MMPP) with rates that depend on the patient’s current disease status.

The disease process is observed, with possible misclassification error, at informative and non-informative

visit times. Our multistate-DDO model is similar to the earthquake timing model of Lu (2012), but our model

also allows for observations at non-informative times. We demonstrate that the likelihood of our joint model

is computationally tractable. Moreover, we develop an efficient expectation-maximization (EM) algorithm

to fit our joint multistate-DDO model to panel data. Via simulations, we demonstrate the importance of

accounting for random informative sampling times in preventing bias and increasing precision of estimates

of disease process parameters.

To illustrate the multistate-DDO model, we apply it to an observational study of secondary breast cancer

events (SBCEs) in women who have had a unilateral primary breast cancer (BC). We use data on screening

and diagnostic mammograms subsequent to the primary breast cancer as well as biopsies to characterize

transitions between breast cancer states. The disease model has a competing risks framework, with termi-

nal competing events corresponding to ipsilateral SBCE (same side as original cancer), contralateral SBCE

(opposite side to original cancer), or death prior to SBCE. Patient visits occur either at scheduled screening

examinations or at diagnostic examinations triggered by signs or symptoms of an SBCE, necessitating mod-

eling of informative visit times. In contrast to conventional studies of SBCEs based on diagnosed events

(Chapman et al., 1999; Geiger et al., 2007; Buist et al., 2010), we treat the diagnosis time as a left censoring

time for onset of mammographically-detectable SBCEs. Estimates from our model are clinically meaning-

ful, as they provide information about prevalence of undetected SBCEs in the growing population of breast

cancer survivors (Siegel et al., 2012) as well as screening accuracy in this population.

2 Modeling framework

2.1 Joint model for disease process and disease driven observation process

The disease process, denoted X(t) and modeled as a time homogeneous CTMC, has state space S= {1, . . . ,s},

infinitesimal generator matrix ΛΛΛ = {λi j}, and initial distribution πππ . Jumps in X(t) correspond to an in-

dividual’s transitions between states in the disease process. The observation process, denoted N(t), is a

Markov-modulated Poisson process with piecewise constant rates q(t) = q(X(t)) that depend on the un-

derlying disease state. N(t) has state space {0,1, . . . ,∞}, corresponding to the accrual of patient-initiated

disease-driven observations (DDOs): the process jumps and the state increases by one each time a DDO

occurs. Rates of DDOs corresponding to disease states {1, . . . ,s} are denoted q = (q1, . . . ,qs).

Jointly, the disease process and counts of DDOs evolve according to a bivariate time-homogeneous

continuous time Markov chain, Y (t) = (X(t),N(t)) (Mark and Ephraim, 2013). The state space for Y (t) is

the Cartesian product of the state space of X(t) and N(t),

S′ = {(1,0),(2,0), . . . ,(s,0),(1,1), . . .(s,1), . . . ,(1,∞), . . . ,(s,∞)}.
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Figure 1A shows an example of a joint three-state disease and observation process trajectory. Supposing

Q = diag(q1, . . . ,qs), the transition generator matrix for the joint process Y (t) is

R =











ΛΛΛ−Q Q 0 0 . . .
0 ΛΛΛ−Q Q 0 . . .
0 0 ΛΛΛ−Q Q . . .
...

...
. . .

. . .
. . .











.

The structure of R follows from the assumption that DDOs and changes in disease states cannot occur

simultaneously. The first ΛΛΛ−Q block yields the transition rates between states (i,0) and ( j,0) and the first

Q block yields the rates between state (i,0) and ( j,1); the rest of the generator matrix is structured similarly

(Fearnhead and Sherlock, 2006).

2.2 Likelihood for observed data

Our observed data consist of partial observations of the joint disease and DDO process, since we only see an

individual’s disease status at DDO times or scheduled visit times. The observation times are t1, . . . , tn, and

DDO times are distinguished from scheduled visit times via indicator functions h = (h1, . . . ,hn). We denote

the collection of DDO event times as τττ = {ti : hi = 1, i = 1, . . . ,n}. Disease states at the observation times

are x1, . . .xn.

We first consider the likelihood where we observe X(t) at DDO and scheduled visit times without mis-

classification error (Figure 1B). The likelihood conditions on scheduled visit times. The random variable hk

is a censoring indicator that denotes whether a DDO observation occurred before or after the next scheduled

visit time from time tk−1. The Markov property and time-homogeneity of Y (t) enables us to obtain the like-

lihood of the observed data as a product of density or survival functions for the first passage time of Y (t) into

state ( j,k+ 1), given Y (tk) = (i,k) across each observation interval [tk−1, tk]. Given the time-homogeneity

of Y (t) and the structure of R, it suffices to consider Wi0, j1, the first passage time into state ( j,1), given

state (i,0) at time 0. When tk is a DDO time, the contribution to the likelihood for the interval [tk−1, tk] is the

density of Wi0, j1, fi j(∆tk), where ∆tk = tk+1−tk. When tk is a scheduled visit time, we know that Wi0, j1 > ∆tk,

and the contribution to the likelihood is the survival function for Wi0, j1, Si j(∆tk). Thus, the likelihood based

on the observed data is

P(x1, . . . ,xn,τττ,h) = νh1
πx1

(h1)
n

∏
k=2

[ fxk−1xk
(∆tk)]

htk [Sxk−1xk
(∆tk)]

1−htk .

More generally, the disease process is observed with misclassification error at scheduled visits and DDO

times (Figure 1C). Thus, we observe o = (o1, . . . ,on) rather than x1, . . . ,xn. We assume that disease process

observations are conditionally independent given X(t). The relationship between observed and latent states

is described by an emission matrix E = {e(i, j)} with entries e(i, j) = P[ot = j|X(t) = i]. The likelihood

includes emission probabilities and sums P(x1, . . . ,xn,o,τττ,h) over the possible values of x:

P(o,τττ,h) = ∑
x1

∑
x2

...∑
xn

νh1
πx1

(h1)
n

∏
k=2

[ fxk−1xk
(∆tk)]

hk [Sxk−1xk
(∆tk)]

1−hk

n

∏
i=1

e(xi,oi). (1)

One can derive the density and survival functions fi j(t) and Si j(t) explicitly in terms of ΛΛΛ and Q using

standard CTMC techniques (Freed and Shepp, 1982). First passage time Wi0, j1 has the same distribution of
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Figure 1: A. Example of a joint informative observation and disease process, Y (t) = (X(t),N(t)). B. The

informative observation time process and the disease process observed at DDO and scheduled times. C.

Same as B, with misclassification error.
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the absorption time of an auxiliary process Y ′(t), corresponding to Y (t) for {t : N(t) ∈ {0,1}}, with state

space {(1,0), . . .(s,0),(1,1), . . .(s,1)}, absorbing states (1,1) . . .(s,1), and rate matrix

R̄ =

[

ΛΛΛ−Q Q

0 0

]

.

The survival function for Wi0, j1 is

Si j(t) = P[Wi0, j1 > t|Y (0) = (i,0)] = P
[

Y ′(t) = ( j,0)|Y ′(0) = (i,0)
]

= exp[(ΛΛΛ−Q)t]i j,

and the density function is

fi j(t) =
d

dt
P[Wi0, j1 < t|Y (0) = (i,0)] =

d

dt
P
[

Y ′(t) = ( j,1)|Y ′(0) = (i,0)
]

= exp [(ΛΛΛ−Q) t]i j q j,

via the Kolmogorov forward equation. Appendix A describes modifications to the observed data likelihood

(1) for data containing known transition times to absorbing states, such as death. Appendix B describes

efficient methods for calculating the observed data likelihood (1) based on recursions developed for hidden

Markov models and MMPPs (Baum et al., 1970).

2.3 Latent CTMC model parameterization

Disease process models based on standard CTMCs assume that disease state sojourn times are exponen-

tially distributed. To permit more flexibility, we assume a latent CTMC framework for the disease process.

We denote the disease process V (t), with state space G = {1,2, . . . ,g}. Underlying V (t) is a latent time-

homogeneous CTMC X(t), with transition intensity matrix ΛΛΛ and initial distribution πππ and state space

S = {11,12, . . . ,1s1
}∪{21,22, . . . ,2s2

}∪ · · ·∪{g1,g2, . . . ,gsg
}. Each observable disease state corresponds to

multiple states in the latent state space, such that V (t) = j <=> X(t) ∈ { j1, j2, . . . , js j
}. The mapping of

multiple latent states in S to a single disease state in G yields phase-type sojourn distributions of V(t), which

can be used to approximate distributions with hazard functions having different shapes (Aalen, 1995). We

assume a Coxian structure for ΛΛΛ for its flexibility and the fact that, up to trivial permutation of states, it is

uniquely parametrized when the latent space has a minimal dimension (Titman and Sharples, 2010; Cumani,

1982). Latent CTMC models can be specified in the framework of the observed data likelihood (1) through

use of an emission matrix with observed state space G and hidden state space S that equates emission prob-

abilities e( j1,k) = e( j2,k), . . . ,e( js j
,k) for all j,k ∈ G, permitting the mapping of the latent disease space

onto the observed disease space.

To incorporate baseline subject-level covariates wk in the disease model, we relate log-rates to a lin-

ear predictor, log(λ k
i j) = ζζζ

T
i jw

k, where k denotes the individual. In latent CTMCs, different constraints

on covariate effects provide different interpretations. Adding the same covariate parameter to all latent

transitions originating from disease state p, i.e.,
{

λi j : i ∈ {p1, . . . , psp
}
}

, implies a multiplicative effect

on the sojourn time in state p. To represent covariate effects on cause-specific hazard functions, one

can add a separate covariate parameter for each transition out of disease state p to disease state r, i.e.,
{

λi j : i ∈ {p1, . . . , psp
}, j ∈ {r1, . . . ,rsr

}
}

. This specification does not, however, represent a proportional

hazards parameterization without additional non-linear constraints (Lindqvist, 2013).

One can also add covariates to DDO, emission, and initial distribution parameterizations. This is

achieved by relating log rates of DDOs to a linear predictor; i.e., log(qk
i ) = νννT

i wwwk. Initial distributions
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and emission distributions are multinomial. Assuming S has s total states, the initial distribution πππ has

natural parameters {ηi = log(πi/π1)) : i = 2, ...,s}, and the emission distribution ei has natural parameters
{

ηi j = log(e(i, j)/e(i,1)) : j = 2, ...,g
}

. Subject-level covariates wk are added to the multinomial models

via a linear predictor, e.g., specifying ηk
i j = γγγ i jw

k.

3 Model selection

We recommend selecting models via the Bayesian information criterion (BIC), given its good performance

for selecting general mixture models (Steele and Raftery, 2010) and applicability to comparing non-nested

models. The BIC can assist in choosing the dimension of latent space as well assessing parameter constraints

in the DDO rates. Finally, hypothesis tests for covariate effects based on likelihood ratio or Wald tests

are appropriate, provided parameter identifiability holds under the null model (Sundberg, 1973), which is

achievable by constraining covariate effects rather than estimating them separately for each latent disease

state.

4 Parameter Estimation

The parameters of interest in the multistate-DDO model, θθθ = (πππ,ΛΛΛ,E,q), characterize the initial distribu-

tion, the disease process, the misclassification probabilities, and the DDO process rates, respectively; we

will condition on h1 rather than estimating its distribution. The standard approach for MMPPs and partially-

observed bivariate CTMCs (Ryden, 1996; Mark and Ephraim, 2013) is to use an EM algorithm to arrive at

the maximum likelihood estimates (MLEs) of model parameters (Dempster et al., 1977), as it exploits the

ease of maximizing a “complete data” likelihood compared to the observed data likelihood.

In the multistate-DDO model, the complete data are (x,τττ,o), the full disease trajectory, the DDO tra-

jectory, and observed disease statuses at the discrete times, respectively. The complete data log-likelihood

has exponential family form and is a linear function of complete data sufficient statistics. These sufficient

statistics include nT (i, j), the total counts of transitions from state i to state j; dT (i), the total time spent

in state i; zi, the initial disease state indicator; uT (i) = ∑
n
l=2 I(xl = i)I(hl = 1), the total number of DDOs

that have occurred while X(t) was in state i; and oT (i, j) = ∑
n
l=1 I(xl = i)I(ol = j), the total co-occurrences

of latent state i and observed state j. As described by Lu (2012), the complete data log-likelihood for an

individual is

l(θθθ ;o,τττ,x|h1) = l(πππ;x1|h1)+ l(ΛΛΛ,q;x,τττ|x1)+ l(E;o|x,x1)

=
s

∑
i

zi log[πi(h1)]+
s

∑
i=1

∑
j %=i

nT (i, j) log(λi j)−
s

∑
i=1

dT (i)

(

s

∑
j %=i

λi j

)

+
s

∑
i=1

uT (i)(qi)−
s

∑
i=1

qidT (i)+
s

∑
i=1

r

∑
j=1

oT (i, j) log[e(i, j)].

(2)

This likelihood is additive across multiple independent individuals, yielding the complete data likelihood

for an entire sample.

The expectation step (E-step) requires computing the expectation of the complete data log-likelihood (2)

conditional on observed data (o,τττ,h). Methods for obtaining these expectations are described in Appendix

6
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C. The maximization step (M-step) maximizes the conditional expectation of the complete data likelihood,

calculated in the E-step, with respect to θθθ . Covariate-free models admit closed-form M-steps (Lu, 2012).

For covariate-parameterized models, we optimize the complete data likelihood via the Newton-Raphson

method. Lange and Minin (2013) provide a full description of such a numeric M-step in the context of

discretely observed latent CTMCs; the extension to multistate-DDOs is straightforward, as complete-data

score and information functions for the q parameters are identical to those for ΛΛΛ.

We provide an implementation of the EM algorithm in R (R Core Team, 2013), in the form of the R

package cthmm, available at http://r-forge.r-project.org/projects/multistate/. As with all

local optimization methods, convergence to the true maximum log-likelihood is not guaranteed, and the

method is sensitive to starting values. To make it likely that the true maximum is obtained, we run the EM

algorithm from multiple sets of initial values, such as random deviates around sensible values based on prior

knowledge or MLEs obtained from fitting simpler, e.g., covariate-free, models. Finally, we use numerical

differentiation, implemented in the R package "NumDeriv" (Gilbert and Varadhan, 2012), to obtain standard

errors for parameter estimates from the observed Fisher information matrix.

5 Simulation Study

We used simulated data to characterize the bias incurred by fitting models that condition on the visit times

rather than jointly modeling them with the disease trajectory. We considered three disease models: 1) a stan-

dard CTMC reversible disease model with two states (healthy and diseased); 2) a latent CTMC reversible

disease model; and 3) a latent CTMC competing risks model similar to the SBCE application, where ab-

sorbing states I and C correspond to mammographically-detectable ipsilateral and contralateral SBCEs (Ap-

pendix Figure D-1). After simulating disease trajectories from these models, we used the MMPP DDO

models to generate discretely-observed datasets with informative observation times, specifying compara-

tively higher DDO rates in the diseased states than in the healthy states. The competing risks model allowed

for potentially misclassified observations, corresponding to disease surveillance tests with 70% sensitivity

and 98% specificity. See Appendix Tables D-1 and D-2 for details.

To investigate bias resulting from ignoring DDO times, we fit data generated from the reversible models

with correctly specified multistate-DDO models and with misspecified panel data models that condition

on the observations times. The multistate-DDO models yielded unbiased estimates of the disease hazards.

Under the misspecified panel models, bias in rate estimates from the reversible standard CTMC followed

a consistent pattern: hazard rates for healthy → diseased transitions and diseased → healthy transitions

were over- and under-estimated, respectively (Figure 2). Intuitively, informative observation times lead

to more observations in the diseased state and fewer in the healthy state than would be expected under

scheduled visits. Bias declined when non-informative times were included with the informative observations

(Figure 2A vs 2C) and when DDO rates were less discrepant between healthy and diseased states (Figure

2B vs 2C). Ignoring informative times in the latent CTMC reversible models also led to underestimates of

diseased → healthy hazard rates, but healthy → diseased hazard rates were overestimated only near the state

origin time.

In the competing risks disease model similar to the SBCE application, we focused on estimates of the cu-

mulative incidence functions of disease of events I and C. Again, to investigate bias, we either fit correctly-

specified multistate-DDO models or misspecified panel data models. The correctly-specified multistate-

7
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DDO model produced unbiased cumulative incidence estimates. The bias resulting from ignoring infor-

mative visit times was consistent with results from reversible models: the hazard rates for healthy → I/C

events were overestimated, yielding left-shifted cumulative incidence curves (Appendix Figure D-2). More-

over, bias decreased with increasing numbers of scheduled visits added to supplement informative visits.

Misspecification of the informative sampling times also dramatically underestimated mammography sen-

sitivity estimates, e.g., sensitivity was estimated at 40% when 20% of visits were informative, versus the

data-generating sensitivity of 70%. Finally, in addition to investigating bias given model misspecification,

we also observed that cumulative incidence estimates based on the properly specified DDO model were

shifted left relative to those based on a simulated time of diagnosis, i.e., the time of the first true-positive

mammogram (Appendix Figure D-2). This is consistent with diagnosis being a left censoring event for

screen-detectable disease.

!"#$%&'()*

!"#$%&'()*

+,-.(-/(%0120%
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4$%%%%%%%%%%%%%%%%%%%%%%5$%%%%%%%%%%%%%%%%%%%%%%%0$
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Figure 2: Box plots/functional box plots for hazard estimates of H → D and D → H transitions using

data simulated from discretely observed 2-state standard and latent CTMC multistate-DDO models on the

interval t=[0,8]. (See Appendix Table D-1 for simulation details). Data were fit with correctly specified

multistate-DDO models and incorrectly specified panel models, demonstrating bias resulting from ignoring

informative visits. A. DDO rates are qD = 2,qH = .25; data also included fixed observation times t =
(0,2,4,6,8). B. DDO rates are qD = 2,qH = .25. C. DDO rates are qD = .35,qH = .25. D. DDO rates are

qH1 = qH2 = .25 and qD1 = qD2 = 2.

Via simulation, we also examined the precision of estimates of disease process parameters under infor-

mative and non-informative observation schemes. Informative visit times mitigate the uncertainty about the

8
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underlying disease states at discrete observations with misclassification error, enabling more precise esti-

mates. We generated data from the reversible standard and latent CTMC disease models (Appendix Figure

D-1) and simulated misclassified observations either in data sampled at DDO times or at pre-designated

visit times with equivalent average observation frequencies (Appendix Table D-1). The simulated data were

fit with correctly specified multistate-DDO models or panel models, and we observed less variability in

multistate-DDO estimates than their in panel model equivalents (Appendix Figure D-3).

6 Application

We apply the multistate-DDO model to a study of secondary breast cancer events (SBCEs) in women with a

history of unilateral breast cancer. The target of inference is onset of mammographically-detectable ipsilat-

eral or contralateral SBCE, which are unobserved events that occur prior to diagnosis. The dataset consists

of the sequence of mammograms and biopsies following completion of treatment for a primary breast can-

cer. These data are suited for multistate-DDO models, as mammograms have misclassification error, and

observation times include both scheduled screening and patient-initiated visits. Scientifically, we are inter-

ested in differences in estimates of cumulative incidence of mammographically-detectable versus diagnosed

SBCEs, estimates of mammography misclassification, and estimates of covariate effects on disease process

parameters.

The study population consists of women diagnosed with unilateral primary BC between 1994 and 2009

who were members of Group Health (GH), an integrated health care system in Washington state, at the

time of their primary cancer diagnosis. Women were followed from 180 days after their first cancer until

the earliest of the first positive biopsy for a SBCE, death, or disenrollment from the GH cohort. Women

in this population were recommended to undergo annual screening mammograms in an effort to detect

SBCEs before they become symptomatic. Women were also recommended to receive diagnostic evaluations

for symptoms that arise in between scheduled surveillance intervals. Mammograms that are positive were

followed up with further imaging workup, and, if warranted, biopsies. Mammography visit times were

considered to be scheduled screening visits unless the woman and radiologist reported that the visit was

for "evaluation of a breast problem," or only the radiologist coded it as such, but the woman endorsed

an additional variable indicating symptoms. Appendix E provides additional details on outcome variable

definitions and exclusion criteria.

6.1 Data description

There are 2,936 women in the analysis sample, with a median follow-up time of 5.8 years (IQR 2.8-9.2).

Appendix Table E-1 provides a description of baseline sample characteristics. There were 14,288 contralat-

eral and 10,468 ipsilateral mammograms and 241 contralateral and 212 ipsilateral biopsies. There are fewer

ipsilateral than contralateral mammograms because some women were treated for their primary cancer with

mastectomy and thus no longer require disease surveillance on the ipsilateral side. The results of the mam-

mograms and biopsies are shown in Table 1. There were 84 women diagnosed with contralateral SBCEs and

64 diagnosed with contralateral SBCEs. Approximately 7% of all mammograms and 33% of biopsies were

positive. Overall, there were 280 days coded as patient-initiated informative visits. On average, women had

0.98 scheduled mammogram visits per person-year. In contrast, rates of informative visits were low: 0.018

per person-year.
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Table 1: Outcomes for mammograms and biopsies by procedure laterality.

Observed result

Procedure type Laterality Total Healthy Ipsi. Contra.

Mamm. Contra. 14,288 13,305 0 983

Ipsi. 10,468 9,800 668 0

Biopsy Contra. 241 157 0 84

Ipsi. 212 148 64 0

6.2 SBCE Models

The disease model is a competing risks model with three absorbing states: ipsilateral SBCE, contralateral

SBCE, and death before SBCE. We considered both a standard CTMC with state space {H = healthy, I =
Ipsilateral SBCE,C = contralateral SBCE,D = death before SBCE} and a latent model with state space

{H1,H2, I,C,D}, where H1, and H2 are two latent states that map to the healthy disease state. The la-

tent model is biologically plausible as it allows for SBCE hazard rates to be higher near the time of primary

BC diagnosis, reflecting recurrences of the primary BC, and to level out over time, reflecting novel cancer

events (Demicheli et al., 1996). The transitions in the two models are depicted in Figure 3. All women are

assumed to be disease free at the beginning of the study, and start in either the H or H1 state, depending on

the disease model.

!"######################################$"

Figure 3: SBCE competing risks disease models. A. Standard CTMC, where H=healthy, C=contralateral

SBCE, I=ipsilateral SBCE, and D=death before SBCE. B. Latent CTMC with Coxian structure. States H1

and H2 map to the healthy state.

Covariates were added to the disease model assuming an additive effect on the log-rates, i.e., log(λi j) =

ζζζ
T
i jX, where X are the covariates and ζζζ i j the coefficients for transition i, j. To ensure parameter identifia-

bility, we constrained parameters in the latent model ζζζ H1, j
= ζζζ H2, j

, j ∈ {I,C,D} and did not add covariates

to the H1 → H2 transition. Thus, for each covariate, there is one parameter each affecting transition rates

from the healthy state to ipsilateral SBCEs, contralateral SBCEs and death prior to SBCE. The specific co-

variates we focused on included age at diagnosis, dichotomized to age<50 versus age>50; American Joint

Committee on Cancer, Version 6, stage of the primary BC (0=in-situ, 1, 2+); adjuvant endocrine therapy for

the original cancer (yes or no); and race (White versus non-White), based on prior evidence in the literature
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(de Bock et al., 2006; Andreetta and Smith, 2007; Moran et al., 2008).

The DDO models specify rates of informative sampling times according to the individual’s underlying

disease state. For model comparison and sensitivity analysis we considered different restrictions on these

DDO rates, i.e. assuming that the rate was the same in more than one state (for details, see Appendix Table

E-2). All models assumed that the DDO rate in the death state was zero. Models that assume DDO rates are

identical across the healthy and ipsilateral and contralateral states suggest that the sampling times are not

informative about the disease process: this assumption yields estimates that are quite similar to models that

condition on the times, but allows for model comparison via the BIC.

Each mammogram and biopsy was classified as ipsilateral or contralateral. To model mammography

misclassification, we assumed a zero probability of detecting an SBCE with a discordant procedure later-

ality; e.g., detecting an ipsilateral SBCE via a mammogram on the contralateral side. In order to promote

parameter identifiability in the overall model, we estimated mammography sensitivity and specificity but

fixed the biopsy false negative rate at 0.02 and false positive rate at 0, which are reasonable given mod-

ern biopsy accuracy rates (Dillon et al., 2005). To accommodate different misclassification probabilities

depending on the procedure type and side, we used a time-dependent emission distribution.

6.3 Model fitting results

The BIC is lowest for the latent CTMC disease model and H1/H2/I,C DDO model, where rates of DDO

times are allowed to vary in the two healthy states, but are equal in ipsilateral and contralateral SBCE states

(see Appendix Table E-3 for model comparison). The estimated DDO rate in state H1 is 0.046/person-year

(95% CI (0.036,0.058)); in H2 it declines to 0.009/person-year (95% CI (0.007,0.012)); and in the SBCE

disease states it is 0.076/person-year (95% CI (0.047,0.11)). These rate estimates are plausible given that

patients may be more likely to exhibit symptoms or to initiate visits close to their primary BC diagnosis, as

well as after they have developed an SBCE.

Figure 4 plots estimates of cumulative incidence of mammographically-detectable SBCEs based on the

BIC-preferred multistate-DDO model, in addition to empirical cumulative incidence of diagnosed SBCE

events. The multistate-DDO model estimates that at five years after diagnosis 3.7% (95% CI [2.6,4.8]) of

women will have a mammographically-detectable ipsilateral SBCE, whereas 2% (95% CI [1.14,2.6]) will

have been diagnosed. Likewise, at five years, the multistate-DDO model estimates 3.6% (95% CI [2.6,4.5])

will have a contralateral SBCE, whereas 2.4% (95% CI [1.9, 2.9]) will have been diagnosed. In general, the

BIC-preferred DDO model estimates that a range of 25-45% of prevalent SBCEs are undiagnosed from five

to ten years after the primary BC, demonstrating the potential benefit of a more sensitive test for improve-

ment of early disease detection.

The multistate-DDO models allow us to estimate true and false positive rates for mammograms. Based

on the BIC-selected multistate-DDO model, the estimate of the true positive rate is 69% (95% CI (55%,81%)),

and the false positive rate is 5.6% (95% CI (5.3%, 5.9%)). These results are comparable with empirical es-

timates of mammography sensitivity of 65.4% (95% CI, (61.5%, 69.0%)) and specificity of 98.3% (95%CI

(98.2%, 98.4%)) from the Breast Cancer Surveillance Consortium (BCSC), of which GH is a participating

institution (Houssami et al., 2011), as well as a recent meta analysis reporting mammography sensitivity

ranges of 64-67% and specificity ranges of 85-97% across studies (Robertson et al., 2011).

The multistate-DDO models are parametric, and results are sensitive to model parameterization. More-

11

Hosted by The Berkeley Electronic Press



Figure 4: Estimated cumulative incidence for ipsilateral and contralateral SBCEs and death, via empirical

estimates of the diagnosis times or using the BIC-selected multistate-DDO model (Appendix Table E-2,

model 6). The bands are point-wise standard errors. Abbreviations: Dx empirical=empirical estimate of

cumulative incidence of diagnosed SBCE events; SE=standard error.

over, misspecification of either the observation time, misclassification, or disease model will affect estimates

of all components. We examined how results differed if we had assumed a CTMC disease model or a non-

informative observation model for the patient-initiated visit times. Unlike the BIC-selected latent disease

model, the standard CTMC disease model was unable to capture higher SBCE cumulative incidence in the

first five years after BC diagnosis (Appendix Figure E-1). Further, assuming no informative observations

yielded left-shifted cumulative incidence estimates relative to models allowing for DDO rates to differ across

disease states. While these results are consistent with the simulation studies examining bias due to ignoring

informative sampling times (Appendix Figure D-2), the magnitude of the shift is much more subtle, proba-

bly attributable to the low incidence of DDO times. Estimates of mammography true positive rates are also

sensitive to choice of disease and DDO model (Appendix Table E-4). Indeed, higher sensitivity estimates

are associated with lower estimates of the cumulative incidence of SBCEs across the observation period.
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6.4 Covariate effects

Point estimates for the covariate parameters within the BIC-selected multistate-DDO model are shown in

Table 2. For the purpose of comparison, we also estimated covariate effects for an analogous latent CTMC

disease model based on time of diagnosis, the modeled event in conventional studies of SBCEs. Estimates

for covariate effects were quite similar between the multistate-DDO and diagnosis-time models, with the

exception of effect sizes for age and primary cancer stage on ipsilateral SBCEs. Interestingly, covariate ef-

fects were not only similar between diagnosis and multistate-DDO models, they also were relatively robust

to misspecification of the informative sampling time model (Appendix Figure E-2). The models indicated

overall significant covariate effects on rates of ipsilateral disease (Wald test (p<0.001), but not contralateral

SBCEs (Wald p-values ranged from 0.6-0.84). Our findings on covariate effects are compatible with an ex-

ploratory data analysis we conducted looking at the marginal effects of covariates on cumulative incidence

of diagnosed SBCEs (Appendix Figure E-3), as well as the BCSC’s study on diagnosed SBCE events (Buist

et al., 2010). Further, although the chosen covariate parameterization does not imply proportional hazards,

inspection of estimated hazard ratios revealed they were very near constant over time. Thus exponentiated

coefficient estimates are approximately interpretable as having multiplicative effects on hazards. For exam-

ple, hormone treatment for primary cancer was associated with a reduced hazard of ipsilateral SBCEs, by a

factor of exp(−0.89) = 0.41 (95% CI [0.23,0.76]), adjusting for other covariates.

Table 2: Coefficient estimates for a covariate-parameterized version of the BIC-selected SBCE multistate-

DDO (M-DDO) model (Appendix Table E-2, model 6) and an analogous latent CTMC competing risks

disease model based on time of diagnosis (Dx)

Ipsilateral Contralateral Death

95% CI 95% CI 95% CI

Model Est. Low. Upp. Est. Low. Upp. Est. Low. Upp.

Endocrine Dx -0.89 -1.50 -0.28 -0.06 -0.52 0.4 -0.19 -0.45 0.07

therapy M-DDO -0.87 -1.47 -0.27 -0.07 -0.52 0.38 -0.21 -0.47 0.05

Age < 50 Dx 0.45 -0.09 0.99 -0.36 -0.98 0.26 -0.81 -1.20 -0.42

M-DDO 0.69 0.18 1.20 -0.28 -0.89 0.33 -0.8 -1.20 -0.40

Stage 1 Dx -0.6 -1.18 -0.02 0.32 -0.31 0.95 0.5 0.07 0.93

(ref stage 0) M-DDO -0.84 -1.4 -0.28 0.33 -0.32 0.98 0.49 0.06 0.92

Stage 2+ Dx -0.46 -1.18 0.26 0.09 -0.65 0.83 1.17 0.73 1.61

(ref stage 0) M-DDO -0.47 -1.15 0.21 0.22 -0.52 0.96 1.17 0.72 1.62

Non-white Dx -0.18 -0.92 0.56 -0.14 -0.8 0.52 -0.35 -0.76 0.06

ethnicity M-DDO -0.14 -0.87 0.59 -0.13 -0.79 0.53 -0.33 -0.74 0.08
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7 Discussion

The increasing availability of electronic medical resources presents new opportunities for modeling multi-

state diseases. However, as patients’ disease statuses are only assessed at discrete clinic visit times – and visit

times may be informative about the patients’ disease histories – these data pose challenges for inference.

The multistate-DDO model provides a novel and flexible approach for modeling such data: it applies to a

broad class of disease models, including chronic diseases with reversible transitions and duration-dependent

hazard functions; allows for covariate effects; and accommodates both patient-initiated random visit times

and scheduled non-informative visits.

The model’s contribution to methodology for discretely-observed disease process data is to accommo-

date informative patient-initiated visit times by jointly modeling the random informative observation and

disease processes. Via simulations, we showed the need for such an approach to avoid bias. Ignoring the

informative sampling led to overestimated rates of transitions into and underestimated rates out of pref-

erentially sampled disease states, as well as biased estimates of misclassification probabilities. We also

showed that multistate-DDO models can improve precision of estimates of disease process parameters with

misclassified data, as informative visit times disambiguate individuals’ disease statuses at sampled times.

Our application of the multistate-DDO model to the study of SBCEs represents a new analysis method in

this setting. Existing studies of secondary BCs focus on diagnosis as the primary outcome (Chapman et al.,

1999; Geiger et al., 2007; Buist et al., 2010), our method uses patient mammography data to model onset of

mammographically-detectable disease, a clinically relevant outcome that indicates the fraction of a screened

population at a given time with undetected disease. Further, others have studied mammography visit patterns

in BC survivors (Wirtz et al., 2014), as well as the relationship between screening mammography and

mortality (Buist et al., 2013), but our approach is unique in its joint modeling of disease and mammography

visit processes.

The multistate-DDO approach for the SBCE data bears similarities to models developed for disease

screening trials (Boer et al., 2004); both model onset of screen-detectable disease and estimate screen sen-

sitivity. However, there are important differences between the two approaches. Disease screening models

consider progression to a single disease state that is divided into symptom-free pre-clinical and symptomatic

clinical sub-states. In contrast, the multistate-DDO model can handle more complicated disease frameworks,

such as the SBCE model’s competing risk scenario, but does not distinguish between pre-clinical and clin-

ical sub-states. Indeed, the multistate-DDO model reflects symptom-development implicitly through the

informative visit process; DDOs based on symptoms occur more frequently in diseased states but may also

occur when the patient is healthy. Ultimately, while estimating pre-clinical sojourn duration is desirable

for developing screening protocols, the multistate-DDO model’s flexibility invites its use in contexts where

screening models do not apply.

The multistate-DDO model also has limitations. For one, the latent structure means parameters are not

always identifiable: model building requires compromises between parameterizations that retain estimability

but are rich enough to describe the disease process. Furthermore, the model’s parametric assumptions make

it sensitive to model-misspecification. In particular, misspecification of the disease model impacts both

estimates of disease cumulative incidence and mammography sensitivity – an observation also made in

reference to disease screening models (Etzioni and Shen, 1997).

In our SBCE study, the BIC-selected latent CTMC disease model is likely reasonable. In women with
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unilateral primary BC, ipsilateral SBCEs reflect both recurrences and new primary cancers, which is consis-

tent with hazard functions that are relatively high near the primary BC diagnosis and flatten out over time

(Demicheli et al., 1996). Contralateral SBCEs reflect only new primary cancers, stochastic events with ap-

proximately constant rates over time. Hazard estimates from the selected latent CTMC were consistent with

this basic pattern, although they did depict a slight decline in contralateral SBCE rates rather than suggesting

they are merely constant. Moreover, the estimated mammography sensitivity from the model agrees quite

well with empirical estimates from other studies (Houssami et al., 2011; Robertson et al., 2011), providing

additional support that the disease model is not grossly misspecified.

The multistate-DDO model’s limitations suggest alternative disease modeling approaches may be de-

sirable in some contexts. For example, in the SBCE model sojourn duration in the healthy state coincides

with the external times scale of time since diagnosis. Thus, one could use an inhomogeneous standard

CTMC disease model rather than a latent CTMC. In theory, the multistate-DDO model could be modified

to accommodate this framework, but additional machinery would be required for likelihood calculations. In

general, estimation in a Bayesian framework might also be useful, as it would allow incorporation of prior

information about the disease process or misclassification probabilities and might mitigate concerns about

parameter identifiability.

The multistate-DDO model also makes assumptions about the observation time process that may not

adequately capture patient behavior. In particular, the MMPP model assumes that DDO events in non-

overlapping intervals are independent conditional on the latent disease process history. In reality, patient-

initiated visit times likely display dependence on upcoming scheduled and prior visit times. One can evaluate

the reasonability of the MMPP assumptions using goodness of fit tests based on time-rescaling methods that

transform general point processes into a standard homogeneous Poisson process with unit intensity (Brown

et al., 2002; Lu, 2012). We also note the possibility of expanding our DDO model to accommodate prior and

future visit times as time-dependent covariates, allowing for additional temporal dependence in the DDO

process.
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Appendix for “A joint model for multistate disease processes and

random informative observation times, with applications to

electronic medical records data”

by Jane M. Lange, Rebecca A. Hubbard, Lurdes Y. T. Inoue, Vladimir N. Minin

Appendix A: Accommodating known times of absorption in observed

data likelihood

Known times of death must be accounted for in the observed data likelihood (eq. (1) in main text).
Let A be the set of all absorbing states in disease state space S. Assuming that absorption in other
states and informative observation events are competing risks, the density of the time of absorption
in state k ∈ A, designated by the random variable Wi0,k0, is given by

gik(t) =
d

dt
P [Wi0,k0 < t|Y (0) = (i, 0)] =

d

dt
P [Y ′(t) = (k, 0)|Y ′(0) = (i, 0)] =

∑

j "∈A

Sij(t)λjk,

where i is a transient state.

When the final time tn corresponds to absorption of X(t) in state k, we modify the observed
data likelihood (eq. (1) in main text) by replacing the terms fxn−1xn

(∆tn) or

[fxn−1xn
(∆tn)]

htn [Sxn−1xn
(∆tn)]

1−hn

with gxn−1xn
(∆tn).

Appendix B: Forward and backward functions

We use the abbreviation x1:k for x1, . . . , xk, o1:k for o1, . . . ok, h1:k for h1, . . . , hk. The sequence
of DDO times up to observation time tk is denoted τ (1, k) = {ti : hi = 1, i = 1, . . . , k}. Forward
functions are defined as αtk(u) = P [o1:k, τ (1, k),h1:k, Xk = u] and backward functions as βtk(u) =
P[ok+1:n, τ (k + 1, n),hk+1:n|Xk = u]. The forward function is initialized with

αt1(u) = P(O1 = o1, X1 = u,H1 = h1) = e(u, o1)νh1
πx1

(h1),

and the recursion for k = 2, . . . , n− 1 is

αtk(u) =
∑

i

αtk−1
(i)e(u, ok)[fiu(∆tk)]

hk [Siu(∆tk)]
1−hk .

The backward function is initialized with βtn(u) = 1, and the recursion for k = 1, . . . , n− 1 is

βtk(u) =
∑

i

βtk+1
(i)e(i, ok+1)[fui(∆tk+1)]

hk+1 [Sui(∆tk+1)]
1−hk+1 .

1
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Observed data likelihood

The observed data likelihood (eq (1) in main text) is P (o, τ ,h) =
∑

u αtn(u), via the forward algo-
rithm; by the backward algorithm, it is
P (o, τ ,h) =

∑
u βt1(u)e(u, o1)νh1

πx1
(h1). The forward and backward recursions make the likeli-

hood evaluation practical because, similarly to the standard HMM forward-backward algorithm,
the algorithmic complexity of both recursions is O(ns2).

Hidden state smoothing probabilities

One can generalize the forward and backward functions to an arbitrary time t. That is, we can
define αt(u) = P [o1:k, τ (1, k),h1:k, X(t) = u], for t ∈ [tk, tk+1], which is given by

αt(u) =
∑

i

αtk(i)Siu(t− tk).

Similarly, we define βt(u) = P [ok+1:n, τ (k+1, n),hk+1:n|X(t) = u], for t ∈ [tk−1, tk], which is given
by

βt(u) =
∑

i

βtk(i)Sui(tk − t).

The general versions of the forward and backward functions also allow us to calculate the smooth-
ing probability P[X(t) = i|o, τ ,h] for any t ∈ [t1, tn], which predicts the hidden disease state at an
arbitrary time conditional on the observed data. This probability is given by

P[X(t) = i|o, τ ,h] =
βt(i)αt(i)

P(o, τ ,h)
. (B-1)

Appendix C: Expectation step

To compute the expectation step (E-step) for the EM algorithm, we note that an individual’s log-
likelihood contribution (eq. (2) in main text) is additive across time intervals Tl = [tl, tl+1]. Thus,

E[l(θ;o, τ ,x)|o, τ ,h] =
s∑

i=1

E[zi|o, τ ,h] log(πi)

+
n−1∑

l=1

s∑

i=1

∑

j "=i

E[nTl
(i, j)|o, τ ,h] log(λij)−

n−1∑

l=1

s∑

i=1

E[dTl
(i)|o, τ ,h]




∑

j "=i

λij





+
n−1∑

l=2

s∑

i=1

E[uTl
(i)|o, τ ,h] log(qi)−

n−1∑

l=1

s∑

i=1

E[dTl
(i)|o, τ ,h]qi

+

n−1∑

l=1

s∑

i=1

r∑

j=1

E[oTl
(i, j)|o, τ ,h] log [e(i, j)] .
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Computing the E-step therefore requires conditional expectations of the complete data sufficient
statistics across Tl. Conditional expectations for zi, oTl

(i, j), and uTl
(i) are computed using the

smoothing probabilities P(Xl = m|o, τ ,h) (B-1).

Hence,

E[zi|o, τ ,h] = P(X1 = i|o, τ ,h) =
βt1(i)αt1(i)

P(o, τ ,h)
,

E[oT (j,m)|o, τ ,h] =

n∑

l=1

I(ol = m)P(Xl = j|o, τ ,h) =

n∑

l=1

I(ol = m)
βtl(j)αtl(j)

P(o, τ ,h)
,

and

E[uT (j)|o, τ ,h] =
n∑

l=2

I(hl = 1)P(Xl = j|o, τ ,h) =
n∑

l=2

I(hl = 1)
βtl(j)αtl(j)

P(o, τ ,h)
.

Note that the sum in the last set of identities is over 2 to n, as the first time should not be considered
an observed DDO event.

Expectations of CMTC sufficient statistics CTl
= dTl

(i) or CTl
= nTl

(i, j) can be obtained by
first conditioning on xl, xl+1:

E[CTl
|o, τ ,h] = E [E (CTl

|o, τ ,h, Xl = a,Xl+1 = b)] = E [E (CTl
|Xl = a,Xl+1 = b,Hl+1 = hl+1) |o, τ ,h] .

(C-1)
This follows due to conditional independence of X(t) on [tl, tl+1] given knowledge of the joint
disease and DDO process at the interval endpoints. The task of computing the expectation can be
broken down into computing “inner” expectations E [CTl

|Xl = a,Xl+1 = b,Hl+1 = hl+1] and “outer”
expectations. We describe the “inner" and “outer" expectations in turn.

Inner expectations for CTMC sufficient statistics

The formulae for the “inner expectations” are based on conditional expectations for CTMC suffi-
cient statistics with absorbing states (Asmussen et al., 1996). We derive the desired quantities by
considering conditional expectations of sufficient statistics C = nij(t) or C = dt(i) for a generic
homogeneous CTMC X(t) on the interval [0, t], conditional on X(t) at interval endpoints and the
informative observation status ht at time t.

To obtain these expectations, recall that Wa0,b1 is the first passage time of the bivariate CTMC
Y (t) = (X(t), N(t)) from state (a,0) to state (b,1). Wa0,b1 has the same distribution as the time
to absorption in state (b, 1) of the auxiliary process Y ′(t), given Y ′(0) = (a, 0) and has survival
function Sab(t) = exp(Λ − Q)ab and density function fab(t) = exp [(Λ−Q) t]ab qb (Section 2.2 in
the main text). We will use conditional expectation formulae applicable to Y ′(t) to derive the
desired quantities.

When the endpoint t is a scheduled visit (ht = 0), we seek the conditional expectation

E[C|X(0) = a,X(t) = b, ht = 0] =
E {C × I[Y ′(t) = (b, 0)]|Y ′(0) = (a, 0)}

Sab(t)
. (C-2)

3
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Our bivariate representation of the process Y ′(t) enables us to use standard methods for computing
expectations for CTMCs (Hobolth and Jensen, 2011). Thus, for C = dt(i), the numerator in C-2 is
the joint expectation

Hi[a, b] = E
{
dt(i)× I[Y ′(t) = (b, 0)]|Y ′(0) = (a, 0)

}
=

t∫

0

exp [(Λ−Q)(u)]ai exp([Λ−Q)(t− u)]ib du,

and for C = nt(i, j), the joint expectation

Mij [a, b] = E
{
nt(i, j)× I[Y ′(t) = (b, 0)]|Y ′(0) = (a, 0)

}
=

t∫

0

λij exp [(Λ−Q)u]ai exp [(Λ−Q)(t− u)]jb du.

When t corresponds to a DDO (hi = 1), we seek the conditional expectation

E[C|X(0) = a,X(t) = b, ht = 1] = E[C|Wa0,b1 = t, Y ′(0) = (a, 0)]

=
∂
∂t

E[C, I(Wa0,b1 < t)|Y ′(0) = (a, 0)]

fab(t)
.

(C-3)

To calculate the numerator, we employ expectation formulae derived for CTMCs with absorbing
states (Asmussen et al., 1996). For C = dt(i), the numerator in (C-3) is given by the differentiated
joint expectation

∂

∂t
E[dt(i), I(Wa0,b1 < t)|Y ′(0) = (i, 0)] = Hi[a, b]qb,

and for C = nt(i, j), by

∂

∂t
E[nt(i, j), I(Wa0,b1 < t)|Y ′(0) = (a, 0)] = Mij [a, b]qb,

where Hi[a, b] and Mij [a, b] are defined as before.

We also need to consider the special case of computing conditional expectations for dt(i) and
nt(i, j) when the interval endpoint t corresponds to a known absorption time in the disease process,
such as a time of death. Let A be the set of all absorbing states in S. Treating DDO events as a
competing risk, suppose Wa0,k0 is the time of absorption of Y ′(t) in state k ∈ A, given Y ′(0) = (a, 0),
with density gak(t) =

∑
j "∈A Sij(t)λjk. In this case, we need the conditional expectation

E[C|Wa0,k0 = t, Y ′(0) = (a, 0)] =
∂
∂t

E[C, I(Wa0,k0 < t)|Y ′(0) = (a, 0)]

gak(t)
. (C-4)

When the complete-data statistic of interest is C = dt(i), the numerator in C-4 is the differentiated
joint expectation

∂

∂y
E[dt(i)I(Wa0,k1 < t)|Y ′(0) = (a, 0)] = I(i $ ∈A)

∑

c"∈A

Hi(t)[a, c]λck.

For C = nt(i, j), the numerator in C-4 is the differentiated joint expectation

∂

∂y
E[nt(i, j)I(Wa0,k1 < t)|Y ′(0) = (a, 0)] = I(i, j $ ∈A)

∑

c"∈A

Mij(t)[a, c]λck+I(i $ ∈A, j = k)Sai(t)λik.

4
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One can use eigenvalue decomposition or the uniformization approach to computing the integrals
in each of the joint expectation formulae (Hobolth and Jensen, 2011). Our implementation uses the
efficient matrix-based methods from (Minin and Suchard, 2008).

Outer expectations for CTMC sufficient statistics

After computing the “inner expectations," using the described formulae, one can compute “outer”
expectations (C-1) for sufficient statistics CTl

= dTl
(i) or CTl

= nTl
(i, j) on the interval Tl using

Baum-Welch’s bivariate smoothing probabilities

P(Xl = a,Xl+1 = b|o, τ ,h) =
e(b, ol+1)αtl(a)βtl+1

(b)[fab(∆tl+1)]
hl+1 [Sab(∆tl)]

1−hl+1

P(o, τ ,h)
.

Thus, the expression for the conditional expectation of the complete data sufficient statistic CT

across the entire time interval T = [t1, tn] is

E[CT |o, τ ,h] =
n−1∑

l=1

s∑

a=1

s∑

b=1

E[CTl
|Xl = a,Xl+1 = b,Hl+1 = hl+1]P(Xl = a,Xl+1 = b|o, τ ,h).

5
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Appendix D: Simulation study

!"# $"#

! "

%"

Figure D-1: Data-generating disease models for simulation study. A. 2-state standard CTMC disease
model. B. 2-state latent CTMC disease model, where latent states (H1, H2) and (D1, D2) map to
diseased and healthy states, respectively. C. Competing risks disease model similar to the SBCE
model. Latent states (H1, H2) map to the healthy state; I and C are two absorbing diseased states,
corresponding to ipsilateral and contralateral SBCEs.

Table D-1: Data descriptions for discretely-observed datasets simulated from reversible disease mod-
els ( Figures D-1A and D-1B), including DDO rates, fixed observation times, and misclassification
probabilities. These data specifications pertain to experiments summarized in Figure 2 in the main
text and in Figure D-3. Each experiment consisted of 100 simulated datasets with 1000 independent
individuals.
Figure Disease model qD qH e(H,D) e(D,H) Obs. interval Fixed times DDOs observed

2A A 2 .25 0 0 [0,8] 0,2,4,6,8 Y
2B A 2 .25 0 0 [0,8] 0,8 Y
2C B .3 .25 0 0 [0,8] 0,8 Y
2D B 2 .25 0 0 [0,8] 0,8 Y
D-3A A 2 .25 .15 .15 [0,7.9] 0,7.9 Y
D-3B A 0 0 .15 .15 [0,7.9] 0,7.9+10 obs. N
D-3C B 2 .25 .15 .15 [0,.8.2] 0,8.2 Y
D-3D B 0 0 .15 .15 [0,8.2] 0,8.2+8 obs N

6
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Table D-2: Data descriptions for simulated data from discretely-observed competing risks model
(Figure D-1C), including DDO rates, fixed observations, and misclassification probabilities. Nota-
tion: qI/C = qI = qC and e(H, I/C) = e(H, I) = e(H,C). These data specifications pertain to
experiments summarized in Figure D-2. Each experiment consisted of 100 simulated datasets with
1000 independent individuals.
Figure Disease model qI/C qH e(H,I/C) e(I/C,H) Obs. interval Fixed times %DDO times

D-2 C 2 .25 .01 .3 [0,8] 0,8 49%
D-2 C 2 .25 .01 .3 [0,8] 0,2,4,6,8 35%
D-2 C 2 .25 .01 .3 [0,8] 0,1,2,...,7,8 20%
D-2 C 2 .25 .01 .3 [0,8] 0,.5,1,...,7.5,8 11%
D-2 C 2 .25 .01 .3 [0,8] 0,.25,.5,...,7.75,8 6%
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Figure D-2: Functional box plots for simulated data estimates of cumulative incidence for disease
events I and C in the latent CTMC competing risks model (Figure D-1C.) Discretely observed
data were generated from the disease trajectories according to informative observation times from
a DDO model with qH1 = qH2 = .25 and qI = qC = 2, and varying proportions of supplemental
non-informative times. Observations had 70% sensitivity and 98% specificity, corresponding to
mammography data. See Table D-2 for further dataset details. Data were fit with panel models
or multistate-DDO models, demonstrating bias incurred by ignoring informative observations, and
showing how increasing proportions of supplemental scheduled visits mitigates such bias. Also
shown is cumulative incidence based on time of diagnosis (Dx time), the time of the first true
positive mammogram.
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Figure D-3: Box plots/functional box plots for hazard estimates of H → D and D → H transitions
for standard and latent CTMC reversible disease models (Figure D-1A, D-1B), observed with 15%
misclassification error at either DDO times or at fixed times with equal average frequencies. See
Table D-1 for further details. Data are fit with correctly specified multistate-DDO or panel models.
These result demonstrate the gains in precision in hazard estimates via jointly modeling informative
sampling times in the presence of misclassification error.
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Appendix E: Second Breast Cancer Event Application

Mammography and biopsy outcomes

Mammograms were positive if the BI-RADS (Breast Imaging-Reporting and Data System) score
was 0=“more imaging needed,” 4=“suspicious abnormality,” 5=“highly suggestive of malignancy,”
or 6=“known malignancy” American College of Radiology (2003). Biopsies with a result of invasive
malignancy or ductal carcinoma in situ (DCIS) were considered positive; negative findings included
benign growths and benign hyperplasias.

Dataset exclusions

There were 4,133 women with primary unilateral breast cancers diagnosed from 1994-2009 who
subsequently received mammography at Group Health. We applied sequential exclusions to obtain
an analysis dataset. We excluded women with a mammographically-detectable SBCE within 180
days following the primary BC diagnosis (N=94), since events prior to that time likely reflect
progression of the primary disease. We also excluded women if they had a biopsy record not
preceded by a mammogram within the preceding 100 days (N=352), as well as those with any
missing laterality for mammograms or biopsy procedures (N=424), and those missing any of the
covariates of interest (N=327). In total, these exclusions reduced the dataset from 4,133 to 2,936
women, removing 49% percent of ipsilateral cases, 32% of contralateral cases, 37% of those who
died prior to an SBCE, and 27% of those who were alive and SBCE-free at the time they were last
seen. More ipsilateral cases were dropped since they were more likely to have biopsies not preceded
by mammograms within the study period.

Sample characteristics

The 2,936 women in the sample used for analysis, as well as the 1,197 excluded from the sample,
are described in Table E-1. The sample was predominantly white (84.7%, N=2,488), with a median
age of 61 at primary BC diagnosis (IQR 52, 71). Approximately one fifth of the sample had a
stage 0 (DCIS) primary BC (18.6%, N=548), whereas half had stage 1 (49.6%, N=1,456), and the
rest, stage 2 or higher. The main difference between included and excluded women is that excluded
individuals were more likely to have stage 2 or higher cancer. This is related to our exclusion of
individuals with biopsies not preceded by mammograms within the study period being more likely
to have advanced stage primary BC.

9
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Table E-1: Characteristics of the GH patients with a history of primary BC, either included in
or excluded from the analysis sample. Percentages do not include missing data. Abbrevations:
ER+=estrogen receptor positive, PR+=progesterone receptor positive.

Included (N=2,936) Excluded (N=1,197)
N % N %

Age at diagnosis
<50 557 19 264 22.1

50-59 801 27.3 330 27.6
60-69 757 25.8 281 23.5
70+ 821 28 322 26.9

Missing 0 0
Race

White 2488 84.7 1005 86.6
Black 83 2.8 34 2.9
Asian 189 6.4 48 4.1
Other 176 6 73 6.3

Missing 0 37
Stage of primary cancer

0 548 18.7 138 14.1
1 1456 49.6 425 43.4

2+ 932 31.7 417 42.6
Missing 0 217

ER+ or PR+ for primary cancer
No 386 16.3 165 17.5
Yes 1984 83.7 779 82.5

Missing 556 253

Treatment of primary breast cancer

Mastectomy
None 18 0.6 24 2.3

Partial 1925 66.4 711 66.9
Complete unilateral 955 33 328 30.9

Missing 38 134
Radiation

No 943 33.3 323 30.9
Yes 1891 66.7 723 69.1

Missing 102 151 26.9
Chemotherapy

No 2054 70.2 704 63.3
Yes 874 29.8 409 36.7

Missing 8 84
Adjuvant endocrine therapy

No 1464 49.9 500 50.8
Yes 1472 50.1 485 49.2

Missing 0 212
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Table E-2: Informative sampling time models for the SBCE data. Non-informative models assume
the same DDO rate in all states.
Model label Disease model DDO model

No. DDO params Constraints
1 Standard CTMC non-informative 1 qH = qI = qC
2 H/I,C 2 qH , qI = qC
3 H/I/C 3 qH , qI , qC

4 Latent CTMC non-informative 1 qH1
= qH2

= qI , qC
5 H1,H2/I,C 2 qH1

= qH2
, qI = qC

6 H1/H2/I,C 3 qH1
, qH2

, qI = qC
7 H1/H2/I/C 4 qH1

, qH2
, qI , qC

Table E-3: Model fitting results for SBCE disease and informative sampling time models.
Disease Model

Standard CTMC Latent CTMC
DDO model DDO model
non-inf. H/I,C H/I/C non-inf. H1,H2/I,C H1/H2/I,C H1/H2/I/C

Model label 1 2 3 4 5 6 7
LL -9,166 -9,155 -9,154 -9,141 -9,131 -9,103 -9,102
no. params 6 7 8 10 11 12 13
BIC 18,381 18,366 18,373 18,362 18,349 18,302 18,308

Table E-4: Mammography misclassification estimates for different DDO and disease models.
True positive rate 95% CI

Model label Disease model DDO model Estimate Lower Upper
1 Standard CTMC Non-inf. 0.77 0.63 0.86
3 Standard CTMC H/I/C 0.81 0.68 0.90
4 Latent CTMC Non-inf. 0.61 0.46 0.74
6 Latent CTMC H1/H2/I,C 0.69 0.55 0.81

False positive rate 95% CI

Model label Disease model DDO model Estimate Lower Upper
1 Standard CTMC Non-inf. 0.056 0.053 0.059
3 Standard CTMC H/I/C 0.056 0.053 0.059
4 Latent CTMC Non-inf. 0.055 0.053 0.058
6 Latent CTMC H1/H2/I,C 0.056 0.053 0.059
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Figure E-1: Sensitivity of SBCE cumulative incidence estimates to choice of disease and observation
model. Table E-2 shows model details. Models include informative multistate-DDO models (models
2 and 6), and misspecified non-informative observation models (models 1 and 4). Abbreviations:
Dx empirical=empirical estimate of cumulative incidence of diagnosed SBCE events.
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Figure E-2: Point esitmates and 95% confidence intervals for covariate effects via a latent diagnosis
time model and different multistate-DDO models (Table E-2). For Stage 1 and Stage 2+, the
reference cancer stage is Stage 0.
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Figure E-3: Empirical cumulative incidence estimates for diagnosis of ipsilateral and contralateral
SBCEs and death prior to SBCE, stratified by covariate levels.
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