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Chapter 1

Multi-state Models for
Natural History of Disease

A. E. Laird, R. A. Hubbard, L. Y. T. Inoue

1.1 Introduction

A variety of disease processes can be described through transitions between
discrete states, such as stable or accelerated disease state in leukemia; de-
velopment of AIDS defining illnesses in HIV; or diminished lung function in
asthma patients. In progressive diseases, subjects traverse disease states in
only one direction while in non-progressive diseases it is possible for subjects
to experience repeated occurrences of some or all states.

Studies of chronic disease often utilize longitudinal observations of a
cohort of subjects to characterize natural history of disease. Subjects may
be observed continuously in which case the exact time of transition between
states is known. However, in studies of human health, panel observation,
in which subjects are observed and disease states assessed only at discrete
time-points, is more common. In data arising from panel observation, the
exact time of state transitions is unknown.

Multi-state models provide flexible tools for describing characteristics
of disease processes and can be estimated under either continuous or panel
observation. These models are particularly useful in the context of panel
observation because they allow us to estimate the rate of disease progres-
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2CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

sion even if exact transition times are not observed. If the observations are
equally spaced in time then discrete time models, such as the Markov chain,
can be used. If the length of time between observations is not constant, con-
tinuous time models can be employed. The most commonly used multi-state
model is the Markov process model, which assumes that the probability of
transition between disease states depends only on the elapsed time between
observations. To accommodate more complex multi-state disease processes
which may feature time-varying transition probabilities, nonhomogeneous
Markov models or semi-Markov models can be used.

In this chapter, we review basic properties of some commonly used multi-
state models with a focus on models that are appropriate for panel observa-
tion in biomedical/biological applications. We introduce Bayesian estima-
tion methods for these models and demonstrate their use in two longitudinal
studies of disease progression.

1.2 Multi-state models: background and notation

In this section we introduce notation and review a few multi-state models
commonly used for describing natural history of disease. We will generally
use {Z(t), t ∈ [0,∞)} to denote a stochastic process taking a finite set of
states S = {1, 2, . . . ,m}. In our applications Z(t) represents the disease
state of a patient at time t.

1.2.1 Markov processes.

In a Markov process, at each time point, the state of the process at a future
time t + s depends on the history of the process only through the state at
present time, t. Formally, the process is Markov if for all s, t ≥ 0 and for
every i, j ∈ S

P (Z(t+ s) = j|Z(t) = i, Z(u) = z(u), 0 ≤ u < s) = P (Z(t+ s) = j|Z(t) = i)
.
= pij(t, t+ s).

Denote the initial distribution of the process by φ = (φ1, . . . , φm) where
φi

.
= P (Z(0) = i), ∀i ∈ S and such that φi ≥ 0 for each i and

∑
i∈S φi =

1. Conditional on φ, the process can be characterized by the matrix of
transition probabilities P(t, t+ s) = [pij(t, t+ s)] for s, t ≥ 0. Alternatively,
the process can be characterized by the matrix Q(t) = [qij(t)] of transition
intensities, defined for t ≥ 0 as

qij(t)
.
= lim

s→0

pij(t, t+ s)

s
for i, j ∈ S, j �= i,
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1.2. MULTI-STATE MODELS: BACKGROUND AND NOTATION 3

and

qii(t)
.
= −

∑
j �=i

qij(t) for each i ∈ S.

The qij(·) are also known as cause-specific hazard functions (Prentice et al.,
1978). It follows from this definition that P(t, t) = I.

In the more general case where transition probabilities depend on both
the elapsed time, s, and the chronological time, t, the process is a nonhomo-
geneous Markov process. If the transition probabilities depend only on the
elapsed time s and not on the chronological time t, then the Markov process
is homogeneous and pij(t, t+ s) ≡ pij(s) and qij(t) ≡ qij . As a consequence
of the Markov property and homogeneity, the transition probability matrix
P(s) satisfies the Chapman-Kolmogorov equation:

pij(s) =
∑
k∈S

pik(u)pkj(s− u), 0 < u < s,

or equivalently in matrix notation:

P(s) = P(u)P(s− u), 0 < u < s.

From the Chapman-Kolmogorov equations we can derive the forward
and backward equations:

d

ds
P(s) = QP(s) = P(s)Q,

which can be solved to yield

P(s) = exp(Qs)
.
=

∞∑
n=0

Qnsn

n!
,

where Q0 ≡ I. This last equation makes clear that for a homogeneous
Markov process, the matrix of transition intensities and the matrix of tran-
sition probabilities give equivalent characterizations of the process.

If the domain of the Markov process is the set of nonnegative integers
Z
∗ = {0, 1, 2, . . . } rather than a real interval, then the process {Zt, t ∈ Z

∗}
is called a Markov chain and the Markov assumption reduces to

P (Zt+1 = j|Zt = i, Zt−1 = zt−1, . . . , Z0 = z0) = P (Zt+1 = j|Zt = i)
.
= pij(t), t ∈ Z

∗.

A Markov chain is uniquely characterized by its initial distribution φ and
transition probability matrix P(·). Similar to a Markov process, a Markov
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4CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

chain is homogeneous if the transition probabilities do not depend on chrono-
logical time so that pij(t) ≡ pij . For a homogeneous Markov chain pij gives
the probability of making a transition from state i to state j in one step,
but we can also consider the probability of being in state j several steps
after being in state i. The matrix of n-step transition probabilities, denoted
P(n), is given by P(n) = Pn, the matrix of one-step transition probabilities
raised to the nth power. This follows from the discrete-time version of the
Chapman-Kolmogorov equations.

Examination of the transition probability matrix P(·) yield insights into
the behavior of the Markov chain. Considering a homogeneous Markov
chain, if pii = 1, then state i is called an absorbing state (Chiang, 1980, p.
114; Limnios and Oprişan, 2001, p. 86). A state j is said to be accessible
from state i if pnij > 0 for some n ≥ 0 (Ross, 1996, p. 168). States of a
Markov process may be classified in an analogous way by examining the
transition intensity matrix, Q(·).

1.2.2 Markov renewal processes and semi-Markov processes.

To discuss a process for which the Markov assumption is relaxed, we turn
to a framework that separates the evolution of the process into its sequence
of states and of sojourn times, where a sojourn time is the length of time
between two consecutive transitions.

Consider a discrete two-dimensional stochastic process called a J-X pro-
cess, (J − X) = {(Jn, Xn), n ≥ 0}, where the J-process represents the
states visited and theX-process represents the sojourn times in each of those
states. Hence Xn ≥ 0 and Jn ∈ S, S = {1, 2, . . . ,m}, for each n ≥ 0, and by
convention X0 = 0 almost surely. The process begins in state J0, where it
remains for time X1 before making a transition to state J1 and, in general,
remains in state Jn for time Xn+1 before making a transition to a state
Jn+1. The time at which the nth transition occurs is Tn

.
=

∑n
r=1Xr, n ≥ 1

and T0 = 0 (see Figure 1.1).

Define the initial distribution of the process as φ = (φ1, . . . , φm) where
φi = P (J0 = i) with φi ≥ 0 for all i and

∑
i∈S φi = 1. Moreover, define

N(t) = sup{n ≥ 0 : Tn ≤ t}, the number of transitions made during [0, t].
The semi-Markov assumption is that for all s ≥ 0,

P (Jn = j,Xn ≤ s|(Jk, Xk), k = 0, 1, . . . , n− 1) = P (Jn = j,Xn ≤ s|Jn−1, Tn−1, n− 1)
.
= (n−1)KJn−1j(Tn−1, s)

for n ≥ 1 and j ∈ S, where for each i and j, (n−1)Kij(·, ·) is a real-valued
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Figure 1.1: Example of a J-X process, showing relationships between
{(Jn, Xn), n ≥ 0} and associated process Z(·). Under the semi-Markov
assumption, the J-X process is a Markov renewal process, and Z(·) is the
associated semi-Markov process.

function satisfying

(n−1)Kij(t, t+ s) = 0 for s ≤ 0 or t ≤ 0

and

lim
s→∞

∑
j∈S

(n−1)Kij(t, t+ s) = 1 for each i ∈ S, t ≥ 0.

If this assumption holds, then {(Jn, Xn)} is a Markov renewal process and
the associated process Z(t)

.
= JN(t) is a completely nonhomogeneous semi-

Markov process (refer to Figure 1.1). We can interpret this assumption as
the statement that the future of the process depends on the entire history
only through the current state, Jn−1, the elapsed chronological time, Tn−1,
and the number of transitions between states, n − 1, that the process has
made.

This very general formulation of a semi-Markov process includes several
important special cases. If the kernel [(n−1)Kij(·, ·)] does not depend on
the number of transitions, then the process is nonhomogeneous semi-Markov
(Iosifescu-Manu, 1972), and if additionally the kernel does not depend on the
chronological time t, then the process is homogeneous semi-Markov (Lévy,
1954a,b; Smith, 1955). We discuss the latter case in more detail. Specifically,
if for all s ≥ 0,

P (Jn = j,Xn ≤ s|(Jk, Xk), k = 0, 1, . . . , n− 1) = P (Jn = j,Xn ≤ s|Jn−1)
.
= KJn−1j(s),
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6CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

where each Kij(·) is a real-valued function satisfying

Kij(s) = 0 for s ≤ 0

and

lim
s→∞

∑
j∈S

Kij(s) = 1 for each i ∈ S,

then the associated process Z(·) is a homogeneous semi-Markov process.
The assumption for such a process is that the future evolution depends on
the history only through the current state of the process and the elapsed
time in this state. This assumption is much weaker than the homogeneous
Markov assumption. From this point forward we consider only homogeneous
semi-Markov processes, referred to in many sources as simply semi-Markov
processes, and we assume that each element of the semi-Markov kernel Kij(·)
is absolutely continuous. A semi-Markov process can be uniquely character-
ized by its initial distribution φ and the kernel K.

Let us further examine the marginal process {Jn, n ≥ 0} and the pro-
cess {Xn, n ≥ 0} conditional on {Jn, n ≥ 0}, which we call the J- and X-
processes, respectively. Using the semi-Markov assumption and the Lebesgue
Monotone Convergence Theorem (Pyke, 1961a), we can show that the J-
process is a homogeneous Markov chain, called the embedded Markov chain
of the semi-Markov process that is governed by the transition probability
matrix defined by pij

.
= lims→∞Kij(s) for all i, j ∈ S.

To discuss the X-process, define, for s ≥ 0, the following functions:

Fij(s)
.
=

{
Kij(s)
pij

, pij > 0;

1(s≥1), pij = 0

for each i and j and

Hi(s)
.
=

∑
j∈S

Kij(s)

for each i. We can show that, for s ≥ 0,

Fij(s) = P (Xn ≤ s|Jn−1 = i, Jn = j)

Hi(s) = P (Xn ≤ s|Jn−1 = i).

These are known, respectively, as the conditional and unconditional distri-
butions of the sojourn time in state i. We note that the above definition of

http://biostats.bepress.com/uwbiostat/paper399



1.3. ESTIMATION AND INFERENCE INMULTI-STATEMODELS: A REVIEWOF APPROACHES7

Fij(·) in the case that pij = 0 is arbitrary. Let fij(·) be the density corre-
sponding to Fij(·) which exists given our assumption that the semi-Markov
kernel is absolutely continuous.

We can express each element of the kernel in a natural way as the product
of the respective transition probability and the conditional sojourn time
distribution:

Kij(s) = Fij(s) · pij for s ≥ 0.

We noted previously that the semi-Markov process can be uniquely charac-
terized by (φ,K), and the above argument makes clear (Janssen and Manca,
2006) that it can also be characterized by (φ,P,F). From standard survival
analysis we know that under some regularity conditions, the time to fail-
ure can be characterized by the cumulative distribution function F (·) or the
hazard function h(·). By analogy, if Xn is the sojourn time in state Jn−1 = i
before going to state Jn = j, then we can characterize the distribution of
Xn by Fij or equivalently by the conditional hazard function, hij(·), for each
i �= j ∈ S, defined for s ≥ 0 as:

hij(s)
.
= lim

Δs↓0
1

Δs
P (s ≤ Xn < s+Δs|Jn−1 = i, Jn = j, Xn ≥ s).

Hence we can alternatively characterize the semi-Markov process by (φ,P,h).

1.3 Estimation and inference in multi-state mod-
els: a review of approaches

We begin this section with a summary of the existing approaches to esti-
mation of continuously observed multi-state processes. Next, we examine
available approaches to estimation of processes under panel observation. If
the process is observed only at discrete time points, a Markov model has
just enough structure so that the transition intensities can still be estimated
(Kalbfleisch and Lawless, 1985). However, in a semi-Markov model the tran-
sition intensities depend on the elapsed time in the current state, which is
unknown under panel observation. Estimation is therefore less tractable and
methods for a general process under panel observation do not exist. Thus,
we examine methods that have been developed for processes under specific
assumptions for the sequence of allowed transitions, defined as state models,
and under various other assumptions. As we shall see, most of the exist-
ing literature is based on maximum likelihood estimation, however. Thus,
we end this section with a discussion of how Bayesian approaches can be
implemented for estimating disease natural history.

Hosted by The Berkeley Electronic Press



8CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

1.3.1 Methods for continuously observed processes.

When the exact time of transition between states is known, maximum like-
lihood estimators (MLEs) for transition intensities in the Markov process
are given by

q̂ij =
Nij

Ti
,

where Nij is the number of transitions observed from state i to state j
and Ti is the total time spent in state i (Albert, 1962). Moreover, large
sample properties for these estimators have been developed by Billingsley
(1961) and Albert (1962). Likewise, when a semi-Markov model is used
for a continuously observed process, the parameters corresponding to the
embedded Markov chain are estimated via the sample proportions

p̂ij =
nij

ni
,

where nij is the number of observed transitions from state i to j and ni is
the total number of transitions from i to any state (Anderson and Good-
man, 1957). In the semi-Markov model, it remains to estimate the distri-
butions of the sojourn times conditional on the sequence of visited states
and a variety of approaches may be taken: fully parametric (Weiss and Ze-
len, 1965), piecewise exponential (Colvert and Boardman, 1976; Ouhbi and
Limnios, 1999), or nonparametric (Voelkel and Crowley, 1984; Kaplan and
Meier, 1958). Moreover, tests have been developed to examine the Markov
or semi-Markov assumption. Chang, Chuang, and Hsiung (2001) consider an
illness-death model (see Figure 1.2b) and propose goodness-of-fit statistics
for testing the hypotheses that the underlying process is either (1) homoge-
neous semi-Markov or (2) nonhomogeneous Markov, and derive asymptotic
distributions of the statistics.

Frequently there is reason to account for differences among subgroups of
the patient population. To carry this out by covariate adjustment, paramet-
ric and semiparametric regression approaches have been taken (Therneau
and Grambsch, 2000). Specifically, covariates can be incorporated into
Markov process models by allowing for covariate dependence of transition
intensities. For instance, in a homogeneous Markov model we can specify a
proportional hazards type model,

qjk = qjk0g(W
′βjk),

where qjk0 is the baseline transition intensity, W is a vector of covariates,
and g(·) is a positive-valued function. Typically, g(·) is taken to be the

http://biostats.bepress.com/uwbiostat/paper399



1.3. ESTIMATION AND INFERENCE INMULTI-STATEMODELS: A REVIEWOF APPROACHES9

exponential function to ensure positivity of the transition intensities. This
model has been previously implemented in a number of applications. Kay
(1986) took this approach in modeling hepatic cancer, while Jackson et al.
(2003) applied it to estimate the effect of age on rates of progression of
abdominal aortic aneurysm.

In semi-Markov models, covariates may be included in a regression model
via the embedded Markov chain, conditional sojourn distributions, or both.
Regression modeling of the embedded Markov chain is often based on the
multinomial logistic regression model. Conditional sojourn times are of-
ten modeled via the proportional hazards model. Lawless and Fong (1999)
give an overview of methods for modeling sojourn times that account for
the presence of covariates and possible dependencies among sojourn times
within a subject. They also review methods for dealing with various obser-
vation schemes, including left truncation of observations as well as selection
mechanisms in observational studies. They discuss the use of random effects
to deal with unexplained inter-subject or temporal variability. Since random
effects are a modeling device and can introduce computational difficulties,
the authors suggest that the use of random effects be avoided when the
process is incompletely observed.

There are several classes of methods that apply to certain state models.
Some methods are built on the assumption that the embedded Markov chain
of the process is ergodic, which implies in particular that an absorbing state
such as death cannot exist (Ross, 1996). By contrast, other methods assume
that the underlying process is progressive. Voelkel and Crowley (1984) ap-
proach semi-Markov processes in a counting processes framework and show
that, under some assumptions, a progressive semi-Markov process can be
transformed via a random function of the chronological time into the multi-
plicative intensity model introduced by Aalen (1978). Voelkel and Crowley
then consider a particular progressive state model and establish asymptotic
properties of the estimator of the probability of being in one of the states.

Although a number of methods have addressed censoring, most have
focused on right-censoring in the final state or left-censoring in the initial
state (e.g. Lagakos, Sommer, and Zelen, 1978). Extending these methods to
a panel observation scheme has been elusive.

Finally, the Bayesian approach has been utilized to estimate Markov
models (Converse et al., 2012; Price et al., 2011; Kneib and Hennerfeind,
2008; Pan et al., 2007; Sweeting et al., 2005) in biomedical and biological
applications. We have not identified Bayesian applications using standard
semi-Markov models, however, for modeling disease processes.

Hosted by The Berkeley Electronic Press



10CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

1.3.2 Panel data: Markov models.

In a seminal paper, Kalbfleisch and Lawless (1985) proposed a method to
estimate the instantaneous transition probabilities of a general multi-state
process under panel observation assuming the process is Markov. Using
the fact that the transition probability and transition intensity matrices are
related via P(s) = exp(Qs)

.
=

∑∞
r=0

Qrsr

r! for s ≥ 0 for a homogeneous
Markov process, the authors proposed an efficient scoring procedure to es-
timate Q via maximum likelihood. Specifically, if subjects are observed at
times t0, t1, . . . , tm, and if Q depends on θ then the likelihood of θ is given
by

L(θ) =
m∏
l=1

∏
i,j∈S

pij(tl − tl−1)
nijl

where nijl is the number of subjects who are observed in state i at tl−1

and state j at tl. The closed-form expression of P(s) as well as ∂
∂θu

P(s)
enables the application of a scoring rule involving only first derivatives to
carry out inference about θ. The algorithm was extended to allow the
transition rates to depend on covariates (Kalbfleisch and Lawless, 1985).
Hubbard (2007) extended the method to nonhomogeneous Markov models.
The method relies on a transformation of chronological time, h(t), that yields
an operational timescale on which the process is homogeneous with matrix
of transition intensities Q0. Then

P(t1, t2) = P(h(t2)− h(t1)) = eQ0(h(t2)−h(t1)).

At its core these methods rely on the Markov assumption, and hence sojourn
times in each state are modeled as exponential, where the exponential pa-
rameters may depend on various factors. However, many disease processes
are observed to progress in a way that exhibits non-constant hazard (Weiss
and Zelen, 1965; Kang and Lagakos, 2007). Hence, methods that do not
rely on the Markov assumption are needed.

1.3.3 Panel data: semi-Markov models for progressive pro-
cesses.

Under intermittent observation of subjects, the sequence of disease states
and corresponding sojourn times are not necessarily known. The inherent
missing information in panel data makes estimation of semi-Markov pro-
cesses more challenging.

http://biostats.bepress.com/uwbiostat/paper399
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2 3
↗ ↘ ↗

1 → 2 → · · · → m 1 −→ 3 1 → 2
↘

4
(a) (b) (c)

Figure 1.2: Examples of types of state models for which estimation for
panel data is simplified: (a) simple progressive, (b) illness-death model, (c)
progressive with competing risks.

These difficulties can be overcome in some state models. In a simple
progressive model with m states (see Figure 1.2a), which gives rise to chain-
of-events data, events are assumed to occur in a prescribed sequence. This
implies that the probability matrix of the embedded Markov chain is degen-
erate with

pij =

{
1, for j = i+ 1, i = 1, . . . ,m− 1; and i = j = m;

0, otherwise.

Thus, for a simple progressive model, it remains only to estimate the sojourn
time distribution in each of these states. Assuming that each conditional
sojourn time distribution is absolutely continuous leads to a likelihood with
convolution products of the conditional sojourn densities fi,i+1(·;θi) and
survival distributions Si(·;θi) for i = 1, . . . ,m − 1. Specifically, expressing
the data as in Kalbfleisch and Lawless (1985), or equivalently in the “suffi-
cient” form through t, a vector of length 2(m− 1), we represent successive
pair of components for observation times preceding and following a time of
transition. For example, considering m = 3, the components of t represent:

t1 : last observed time in state 1,

t2 : first observed time in state 2,

t3 : last observed time in state 2, and

t4 : first observed time in state 3,

where t2, t3, and t4 may or may not be defined, depending on how each
subject was censored. With this notation, the likelihood of the parameters
given panel observations on N subjects is given by

L(θ1,θ2|t1, . . . , tN) =

N∏
i=1

L
(1−δi)·(1−εi)
1 · Lδi·(1−εi)

2 · L(1−δi)·εi
3 · Lδi·εi

4 ,
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12CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

where the likelihood contributions are given by

L1 =

∫ t4

t3

∫ t2

t1

f12(u1) · f23(u2 − u1)du1du2

L2 =

∫ t4

t1

∫ u2

t1

f12(u1) · f23(u2 − u1)du1du2

L3 =

∫ ∞

t3

∫ t2

t1

f12(u1) · S23(u2 − u1)du1du2

L4 =

∫ ∞

t1

S12(u)du,

and δi and εi are indicators that subject i was not observed in states 2 and
3 respectively. That is, L1 is the contribution of a subject who was observed
in all three states; L2 represents a subject observed in states 1 and 3 only;
and L3 and L4 represent subjects who were right-censored in state 2 and
state 1 respectively.

Considering the case of a three-state simple progressive model, De Grut-
tola and Lagakos (1989) proposed a nonparametric approach to estimate
the conditional distributions of the sojourn times in states 1 and 2. Their
approach, an extension of the self-consistency algorithm of Turnbull (1976)
for univariate survival data, involves modeling the two sojourn time distri-
butions as discrete random variables. Assuming the process enters state 1
at time zero, they let Y1 and Z = Y1 + Y2 denote the transition times into
states 2 and 3 respectively, and (YL, YR, ZL, ZR) be the “sufficient data” for
a single realization of the process, i.e. the observation times immediately
preceding and following the two transitions. This notation is similar to t
introduced above. The authors choose locations of the mass points of Y1
and Y2, 0 ≤ y11 < · · · < y1r and 0 ≤ y21 < · · · < y2s respectively, and
note that the observation (YL, YR, ZL, ZR) uniquely determines a set of “ad-
missible values” of (y1j , y2k). To recast the data in this format they define
αjk as the indicator that (y1j , y2k) is an admissible value of (Y1, Y2). With
w1j = P (Y1 = y1j) and w2k = P (Y2 = y2k), the likelihood is given by

L(w1,w2) =

N∏
i=1

⎛
⎝ r∑

j=1

s∑
k=1

αi
jkw1jw2k

⎞
⎠ ,

where w1 = (w11, . . . , w1r)
′ and w2 = (w21, . . . , w2s)

′. It can be shown that
the self-consistent estimate is equivalent to that using the EM algorithm
(Dempster, Laird, and Rubin, 1977).

http://biostats.bepress.com/uwbiostat/paper399



1.3. ESTIMATION AND INFERENCE INMULTI-STATEMODELS: A REVIEWOF APPROACHES13

In parallel with De Gruttola and Lagakos (1989), Frydman (1992) ex-
tended the algorithm of Turnbull (1976) to a three-state simple progressive
model, but assumed the underlying process was nonhomogeneous Markov
rather than homogeneous semi-Markov. Frydman additionally assumed that
entry into the third state was either observed exactly or right-censored. She
applied her method to the HIV application in De Gruttola and Lagakos
(1989) and obtained similar results except in the inference regarding the
sojourn time in the infected state before developing AIDS symptoms.

Although the method of De Gruttola and Lagakos avoids imposing dis-
tributional assumptions on the sojourn times in each state, it has several
drawbacks. First, it implicitly assumes that each subject was observed at
least once in every state. Thus, a subject who was observed in only states
1 and 3 would need to be discarded. This leads to biased estimation where
the magnitude of the bias increases with the interval between observations.
Second, the method involves discretizing the two sojourn times. This means
that decisions must be made about the location of the mass points of Y1 and
Y2. Though certain guidelines may be used to avoid lack of identifiability
and loss of information, the implementation of the method requires each
subject with at least one admissible value of (y1,y2).

A slightly more general state model that arises in many applications
is the illness-death model shown in Figure 1.2b. This model is useful for
studying an incurable, potentially fatal disease. Beginning in a state of
good health, subjects at risk may progress to illness, or may die from an-
other cause or they may die from the illness. When the third state repre-
sents death, it may be assumed that transitions to this state are observed
exactly. Alternatively, the three states may represent stages of disease that
do not necessarily occur in a prescribed sequence. For example, Chang,
Chuang, and Hsiung (2001) consider modeling the risk of breast cancer over
time among women who may or may not have had benign breast disease.
Though they assumed the transition times were known exactly, in this ap-
plication each of these two transitions may be subject to interval censoring.
Developing methods for this model is more challenging than for a simple
three-state progressive process because a subject with observed trajectory
1, 1, 3, for example, may or may not have visited state 2.

Methods for estimation and inference exist for more general progressive
state models, but are often tailored to an application and impose assump-
tions, specific to the application, which simplify estimation. Common as-
sumptions are that some of the transition times are known exactly or that
subjects are observed at least once in each state they visit. We examine
several of these methods here.
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14CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

Frequently in applications there is a need to consider multiple absorb-
ing states, or competing risks; an example of a state model accounting for
this feature is shown in Figure 1.2c. Foucher, Giral, Soulillou, and Daures
(2007) considered a slightly more complicated five-state progressive disease
process with competing risks to model patients’ natural history following
kidney transplantation. The authors modeled sojourn times in each state as
exponentiated Weibull, a parametric form that allows the conditional haz-
ard function to be nonmonotonic. However, the assumption that subjects
were observed in each visited state implied that estimation of the embedded
Markov chain was trivial. Additionally, they did not account for the interval
censoring of intermediate states.

3
↗ ↖
1 −→ 2
↘ ↙

4

Figure 1.3: State model of Foucher et al. (2010). State numbers indicate (1)
baseline value of creatinine clearance (CL); (2) decreased CL; (3) return to
dialysis; (4) death.

If the number of states in the progressive process is small, all possible
trajectories can be accounted for when deriving the likelihood. Foucher,
Giral, Soulillou, and Daures (2010) carry out this procedure for the state
model shown in Figure 1.3, where states 1-4 are defined by the patient’s
baseline creatinine clearance (CL); decreased CL; return to dialysis; and
death with a functional transplant. They assume that the times of each
patient’s entry into state 1 and entry into state 3 or 4 (if applicable) are
known exactly. The time of entry into state 2 is interval-censored, and a
patient who is not observed in state 2 may or may not have entered state 2.
Similar to Foucher et al. (2007), the authors impose a exponentiated Weibull
form on the sojourn times, and build the likelihood from each of the four
possible trajectories through the state space, using convolution products to
deal with censoring of state 2. They obtain maximum likelihood estimates
of the exponentiated Weibull parameters and of the transition probabili-
ties of the embedded Markov chain. The authors additionally incorporate
covariates and derive a goodness-of-fit statistic to test homogeneity of the
semi-Markov process. Their method for modeling progressive disease could
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be generalized somewhat: it could be adapted for other fairly simple state
diagrams and, as they note, it could be modified to handle interval-censored
absorbing states. However, numerical maximization of the likelihood is quite
computationally expensive when the likelihood contributions involve more
than two interval-censored times.

1.3.4 Panel data: semi-Markov models for more general pro-
cesses.

Several authors have developed methods for modeling non-progressive pro-
cesses without using the Markov assumption, but have imposed other strong
assumptions. Specifically, Kang and Lagakos (2007) propose a method to
model a nonprogressive homogeneous semi-Markov process subject to inter-
val censoring as well as misclassification of states. Their model, however,
assumes that transition intensities from at least one state were duration-
independent. This assumption implies the existence of a set of states for
which the Markov assumption applies and allows for great simplification of
the likelihood function.

1 � 2
↓ ↓
3 4

Figure 1.4: State model of Kang and Lagakos (2007) investigating cervical
intraepithelial neoplasia (CIN) and human papillomavirus (HPV) infection.
State 3 represents CIN diagnosis after a visit in which the patient was not
infected with HPV (state 1), while state 4 represents a CIN diagnosis was
HPV infected (state 2).

Some authors utilized semi-Markov models for nonprogressive processes
with just two states as shown in Figure 1.5a. Since the embedded Markov
chain has deterministic transition probabilities pij = I{i=j}, i, j ∈ {1, 2},
the task at hand is to estimate the sojourn time distributions. Mitchell,
Hudgens, King, Cu-Uvin, Lo, Rompalo, Sobel, and Smith (2011) proposed
an approach to estimate the duration of the HPV infection given panel
observations of infection status assuming that: (1) all subjects are initially in
state 1, (2) the Markov assumption is satisfied when the process is in state 1,
and (3) subjects are observed at prespecified, equally-spaced, common visit
times (e.g. every six months). Given these assumptions, the sojourn time in
state 1 is a geometric random variable with point masses at the scheduled
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16CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

visit times, say 1, 2, . . . , nt, where nt is the number of possible observed time
points after study entry. Let p12 denote the associated parameter, so that
the probability of spending t units of time in state 1 before transitioning to
state 2 is given by p12·(1−p12)

t−1 for t = 1, 2, . . . . The sojourn time in state 2
is a discrete random variable with point masses at these common scheduled
visit times, so that the probability of spending time t in state 2 before
transitioning to state 1 is p21(t) for t = 1, 2, . . . , nt with

∑nt
t=1 p21(t) = 1.

Letting p
.
= {p12; p21(1), . . . , p21(nt)} and imposing the above restriction on

p21(1), . . . , p21(nt), each individual’s likelihood contribution is

πy0,...,ynt
(p) = pj0j1(x1) · · · pjm−1jm(xm) · Sjm(xm+),

where j0, j1, . . . is the sequence of visited states, x0 = 0, x1, x2, . . . is the
sequence of corresponding sojourn times, y0, y1, . . . is the sequence of ob-
served states at each time point, m is the number of states visited by visit
nt, xm+ is the right-censored time spent in the final state, SJn(·) is the
survival function in state Jn, and pJn−1Jn(t) = P (Jn = j,Xn = t|Jn−1 = i).

The authors allowed for isolated missing visits assuming they occurred
at random (MAR assumption), but excluded subjects with two or more
consecutive missing visits. Under the MAR assumption, the likelihood for
N subjects is given by

L(p) =

N∏
i=1

∑
ynt∈{0,1}

· · ·
∑

y0∈{0,1}
αi
y0,...,ynt

· πy0,...,ynt
(p),

where αi
y0,...,ynt

is the indicator that {y0, . . . , ynt} is an “admissible” obser-
vation in the sense of De Gruttola and Lagakos (1989), given the possibility
of missing observations at scheduled visit times. Mitchell et al. maximized
the log likelihood over the parameter space via a quasi-Newton algorithm.

Mitchell et al. extended this method to make a distinction between
subjects who have not been infected since time zero and those who have
been infected and cleared the infection while on the study, to allow for
the possibility that previous infection influences the rate by which subjects
transition into the infected state. Specifically, they considered the three-
state model shown in Figure 1.5b. They assumed that subjects were in
state 1∗ at time zero, and additionally that both states 1 and 2 were Markov.
They extended this method to relax the assumption that state 2 was Markov,
but noted that relaxing this assumption for state 1∗ would be challenging
because times in the first observed state are subject to left censoring.

Although Mitchell et al. cited neither Turnbull (1976) nor De Gruttola
and Lagakos (1989), their primary approach is a self-consistency algorithm,
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1∗
1 � 2 ↘

1 � 2

(a) (b)

Figure 1.5: State models considered by Mitchell et al. (2011) in a study
of duration of HPV infection. In the primary method, states (1) and (2)
represent the uninfected and infected states respectively, as shown in (a).
In the extension, the uninfected state was split into never infected (1*) and
previously infected (1), as shown in (b).

and is very similar to the method of De Gruttola and Lagakos. The present
method has advantages such as not imposing distributional assumptions on
the sojourn time in the infected state, but has stringent assumptions on
the observational scheme: since it models the process as a discrete-time
semi-Markov chain, the method in its present form requires that subjects
are observed at a common set of evenly-spaced visits. As a result of mod-
eling time discretely, this method is subject to some of the same issues as
De Gruttola and Lagakos (1989) is. Mitchell et al. compared their method
with that of Kang and Lagakos (2007), and noted that their own method
imposes no parametric assumptions or guarantee times on the sojourn time
in the infected state. However, the discrete nature of the method, itself,
imposes a guarantee time on this sojourn time since there is no point mass
at time zero.

Alternatively, some authors estimate semi-Markov processes by embed-
ding a (latent) Markov process. This artifact simplifies the likelihood evalu-
ation. Crespi, Cumberland, and Blower (2005) considered modeling herpes
simplex virus type 2 (HSV-2), which is characterized by recurrent lesions.
However, the number of lesions is not observable; only the presence or ab-
sence of lesions, known as the viral shedding status, can be ascertained. The
viral shedding status itself is often asymptomatic and is therefore observed
only at clinic visits, giving rise to panel data.

The latent number of lesions at a point in time can be considered a birth-
death process, a Markov process in which the states, 0, 1, 2, . . . represent the
size of the population at each point in time (see Figure 1.6a). The authors
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18CHAPTER 1. MULTI-STATEMODELS FOR NATURAL HISTORYOF DISEASE

assume that the process has transition intensities

Qij(t) =

⎧⎪⎨
⎪⎩
λ, j = i+ 1, i = 0, 1, 2, . . . ;

μ, j = i− 1, i = 1, 2, 3, . . . ;

0, otherwise,

for all t ≥ 0, for some λ, μ > 0, where λ represents the rate at which lesions
are formed, and μ represents the rate at which they are cleared. Implicit in
this model is the assumption that lesions form independently of each other.
If states 1, 2, 3, . . . of this homogeneous Markov process are collapsed into a
single state, denoted 1+, the corresponding process, denoted Z(·), is semi-
Markov, as the sojourn time in state 1+ now depends on the elapsed time
in this state (Figure 1.6b). While the distribution of the sojourn time in
the non-shedding state is exponential with rate λ, the sojourn time in the
shedding state does not follow a familiar distribution. The observed viral
shedding status at each point in time is an induced semi-Markov model.

(a) 0 � 1 � 2 � · · · hidden Markov process, W (·)
(b) 0 � 1+ semi-Markov process, Z(·)

Figure 1.6: State models considered by Crespi et al. (2005). The unobserv-
able number of recurrences at time t is modeled as a birth-death process
(a), while the viral shedding status is modeled as the corresponding semi-
Markov process (b) defined by collapsing states 1, 2, 3, . . . of the birth-death
process.

Crespi et al. express the panel data likelihood via a hidden Markov
model approach and carry out inference on the parameters in a Bayesian
framework. Moreover, they use a random effects model to accommodate
heterogeneity across individuals, and express the mean of each random effect
as a function of covariates. Posterior distributions of λ and μ allow for
inference on both the hidden Markov process W (·) and the semi-Markov
process Z(·). Titman and Sharples (2010) also consider a hidden Markov
process which accounts for a classification error in the assessment of the
state at each observation time.

1.3.5 Bayesian approach to multi-state models

Our review of the literature indicated that while methods for estimating
Markov models under both continuous and intermittent observation are well-
established, that is not the case for semi-Markov models, especially with
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panel data. Further, because most methods are tied to particular applica-
tions, they do not generalize to more complex state models. In particular,
methods for more general state models often require additional modeling
assumptions to simplify the likelihood evaluation or to allow for parameter
identifiability. Finally, the vast majority of methods for multi-state models
are frequentist.

The Bayesian approach offers a viable alternative to estimating multi-
state models. At the core of the Bayesian approach one expresses the un-
certainty about all unknowns with prior distributions. Thus, Bayesian esti-
mation of the homogeneous Markov processes proceeds by assuming priors
on the initial state distribution φ of the process (here a natural choice is the
Dirichlet distribution for its conjugacy property) as well as on the transition
intensities qij . Oftentimes, we express the transition intensities as depen-
dent on covariates via a proportional hazards formulation as discussed in
Section 1.3.1 in which case we assume priors on the regression coefficients
βjk instead. A similar approach can be used for nonhomogeneous Markov
processes as we illustrate in Section 1.4.1.

Likewise, Bayesian estimation of continuously observed semi-Markov
processes requires priors for the initial state distribution, but also on the
transition probabilities of the embedded Markov chain and on the parame-
ters governing the sojourn time distributions. Alternatively, when the inter-
est lies in estimating the effect of a given set of risk factors on the disease
state transitions or sojourn times, then one assigns priors on the correspond-
ing regression parameters. When the semi-Markov process is, however, ob-
served intermittently we are faced with the additional challenge that the
full trajectory of the disease process or the durations in each state are un-
known. Bayesian estimation proceeds by modeling the unobserved states or
durations in the state as latent. We illustrate this method in Section 1.4.2.

Generally the posterior distributions of the model parameters are not
available in closed form, but estimation can be accomplished using Markov
chain Monte Carlo (MCMC) methods. While some computational challenges
may arise, for example, in devising algorithms that allow for good mixing,
the Bayesian approach offers several advantages in multi-state modeling. It
allows us to incorporate available knowledge about disease processes via ex-
pert information, for example, which gives us the potential to address iden-
tifiability issues that arise given the sparsity of information in panel data.
Furthermore, it provides exact inference that does not rely on asymptotic
results. Although the Bayesian approach does not eliminate methodological
issues arising with panel observation, it can enhance our ability to estimate
models which are intractable under classical approaches.
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1.4 Bayesian multi-state models: Applications

In this section, we illustrate the use of the Bayesian approach to multi-state
modeling in the context of two applications to specific disease processes.

1.4.1 Nonhomogeneous Markov models: Modeling delirium
in stem cell transplant recipients.

Delirium is an acute neuropsychiatric condition associated with rapid onset
of a change in levels of consciousness, attention, cognition, and perception.
Cancer patients are at particularly high risk for delirium due to the presence
of a variety of risk factors in this population including age, emotional dis-
tress, cognitive impairment caused by chemotherapeutic agents, and organ
failure (Fann and Sullivan, 2003). Prevalence of delirium among cancer pa-
tients has been estimated at 25-40% and as high as 85% among terminally
ill cancer patients (Fann, 2000). The extremely high prevalence of delirium
in this patient population makes it of particular interest.

Researchers studied incidence and progression of delirium in a cohort
of 90 patients treated at the Fred Hutchinson Cancer Research Center
(FHCRC) in Seattle, Washington, between 1997 and 1999. Subjects were
assessed for delirium using the Delirium Rating Scale (DRS) (Trzepacz et al.,
1988) on average every 2.5 days during the first thirty days following trans-
plant. Existing work has detailed incidence of delirium, risk factors for
delirium incidence and severity, and association of long term health out-
comes with delirium incidence in this cohort (Fann et al., 2002, 2005, 2007).
In several previous studies of this cohort, delirium was treated as a di-
chotomous outcome and the incidence rate for delirium was assumed con-
stant across the observation period. However, delirium is characterized by
a complex, fluctuating course that may be more fully understood by using
a multi-state model that allows for both clinical and sub-clinical delirium
states. The state model for the delirium disease process is presented in
Figure 1.7. To investigate temporal variability in onset and progression of
delirium we modeled the disease via a three state nonhomogeneous model
using the time-transformation method of Hubbard et al. (2008).

Parameters of the three-state process described above can be estimated
using maximum likelihood or Bayesian methods. An analysis of these data
using maximum likelihood methods identified a statistically significant ac-
celeration of the disease process over time (Hubbard et al., 2008). However,
if we are additionally interested in allowing for subject-specific variation in
the rate of acceleration of the process, maximum likelihood methods become
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Figure 1.7: State model for delirium process.

intractable. Subject-specific variation in the rate of progression of the dis-
ease is of interest in this context because subjects included in the study are
extremely heterogeneous. Variation exists in demographics, treatments, and
cancer-types in these patients. Many unmeasured factors may influence the
course of delirium in individual patients, and patients may possess intrinsic
variations in disease susceptibility and recovery. We can account for varia-
tion in the rate of evolution of the disease process by introducing random
effects into the time-transformed nonhomogeneous Markov process. We in-
vestigated subject-specific differences in the nonhomogeneity of the delirium
process by applying a random effects model that allows for between-subject
variability in the time transformation parameter. Specifically, the likelihood
for this model takes the form

L(m)(Q0,θ) =

m∏
i=1

⎧⎨
⎩P (X(ui1) = xi1)

n∏
j=2

{
eQ0(h(uij ;θi)−h(uij−1;θi))

}
xij−1xij

⎫⎬
⎭ ,

(1.1)
where h(u;θi) is a function that transforms the time-scale of the process
from the observed time scale, on which the process in nonhomogeneous, to
an operational time-scale on which the process is assumed homogeneous. To
allow for subject-specific variation in the rate of evolution of the process, we
introduce a subject-specific time-transformation parameter, θi, which allows
for between-subject variability in the rate of evolution of the process.

Bayesian estimation is straightforward by introducing priors for the tran-
sition intensities and time-transformation parameters. In our delirium ap-
plication, we assumed independent log normal priors for the elements of Q0

and θ,

π(log q0ab) ∼ Normal(μq, σ
2
q ), a �= b

π(log θik) ∼ Normal(μ, σ2).

In order to limit the dimensionality of the posterior density of model
parameters, we used a time transformation function with a single parame-
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ter, h(u; θ) = uθu. We placed a normal prior on μ and inverse gamma prior
on σ2. Hyperparameter values for prior densities were selected according
to expert information on the likelihood of observing each kind of transi-
tion. Estimation was carried out using a hybrid Gibbs/Metropolis-Hastings
MCMC simulation.

Prior and posterior densities for transition intensities are presented in
Figure 1.8. The posterior median for μ and σ2 are very close to prior means
due to the strong prior distributions placed on these parameters since only
a modest amount of information about individual level time transformation
parameters is available due to the relatively small number of observations
per subject (between 7 and 18). Example time transformation curves for
three subjects with largest and three subjects with smallest posterior median
time transformation parameters are presented in Figure 1.9. Subject-specific
time transformation parameters indicate slowing of the disease process for
some subjects and more rapidly evolving disease processes for others.

1.4.2 Semi-Markov models: Modeling HIV infection and pro-
gression to AIDS-related symptoms.

Development of the method of De Gruttola and Lagakos (1989) was moti-
vated by a retrospective study of a cohort of 262 patients at the Hôpital
Kremlin Bicêtre and Hôpital Cœur des Yvelines in France. These patients
had type A or B hemophilia and received periodic blood transfusions that
were later found to be HIV contaminated. Blood samples taken at vari-
ous times allowed for intermittent retrospective assessment of HIV infection
status.

De Gruttola and Lagakos chose a simple progressive three-state model
for this situation, as depicted in Figure 1.10. They split the patients into
two groups defined by the amount of blood product they had received, which
we will refer to as the “heavily treated” and “lightly treated” groups. For
each of these two groups, De Gruttola and Lagakos carried out separate
estimation of the time to infection and the time to progression to AIDS.
Of the 262 patients in the cohort, 197 were infected with HIV at the end
of follow-up, 43 of whom had progressed to AIDS. All HIV infections were
believed to have been caused by receiving contaminated blood. De Gruttola
and Lagakos divided the chronological time axis into 6-month intervals, with
Y = 1 denoting July 1, 1978. Each interval was given a point mass, and
the point masses were indexed by 1, 2, 3, . . . . De Gruttola and Lagakos
chose a simple progressive three-state model for this situation, as depicted
in Figure 1.10.
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Figure 1.8: Prior (dashed) and posterior (solid) densities for transitions
intensities in time transformed random effects model for delirium data.
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Figure 1.9: Estimated time transformation functions and 95% credible bands
(dashed lines) for six stem cell transplantation patients with most extreme
posterior median time transformation parameters from random effects time
transformation model.
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Uninfected → Infected → AIDS

Figure 1.10: State model of De Gruttola and Lagakos (1989).

We will use the data from De Gruttola and Lagakos and consider the
estimation of the simple progressive three-state model under the Bayesian
approach. The intermittent observation scheme creates a “missing” data
problem since the sojourn times in each state, as well as the sequence of
states, may not be observed. We can treat the true, unobservable, sojourn
times as latent data and use data augmentation procedures (Tanner, 1991) to
assist inference about the parameters of interest. Assume, as in De Gruttola
and Lagakos, that all subjects start in state 1 at time zero. Let the random
variable Xi ≥ 0 denote the true unobservable sojourn time in state i before
proceeding to state i+ 1, where i = 1, 2. Let X = (X1, . . . , X2) and assume
an absolutely continuous parametric form for the sojourn time in each state:
Xi ∼ fi for i = 1, 2, and assume that the densities f1 and f2 collectively
depend on the vector of parameters θ.

We observe the process periodically, giving rise to panel observations
Z = (Z0 = 1, Z1, . . . , Zn), with Zi ∈ {1, 2, 3} for each i, corresponding to ob-
servation times s = (s0 = 0, s1, . . . , sn). Note that in the simple progressive
model, Z0 ≤ · · · ≤ Zn. Note also that Z contains redundant information,
and can be expressed equivalently as the vector t = (t1, . . . , t4), where

t1 = max{sk : Zk = 1}
t2 = min{sk : Zk = 2}
t3 = max{sk : Zk = 2}
t4 = min{sk : Zk = 3},

if each of these exists. With the above notation, the posterior and predictive
equations in the data augmentation algorithm (Tanner, 1991) become

p(θ|t) =

∫
X
p(θ|t,X)p(X|t)dX (1.2)

p(X|t) =

∫
θ
p(X|t,θ)p(θ|t)dθ. (1.3)

From (1.2)–(1.3), the goal is to obtain p(θ|X, t) and p(X|t,θ). The partic-
ular form of each of these expressions depends on the choice of the model
for the sojourn time distributions in each state. We complete the model by
specifying priors for parameters θ.
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We apply the proposed data augmentation approach to this dataset and
compare the results to those obtained by the method of De Gruttola and La-
gakos. Specifically, we consider the exponential and Weibull models for the
sojourn times in the HIV-uninfected and -infected states, and carry out in-
ference about the corresponding parameters separately for the heavily and
lightly treated patients. We assume independent noninformative uniform
priors for the rate parameters (under both exponential and Weibull mod-
els) and noninformative uniform priors for the shape parameters (Weibull
model).

Results are presented for heavily and lightly treated subjects in Fig-
ure 1.11 in the form of estimated cumulative distribution functions so that
they may be compared with those obtained originally by De Gruttola and
Lagakos. Figure 1.11 shows that the Weibull model, unlike the exponential,
has enough flexibility to accommodate the shape of the hazard function in
each state, as it produced an estimated cumulative distribution function
similar to that of the method of De Gruttola and Lagakos (1989).

1.5 Discussion

Natural history of disease can be modeled using a variety of approaches that
fall under the general framework of multi-state models, including Markov
processes, nonhomogeneous Markov processes, semi-Markov processes, and
hidden Markov processes. Simple approaches like the Markov process facili-
tate estimation but make use of strong assumptions that may be unrealistic
for certain diseases. More complex models such as semi-Markov processes
may more accurately describe the disease process, but at the cost of sub-
stantially complicating estimation, especially when data arise from panel
observation. In this chapter, we have discussed a few methods for esti-
mating disease processes. In particular, we illustrated that the Bayesian
approach can be used to estimate some of these more complex processes
which would be intractable under the maximum likelihood framework.
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Figure 1.11: Estimated cumulative distribution functions (CDFs) of the so-
journ times in the uninfected and infected states based on the proposed data
augmentation (DA) method. Results are shown for heavily treated (upper
panels) and lightly treated subjects (lower panels), based on exponential
and Weibull models of the sojourn times in each state. Results from the
method of De Gruttola and Lagakos are shown for reference.
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