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INTRODUCTION 

Evidence of the association between long-term exposure to ambient PM2.5 and human 

health continues to accumulate (Dockery et al 1993; Miller et al 2007; Pope et al 1995; Puett et 

al 2009), and has spurred recent research to understand the role of specific PM2.5 chemical 

components in adverse health effects (Ostro et al. 2010; Ostro et al. 2011 [erratum]; Vedal et al. 

2013). Recent cohort studies have relied on predictions of long-term average PM2.5 or PM2.5 

component concentrations at participant homes, based on models developed from monitoring 

data (Eeftens et al. 2012; Paciorek et al. 2009; Sampson et al. 2011; Szpiro et al. 2010; Yanosky 

et al. 2009). Parallel research in the statistics literature suggests that features of the monitoring 

data can affect the quality of the prediction models (Diggle et al. 2010; Gelfand et al. 2012) and 

the resulting health effect estimates (Szpiro et al. 2011; Szpiro and Paciorek 2013). Regulatory 

monitoring data collected and managed by governments are a common and useful resource for 

this application. For study of health effects of PM2.5 chemical components in U.S., existing data 

are primarily from two networks: the U.S. Environmental Protection Agency (EPA) Chemical 

Speciation Network (CSN) and the Interagency Monitoring of Protected Visual Environment 

(IMPROVE) sponsored by EPA and other agencies (Bergen et al. 2013; Ostro et al. 2010; Pope 

et al. 1995). However, because these monitoring networks were designed for regulatory purposes, 

they may not be completely compatible with epidemiological applications.  

The University of Washington National Particle Component and Toxicity (NPACT) 

study was designed to investigate the associations between long-term exposure to PM2.5 chemical 

components and cardiovascular health based on the Multi-Ethnic Study of Atherosclerosis 

(MESA) cohort. This study conducted a dedicated and extensive monitoring campaign targeting 

the study cohort. In the original plan, the NPACT monitoring data were intended to be combined 
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with the regulatory monitoring data in models to produce predicted exposures, similar to the 

approach of combining all available data from multiple sources that has been used previously for 

predicting PM2.5 (Paciorek et al. 2009; Sampson et al. 2011; Yanosky et al. 2009). In order to 

meet this objective, first we needed to assess various features of the PM2.5 component data from 

the three sources in order to ensure basic compatibility in our models.  

This paper compares and contrasts the compatibility of the two sets of regulatory 

monitoring network data with the NPACT monitoring data within the context of the NPACT 

study goals. In particular, we discuss the spatial coverage of exposure monitoring, filter analysis 

methods, and sampling protocols. NPACT analyses focused on four primary pollutants: EC, OC, 

silicon, and sulfur. Here we focus on EC and silicon to highlight similarities and differences in 

important features.   

METHODS 

Population 

The NPACT study was based on the subjects who were originally recruited in MESA and 

consented to the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) study. The 

cohort includes approximately 7,000 participants residing in six metropolitan U.S. cities: 

Baltimore, Chicago, Los Angeles, Minneapolis-St. Paul, New York, and Winston-Salem (Bild et 

al. 2002; Kaufman et al. 2012).  

Data 

National Particle Component and Toxicity (NPACT) monitoring data 

In order to characterize spatial variability of exposures across participant residences, the 

NPACT study measured PM2.5 components by exploiting the MESA Air monitoring campaign 

(Vedal et al. 2013). MESA Air carried out an extensive exposure monitoring campaign focusing 
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on participant residence locations and the measurement of PM2.5 mass and gaseous pollutant 

concentrations. The MESA Air monitoring campaign included three to seven fixed sites 

measuring pollutants in 2-week samples over multiple years, and approximately fifty rotating 

home-outdoor sites providing two to three 2-week samples in each city (Cohen et al. 2009). One 

fixed site was co-located with one CSN site in each of six cities. The two-week sampling 

schedule targeted the objective of obtaining estimates of long-term average exposure in the 

context of logistical and resource constraints. Whereas the NPACT-MESA Air sampling for 

trace elements was carried out over four years (August 2005 through August 2009), carbon data 

were collected for a shorter period (March 2007 through August 2008). Two-week samples for 

trace elements and carbon were collected on Teflon and quartz filters, respectively, placed into 

the Harvard Personal Environmental Monitors (HPEMs) with a 2.5 um cut size when operated at 

1.8 L/min. Trace elements were quantified using X-ray Fluorescence (XRF) in the Cooper 

Environmental Services of Portland, Oregon. EC and OC were blank-corrected and quantified 

using the IMPROVE_A TOR method, which is currently employed in the EPA CSN network 

and comparable to the method used in the IMPROVE network, in the Sunset Laboratory Inc. of 

Tigard, Oregon. See Vedal et al (2013) for additional details. 

Regulatory monitoring data 

CSN and IMPROVE networks have collected PM2.5 component measurements across the 

U.S. over 24-hour periods every 3
rd

 or 6
th

 day since 2000 and 1988, respectively (Hand et al. 

2005; Rao et al. 2005; U.S. EPA 2004; U.S. EPA 2005a). From more than 300 monitoring sites 

in both networks, we selected 91 monitoring sites within 200 kilometers from the centers of the 

six MESA cities, and downloaded measurements collected between 1999 and 2009 from the 

EPA Air Quality System database. We chose 1999 as the starting year because it is one year 
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prior to the baseline screening of MESA participants in 2000. In CSN and IMPROVE, PM2.5 

components were sampled by various compliance samplers (U.S. EPA 1998). Two networks 

measured trace elements, including silicon, by XRF. In the CSN network, EC and OC were 

measured by NIOSH TOT and changed to IMPROVE_A TOR without blank correction for both 

methods.  In contrast, IMPROVE has only used IMPROVE_A TOR with blank correction.  

Data processing 

We focus on silicon and EC in this paper because they represent groups of pollutants with 

contrasting spatial and temporal characteristics and their sampling and analysis protocols are 

distinct. See Vedal et al (2013) for data description and exploratory analysis results for the other 

components. To align with 2-week averages in NPACT, we computed corresponding averages of 

daily CSN/IMPROVE data for the 2-week periods centered on every other Wednesday. The two-

week averages were log transformed after adding one to approximate a normal distribution. 

Whereas the units for EC were microgram per cubic meter, we used nanograms per cubic meter 

for silicon given the small observed values.  

Three monitoring features affecting data comparability between networks 

We focused on spatial coverage, filter analysis protocol, and sampling protocol as factors 

which may influence on data comparability between CSN, IMPROVE, and NPACT networks. 

First, monitoring sites in the CSN and IMPROVE networks are located far from each other and 

typically have only one or a few sites in a city, whereas the NPACT monitoring sties were 

densely located within each MESA city. The spatial sparseness of the regulatory monitoring data 

limits our ability to model PM2.5 component concentrations over space (Lippmann. 2009). 

Second, analytical methods for fine particle elemental and organic carbon (EC and OC) differ 

within and between networks. In particular, CSN has historically used the National Institute for 
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Occupational Safety and Health (NIOSH) Total Optical Transmittance (TOT) method, whereas 

IMPROVE chose the IMPROVE_A Total Optical Reflectance (TOR) method. The two methods 

use different time/temperature analytical protocols to measure fractions of EC and OC on quartz 

filters. Data discrepancies resulting from these method differences have been documented (Chow 

et al. 2001; Malm et al. 2011). Consequently, EPA decided to change the laboratory method for 

CSN sites to the IMPROVE_A TOR method beginning in May 2007 (U.S. EPA. 2005b; U.S. 

EPA. 2006). NPACT also adopted the IMPROVE_A TOR method. Finally, the NPACT, CSN, 

and IMPROVE networks operated on different sampling schedules and use different sampling 

hardware. Whereas NPACT collected 2-week average samples, CSN/IMPROVE sites have 

collected daily average samples; these have been operated every 3
rd

 day at most core CSN and all 

IMPROVE sites and every 6
th

 day at supplemental CSN sites. Different sampling devices across 

networks may also contribute to data inconsistencies. 

Exploratory data analysis for data comparability 

Sparse coverage in urban space 

We investigated the impact of spatial sparseness on the spatio-temporal prediction model 

by assessing spatial distributions of monitors and homogeneity of smoothed temporal trends 

across networks in each city. Temporal trends of pollutants can vary over space and across 

monitoring networks. When we rely on only a small number of monitoring locations, it is 

difficult to discern the presence of spatially-varying temporal trends. When temporal trends do 

not vary across locations, we can develop a simplified model that does not require many 

locations with long time-series of measurements.  

Different filter analysis methods 
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We compared the two filter analysis methods for EC between CSN and IMPROVE 

networks as well as within the CSN network. All core CSN sites simultaneously changed from 

the NIOSH TOT to IMPROVE_A TOR method in May 2007, while the method change was 

phased in over time at supplemental CSN sites after that date. First, to confirm the inconsistent 

measurements between networks that have been reported in previous studies (Chow et al. 2001; 

Malm et al. 2011), we compared pairs of daily average measurements of EC at four co-located 

sites from CSN and IMPROVE networks between January 2000 and July 2007. For the within-

network comparison, we investigated the consistency of daily averages of EC measured by the 

two methods at the six core CSN sites co-located with NPACT sites during the overlapping time 

period from May 2007 through July 2007.  

Different sampling protocols 

Given that NPACT collected 2-week average measurements and CSN and IMPROVE 

collected 24 hour samples every 3
rd

 or 6
th

 day, it was not clear whether these latter measurements 

could reliably estimate 2-week averages and temporal trends. Because there are a few core CSN 

sites in MESA cities and IMPROVE sites are mostly far away from city centers, most 

CSN/IMPROVE data available for NPACT were collected on a 6 day schedule. Thus we 

investigated the importance of sampling frequency by making within-site comparisons at four 

CSN sites co-located with NPACT fixed sites. Specifically, we compared the smoothed temporal 

trends of 2-week average silicon estimates using data obtained from every 3
rd

 day samples vs. a 

reduced subset of every 6
th

 day samples. The impact of differences in sampling hardware 

systems was compared using pairs of 2-week averages for EC and silicon from CSN and NPACT 

at six co-located sites. The EC analysis was restricted to the period after the filter analysis 

method change.  
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Exposure prediction model 

The NPACT exposure prediction model aimed to predict 2-week average concentrations 

of PM2.5 components at participant addresses by adopting the spatio-temporal modeling 

framework developed for the MESA Air study. While the NPACT-MESA Air monitoring design 

provided reasonable spatial coverage, logistical constraints resulted in data that were highly 

imbalanced: there were very few fixed site locations with long time series and a rich set of 

temporally sparse and unbalanced home-outdoor site measurements (Figure 2). The spatio-

temporal model was designed to effectively utilize such highly imbalanced monitoring data. 

Applications of the spatio-temporal model for PM2.5 and NOx in MESA Air have been described 

previously (Sampson et al. 2011; Szipro et al. 2010) and is available for implementation as the R 

package “SpatioTemporal” (Lindstrom et al. 2013a; Lindstrom et al. 2013b). In brief, this model 

assumes that 2-week average concentrations over space and time consist of spatially-correlated 

site-specific long-term means, site-specific temporal trends, and spatio-temporal residuals. Long-

term means and temporal trends vary over space as characterized by geographical predictors and 

spatial correlation structures. Temporal trends are derived from a singular value decomposition 

of the data at sites with long time series. Space-time residuals are assumed to be temporally 

independent and spatially dependent.  

Exploration of possible spatio-temporal modeling approaches 

We explored three approaches to develop spatio-temporal prediction models for silicon 

and EC based on our experience developing the MESA Air spatio-temporal model for PM2.5 

(Sampson et al, 2011). First, we attempted to fit the full spatio-temporal model directly using all 

available PM2.5 component data from regulatory and NPACT monitoring networks as in 

Sampson et al (2011) (Approach 1).  In the PM2.5 spatio-temporal modeling work, the regulatory 
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data were highly correlated with the MESA Air data. The regulatory PM2.5 monitoring data were 

spatially dispersed and allowed a much larger spatial region to be modeled than was possible 

from MESA Air data alone. Given these characteristics, the long-time series of regulatory data 

provided most of the data for the trend function estimates, while the MESA Air monitoring data 

enhanced the model spatially. This rich data set allowed final models with multiple temporal 

trends and spatial models for the long-term mean, each temporal trend, and spatio-temporal 

residuals. If the PM2.5 component data are insufficiently compatible to combine, NPACT data 

alone are not sufficiently rich to support the full spatio-temporal model. Thus we consider a 

second approach of fitting a simplified version of the spatio-temporal model assuming one 

temporal trend without spatial dependence structure (Approach 2). To assess the feasibility of the 

second modeling approach, we investigated whether a single trend is appropriate by comparing 

smoothed temporal trends across fixed sites with measurements at home sites in each city.  

Finally, we considered substituting temporal trend functions for PM2.5 components with those 

estimated from other pollutant time series, such as PM2.5 and NOx (Approach 3), because these 

pollutants have longer time series of data from a larger number of monitoring sites. We obtained 

PM2.5 and NOx data measured at EPA monitoring sites located within 200 kilometers from the 

six MESA cities, computed 2-week averages, and compared temporal trends to those of EC and 

silicon in NPACT. 

RESULTS 

Table 1 summarizes important characteristics of the monitoring data across the NPACT-

MESA Air, CSN, and IMPROVE networks. The table highlights three aspects of the regulatory 

monitoring data that may make it difficult to combine with those specially collected for NPACT 
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in one unified spatio-temporal model of PM2.5 components: spatial sparseness, analysis method 

differences for carbon data, and different sampling protocols.  

Data compatibility between CSN, IMPROVE and NPACT networks 

Figure 1 displays maps of NPACT and regulatory monitoring site locations by city. 

Included are the locations of all selected regulatory monitoring sites from the CSN and 

IMPROVE networks along with the NPACT monitoring sites and MESA Air participant homes 

(locations jittered). As was seen by Sampson et al (2011), the regulatory monitoring sites cover a 

much larger spatial region than the area represented by the NPACT monitoring. Figure 2 shows a 

conceptual representation of the space-time sampling design for silicon and EC data in Los 

Angeles. Note that the longest time series of measurements are only available at the CSN and 

IMPROVE sites. While the specialized NPACT sampling provides data at many more locations, 

most of these have limited temporal representation.  

Sparse coverage in urban space 

The numbers of CSN and IMPROVE monitoring sites within 200 km ranged from six to 

twenty-seven and from one to eight, respectively, depending on city (Figure 1 and Table 2). 

However, when we restricted attention to the MESA city areas where most participants live in 

Figure 1, very few sites remained. Most IMPROVE sites are located in rural areas far away from 

participants making them less useful in prediction models. Differences between the urban vs. 

rural siting are manifest in their temporal trends. Figure 3 shows estimated smoothed temporal 

trends for the CSN and IMPROVE sites in Los Angeles. Temporal trends for EC at IMPROVE 

sites are strikingly different from those observed at CSN sites, representing the contrast between 

urban-focused CSN sites and rural-focused IMPROVE sites. There are also differences between 

the temporal trends for silicon across networks, but these are less striking. In the other five cities, 
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the temporal trends for EC are more or less heterogeneous depending on city, whereas those for 

silicon are more consistent across cities although there are some differences between sites in 

magnitude (Supplemental Figure 1).  

Different filter analysis methods  

Figure 4 shows that, as expected, daily average measurements of EC between CSN and 

IMPROVE at four co-located sites collected before the method change in May 2007 did not 

agree well. Figure 5 compares 24-hour average measurements of EC between the NIOSH TOT 

and IMPROVE_A TOR filter analysis methods for the two-month period of overlap from May 

2007 to July 2007 at one CSN site in each MESA city. In Chicago and New York, the two 

methods showed constant differences and high correlations (estimates were 0.94 and 0.97, in part 

thanks to the larger variability between measurements in these cities). In contrast, the other cities 

displayed less systematic differences and had moderate correlations between 0.71 and 0.84.  

Different sampling protocols 

Table 2 gives tallies of CSN and IMPROVE sites by sampling schedule. Less than half of 

CSN sites (the core CSN sites) and all IMPROVE sites sampled PM2.5 components every 3
rd

 day, 

while more than half of CSN sites (the supplemental sites) sampled every 6
th

 day. Figure 6 shows 

smoothed temporal trends for 2-week averages of silicon at four CSN sites co-located with 

NPACT fixed sites. The trends generally do not vary strongly by sampling schedule although a 

few local differences are evident. In the comparisons of sampling hardware, Figure 7 shows that 

2-week averages of EC measured by the IMPROVE_A TOR method at CSN sites are not 

comparable to those at co-located NPACT fixed sites during the May 2007 through August 2008 

period of overlap. In addition to NPACT measurements being consistently higher than CSN 

measurements in all cities, there are additional non-systematic differences between the two 

http://biostats.bepress.com/uwbiostat/paper397



11 

 

networks. Time series plots with smoothed trends for the same data used in Figure 7 show local 

differences over time (Supplemental Figure 2). Silicon measurements were more comparable 

than EC but also manifested some non-systematic differences (Supplemental Figures 3 and 4).  

Possible exposure modeling approaches 

Approach 1: Full spatio-temporal model combining the CSN/IMPROVE and NPACT data  

The monitoring data for PM2.5 components were much more limited than those for other 

pollutants such as PM2.5 (Supplemental Table 1). Because the PM2.5 component data are not 

compatible across networks (see Figures 4 and 7 and Supplemental Figures 1, 2, and 3), we 

concluded that we cannot fit the full spatio-temporal modeling on the combined CSN, 

IMPROVE, and NPACT data.  

Approach 2: Simplified spatio-temporal model based on the NPACT data only 

If we estimate temporal trends of PM2.5 components based only on the NPACT 

monitoring data, the time series of EC from fixed site monitors is short (approximately one-and-

a-half years) (Figure 2). Figure 8 displays one temporal trend estimated using all fixed sites 

along with measurements across home-outdoor sites over time in Los Angeles and Chicago. 

Although one homogenous temporal trend in each city is a strong assumption and the variation in 

the home sites reflects spatial as well as temporal variability, the smooth trends generally capture 

the temporal variability across home sites. 

Approach 3: Full spatio-temporal model using another pollutant 

PM2.5 and NOx have been collected since 1990’s at a large number of sites relative to 

other pollutants in the regulatory monitoring network. However, the estimated temporal trends 

for PM2.5 and NOx were not sufficiently consistent with the temporal trends estimated from the 
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PM2.5 components. As an example, Figure 9 shows dramatically different temporal trends for the 

PM2.5 components compared to PM2.5 and NOx in the Minneapolis and St. Paul area.  

DISCUSSION 

We explored the features of regulatory and NPACT monitoring data for EC and silicon 

relevant to our goal of combining all available data for constructing spatio-temporal models to 

investigate health effects of long-term exposures to PM2.5 chemical components in the NPACT 

study. The small number of regulatory monitoring sites deployed in urban areas limited the 

amount of data available for modeling in the NPACT study areas. In addition, we found 

insufficient between- and within-network consistency to combine CSN, IMPROVE and NPACT 

data in one spatio-temporal model. These findings led us to conclude that we should develop 

spatio-temporal models using NPACT monitoring data only. Given the limited space-time data 

in NPACT, the resulting spatio-temporal models needed to be simplified compared with those 

used in other MESA Air applications. 

We found inconsistency between NPACT and regulatory monitoring networks for 

measurements of both EC and silicon despite the fact that they both used the same filter analysis 

methods. This inconsistency seems to be due to different sampling protocols such as sampling 

frequency and equipment. EC was measured for a sampling period of 2 weeks in NPACT versus 

daily sampling in the regulatory networks. NPACT EC tended to be higher than CSN, while OC 

measurements were lower than the corresponding CSN measurements (Vedal et al. 2013). It is 

possible that the more reactive OC components, which would have been contributed to OC 

measurements in the lab filter analysis if stayed on filters, oxidized over 2 weeks, thus resulting 

in decreased OC and increased EC concentrations in NPACT. In addition to the sampling 

schedule, other differences in carbon sampling between NPACT and CSN/IMPROVE shown in 
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Table 1 could have also affected inconsistencies in the data. NPACT used the HPEM sampler 

with lower pump flow rate and the blank correction protocol based on backup quartz filters. 

However, our observation that there was good agreement between total carbon measurements in 

the CSN and NPACT networks (Vedal et al. 2013) suggests that the inconsistency of EC and OC 

measures is more likely driven by the split of EC and OC rather than the sampling and blank 

correction protocols. Differences between silicon measurements could be driven by silicon 

grease of the HPEM sampler in NPACT. If grease contamination occurred during filter handling, 

silicon on grease might have reached the filters and resulted in increased silicon concentrations. 

However, grease contamination usually appears as a very large spike in the contaminated sample 

compared to other samples, which was not observed in our data. Another possible explanation 

may be local dust plumes. The co-located NPACT monitor was placed a few meters away from 

the CSN monitor. The consistent PM2.5 and sulfur concentrations at these co-located sites 

indicate that the Teflon filters of the two monitors generally sampled the same fine particles. 

However, local dust plume gradients could exist resulting in concentration differences between 

the two monitoring locations. 

Some studies have developed calibration models to allow EC and OC data from the CSN 

and IMPROVE networks to be combined. White et al (2008) and Malm et al (2011) used 

elemental, organic, and total carbon data at about 10 co-located urban CSN and IMPROVE sites 

in 2005 and 2006 to estimate relationships of EC and OC between the two networks. Their 

IMPROVE-adjusted EC and OC at CSN sties was highly correlated with EC and OC at co-

located IMPROVE sites. However, these calibration methods were based on fairly limited data 

collected at relatively small number of co-located sites during a short time period. More research 

is needed to determine whether these calibration methods can be generalized to other areas or 

Hosted by The Berkeley Electronic Press



14 

 

years. In addition, we observed different relationships by city (Figures 7 and 8), suggesting area-

specific calibration models may be needed. The NPACT study also developed city-specific 

calibration models to estimate CSN-adjusted EC and OC based on the consistency of total carbon 

between CSN and NPACT as well as EC in CSN and black carbon in NPACT (Vedal et al. 

2013). However, the city specific data were limited, particularly for New York, and this 

limitation might have affected the calibration approach. 

Based on the work described in this paper, we concluded that the use of only NPACT 

monitoring data without including regulatory data is the preferred choice for our spatio-temporal 

prediction model for EC and silicon. In contrast, other published studies of health effects of long-

term average PM2.5 component concentrations relied exclusively on regulatory monitoring data. 

Ostro et al (2010) used the CSN data and assigned PM2.5 components at the nearest monitors to 

participant homes in California. Bergen et al (2013) used CSN and IMPROVE data to build a 

universal kriging model across the U.S. Both studies used long-term averages and developed 

pure spatial models thus avoiding the need to model the temporal data structure. In order to take 

advantage of the extensive project-based monitoring campaign focused on the target cohort, the 

NPACT options were to either use the NPACT data alone or to combine the NPACT data with 

regulatory monitoring data. We found, however, these data obtained from different sources were 

not sufficiently comparable to allow us to use all available data in our spatio-temporal model.  

We focused on EC and silicon out of the four components in the NPACT study in order 

to illustrate the features of monitoring networks which result in data inconsistency and then 

affect exposure prediction modeling approaches. OC performed similarly to EC; in contrast 

sulfur measurements agreed well across networks. Thus for sulfur it may be reasonable to 

combine all available data and develop a more sophisticated exposure model. Future work is 
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needed to examine the data consistency for other PM2.5 components for use in exposure 

prediction models.  

It is questionable whether the existing spatio-temporal prediction modeling approaches 

for PM2.5 can be transferred directly to modeling PM2.5 components. Recent cohort studies have 

developed advanced exposure prediction approaches in space-time frameworks for estimating 

PM2.5 long-term average concentrations (Paciorek et al.2009; Sampson et al. 2011; Yanosky et al. 

2009). These advanced modeling approaches were developed using PM2.5 monitoring data 

collected by governments and project-based campaigns. In comparison with the component data, 

the regulatory PM2.5 monitoring data have been collected under consistent protocols over a 

relatively long time period and across a fairly dense set of monitoring locations in U.S. (U.S. 

EPA 2004). Furthermore, there is reasonable agreement between these regulatory monitoring 

data and the data collected by MESA Air (Cohen et al. 2009). Thus Sampson et al (2011) were 

able to combine EPA Federal Reference Method and MESA Air monitoring data in single city-

specific predictive models for PM2.5. In contrast, the sampling periods and coverage areas for 

PM2.5 component data are limited and, as shown in this paper, there are important discrepancies 

between measurements collected under different protocols. We have shown the importance of 

understanding the PM2.5 component data prior to developing exposure prediction models.  

Given widespread scientific interest in understanding the associations between long-term 

air pollution and health for multiple pollutants, an undertaking that is feasible only after 

development and application of appropriate exposure prediction models, it is crucial that we also 

acquire sufficient understanding of monitoring network features which may in turn affect 

exposure predictions and the resulting health effect estimates. Methodological research has 

shown that features of the underlying exposure surface, exposure assessment design, and 
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approaches to exposure modeling may all impact health effect estimates (Gryparis et al. 2009; 

Kim et al. 2009; Szpiro et al. 2011; Szpiro and Paciorek 2013). This study adds monitoring data 

from multiple sources as another feature affecting exposure modeling for estimating health 

effects. We demonstrated the importance of evaluating the consistency of the monitoring data 

from the perspective of how they will be incorporated into the exposure models.  

CONCLUSIONS 

U.S. regulatory monitoring data for PM2.5 components measured at CSN and IMPROVE 

sites are a potentially rich data resource to be used solely or jointly with project-based 

monitoring data for the study of health effects of PM2.5 components. However, the sparse spatial 

coverage of these networks and differences across networks in their analysis and sampling 

protocols for some PM2.5 components can affect their utility in epidemiological studies, 

particularly for inclusion in spatio-temporal prediction models for PM2.5 component 

concentrations. Future studies of long-term concentrations of PM2.5 components and health need 

to assess exposure data characteristics before developing exposure prediction models. 
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Table 1. Major contrasting characteristics between NPACT, CSN, and IMPROVE networks 

Characteristics Network 

 NPACT-MESA Air CSN IMPROVE 

Sampling design Location of sites Urban Urban Rural 

 Spatial density in MESA city 

areas Dense Sparse Sparse 

 Monitoring period 2005-2009 Since 1999 Since 1987 

 

Sampling schedule 2-week average 

24-hour average: 

1 in 3 or 6 day 

24-hour average: 

1 in 3 day 

Filter analysis method Analysis method for elements XRF* XRF XRF 

 Analysis method for carbon* IMPROVE_A TOR* NIOSH TOT IMPROVE_A TOR 

 IMPROVE_A TOR+ 

 Blank correction using  

backup quartz filter 

Yes 

 

No 

 

Yes 

 

Sampling protocol Sampler type for elements HPEMs Met One and others IMPROVE 

 Sampler type for carbon HPEMs Met One and 4 others IMPROVE 

 URG+ 

 Pump flow rate 1.8 L/min 6.7 ~ 16.7 L/min 22.7 L/min 

 22.8 L/min+ 

* XRF analysis was performed in Cooper Environmental Services of Portland, Oregon and IMPROVE_A TOR analysis was performed 

in Sunset laboratory Inc. of Tigard, Oregon 

+ New carbon sampling and analysis protocols have been implemented from core CSN sites since May 2007  
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Table 2. Number of sites with long-term monitoring data available within 200 km of six MESA city areas between 1999 and 2009  

Area 

  Regulatory NPACT/MESA Air 

CSN IMPROVE Fixed Home 

Total* Total 3-day 6-day Total (3-day) Total (14 day avg) Total (14 day avg) 

Los Angeles 21 (141)+ 6 3 2 8 7 120 

Chicago 23 (166) 15 4 11 1 7 143 

Minneapolis-St. Paul 11 (145) 6 2 4 1 4 134 

Baltimore# 37 (125) 27 8 19 5 5 88 

New York# 31 (152) 25 14 11 3 3 121 

Winston-Salem 19 (137) 12 2 10 3 4 118 

* Co-located sites are counted once in the grand total and also as appropriate in each network category  

+ Number of sites excluding NPACT-MESA Air home sites (Number of sites including home sites) 

# 13 sites appear in both Baltimore and New York due to overlap of regions: 12 CSN and 1 IMPROVE 
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Figure Legends 

Figure 1. Locations of CSN, IMPROVE, and NPACT monitoring sites for PM2.5 components within 200 km from city centers in six 

MESA city areas. 

Figure 2. Temporal and spatial sampling for silicon and EC by CSN, IMPROVE, and NPACT monitors in Los Angeles. 

Figure 3. Temporal trends of 2-week averages of silicon and EC measured by CSN and IMPROVE sites in Los Angeles from 1999 to 

2009. 

Figure 4. Scatter plots of every 3
rd

 day measurements of EC between CSN and IMPROVE from January 2000 through July 2007 at 

four co-located in six MESA city areas.  

Figure 5. Scatter plots of every 3
rd

 day measurements of EC between pre- and post- filter analysis method change for the overlapping 

2 months from May 2007 through July 2007 at six CSN sites co-located with NPACT sites in six MESA city areas.  

Figure 6. Time series plots of 2-week averages of silicon between every 3
rd

 day and 6
th

 day measurements at four CSN site co-located 

with four NPACT fixed sites in Chicago, Minneapolis-St. Paul, Baltimore, and New York from 1999 to 2009. 

Figure 7. Scatter plots of 2-week averages of EC for the overlapping period from May 2007 through August 2008 between co-located 

CSN and NPACT fixed sites in each of six MESA city areas.  

Figure 8.Time series of 2-week averages of silicon and EC across home-outdoor sites along with one temporal trend estimated using 

NPACT fixed sites in Los Angeles and Chicago. 
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Figure 9. Temporal trends of 2-week averages of silicon (top) and EC (bottom) across NPACT fixed sites along with trends of PM2.5 

and NOx across EPA sites in the Minneapolis-St. Paul area. 

Hosted by The Berkeley Electronic Press



24 

 

 
Figure 1. Locations of CSN, IMPROVE, and NPACT monitoring sites for PM2.5 components within 200 km from city centers in six 

MESA city areas 
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Figure 2. Temporal and spatial sampling for silicon and EC by CSN, IMPROVE, and NPACT monitors in Los Angeles 
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Figure 3. Temporal trends of 2-week averages of silicon and EC measured by CSN and IMPROVE sites in Los Angeles from 1999 to 

2009 
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Figure 4. Scatter plots of every 3

rd
 day measurements of EC between CSN and IMPROVE from January 2000 through July 2007 at 

four co-located in six MESA city areas  
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Figure 5. Scatter plots of every 3

rd
 day measurements of EC between pre- and post- filter analysis method change for the overlapping 

2 months from May 2007 through July 2007 at six CSN sites co-located with NPACT sites in six MESA city areas  
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Figure 6. Time series plots of 2-week averages of silicon between every 3

rd
 day and 6

th
 day measurements at four CSN site co-located 

with four NPACT fixed sites in Chicago, Minneapolis-St. Paul, Baltimore, and New York from 1999 to 2009 

 

Hosted by The Berkeley Electronic Press



30 

 

 
Figure 7. Scatter plots of 2-week averages of EC for the overlapping period from May 2007 through August 2008 between co-located 

CSN and NPACT fixed sites in each of six MESA city areas  
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Figure 8.Time series of 2-week averages of silicon and EC across home-outdoor sites along with one temporal trend estimated using 

NPACT fixed sites in Los Angeles and Chicago 
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Figure 9. Temporal trends of 2-week averages of silicon (top) and EC (bottom) across NPACT fixed sites along with trends of PM2.5 

and NOx across EPA sites in the Minneapolis-St. Paul area 
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Supplemental Table 1. Number of sites and 2-week average observations for silicon, EC, and PM2.5 used for spatio-temporal exposure 

prediction models by monitor type and city in EPA and NPACT monitoring networks from 1999 through 2009 

City Type Silicon EC PM2.5* 

  
# sites 

Min 

# obs./sites 

Max 

# obs./sites 
# sites 

Min 

# obs./sites 

Max 

# obs./sites 
# sites 

Min 

# obs./sites 

Max 

# obs./sites 

Los Angeles EPA — —  — —  24 177 363 

 
Fixed+ 7 73 81 7 74 84 7 19 28 

 
Home+ 113 1 2 116 1 2 120 1 2 

Chicago EPA — —  — —  44 133 364 

 
Fixed 7 6 87 7 89 99 7 7 34 

 
Home 99 1 3 99 1 3 113 1 2 

Minneapolis-St. Paul EPA — —  — —  41 88 365 

 
Fixed 3 79 86 3 79 86 3 27 29 

 
Home 104 1 3 104 1 3 129 1 2 

Baltimore EPA — —  — —  39 205 365 

 
Fixed 5 18 85 5 18 86 5 14 33 

 
Home 86 1 3 87 1 3 87 1 1 

New York EPA — —  — —  45 111 365 

 
Fixed 3 49 83 3 53 87 3 31 32 

 
Home 107 1 3 107 1 3 119 1 2 

Winston-Salem EPA — —  — —  29 116 365 

 
Fixed 4 79 92 4 82 92 4 18 35 

 
Home 92 1 3 92 1 3 117 1 2 

* Obtained from Sampson et al 2011 which used the PM2.5 data from 2000 through 2006 

+ NPACT monitoring sites 
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Supplemental Figure 1. Temporal trends of 2-week averages of silicon and EC measured by CSN and IMPROVE sites in Chicago, 

Minneapolis-St. Paul, Baltimore, New York, and Winston-Salem from 1999 through 2009 
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Supplemental Figure 2. Temporal trends of 2-week average of EC for the overlapping period from May 2007 through August 2008 

between co-located CSN and NPACT fixed sites in each of six MESA city areas 
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Supplemental Figure 3. Scatter plots of 2-week averages of silicon for the overlapping period from August 2005 through August 2009 

between co-located CSN and NPACT fixed sites in each of six MESA city areas
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Supplemental Figure 4. Temporal trends of 2-week averages of silicon for the overlapping period from August 2005 through August 

2009 between co-located CSN and NPACT fixed sites in each of six MESA city areas 
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