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Abstract

Computational methods are presented for generation of bipartite networks that are con-
sistent with given probability distributions for important local network properties, including
degree distribution and mixing patterns. To our knowledge, the proposed methods are the
first to allow specification of the probability distributions of network properties rather than
solely mean estimates for these properties. Our focus of interest is isolation of the effect of
mixing patterns, which is achieved by constructing collections of bipartite networks with
distinct probability distributions on parameters characterizing mixing patterns given a pre-
scribed degree sequence. The proposed methods have been used in designing a large HIV
randomized community prevention trial in Botswana; they were developed to investigate
the implications of various spatial and degree mixing patterns for statistical power of pro-
posed interventions. This setting is useful to illustrate our methods as modeling sexual
disease transmission is an important research area that often has limitations of available
information which could lead to wide probability distributions on network properties. In
addition, we analyze various spatial and degree mixing patterns to investigate the complex
relationship between global network topology and impact of the proposed HIV intervention.

Keywords: Network Generation, Disease Modeling, Degree Mixing, Spatial Mixing
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1 Introduction

Bipartite networks are used to represent a myriad of complex systems such as sexual disease

transmissions in heterosexual populations (Morris et al., 2009; Wang et al., 2013), social affili-

ations (Davis et al., 1941; Galaskiewicz, 1985), scientific collaborations (Ramasco et al., 2004),

patient-provider interactions (Landon et al., 2012), and relationships between disorders and dis-

ease genes (Goh et al., 2007). Development of accurate representations, however, is complicated

by the fact that network data are often incomplete or even incorrect, particularly in settings

involving social interactions (Kossinets, 2006). The mechanisms that lead to such problems

include the nature of study designs themselves (e.g. ego-centric and fixed choice), missing and

inaccurate responses, and network boundary specification (i.e. inclusion and exclusion condi-

tions for the study population). Kossinets (2006) and Shalizi and Rinaldo (2013) have shown

that estimates for network properties can strongly depend on the type(s) of mechanism(s) lead-

ing to misspecified network data and the extent of misspecification. Under certain settings,

methods exist to correct for biases in estimates based on sampled network data; however, these

approaches can lead to large variability in network property estimates (Kolaczyk, 2009).

To accommodate varying degrees of uncertainty, we develop methods to generate bipartite

networks of a fixed size that are consistent with a given probability distribution on local

network parameters, e.g. degree distribution and mixing patterns. Current network generation

methods for bipartite networks are based on specification of only the mean estimates of network

properties (see, for example, Wang et al. (2012)). Our particular focus is development of a

method to generate bipartite networks given a prescribed degree sequence and a probability

distribution for parameters representing degree and non-degree mixing patterns. Our focus

on mixing patterns reflects their presence in many real-world networks representing a range of

systems from biological to technological (Newman, 2010). Furthermore, mixing has the ability

to significantly alter processes operating on networks (Onnela et al., 2007; Newman, 2002);

therefore, in certain settings (e.g. epidemic disease control) it is useful to generate networks

that are consistent with an estimated distribution of network parameters in order to ensure

reliable conclusions regarding the process operating on the network.

One important research area where models typically suffer from imprecise estimates due to

misspecification and incomplete network data is in the modeling of sexual disease epidemics.
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Such epidemic models are important in designing and evaluating the results of intervention

studies to prevent or control disease (Boily et al., 2012; Wang et al., 2013). The methods we

propose have already been utilized in designing a large HIV randomized community trial

in Botswana, referred to the Botswana Combination Prevention Project (BCPP) (Wang et al.,

2013). Below, we use the BCPP study to illustrate these methods. In particular, the methods

were utilized in simulation studies to assess statistical power of the BCPP trial by modeling

both epidemic spread and the impact on it of the study interventions; see Boily et al. (2012)

and Wang et al. (2013) for additional details. As estimates of statistical power are sensitive to

mixing patterns associated with the sexual contact network, we needed to address ways to take

into account limitations and uncertainty in available network information.

Section 2 develops a method to model bipartite networks for a fixed degree sequence that

incorporates the probability distribution associated with mixing parameter estimates. The

supplement extends this method to settings where parameters characterize density, degree

distribution and mixing patterns without requiring a prescribed degree sequence. Section 3

provides a summary of the BCPP trial in order to demonstrate the usefulness of the methods

in designing network-based interventions. Section 4 illustrates the methods by generating

bipartite networks based on spatial mixing patterns between two district communities. Section

5 investigates degree assortativity–one particularly important example of a sexual contact

network property for which it can be difficult to obtain information to support estimation. We

describe the ability of our methods to handle influential network properties for which estimates

are not available by generating networks under a diffuse distribution–as such networks span

a wide range of degree mixing patterns. Section 6 provides a discussion and further areas for

research.

2 Network Generation

Our discussion of bipartite network construction extends the framework presented in Goyal

et al. (2013), which provided a method to model degree distribution and both degree and non-

degree mixing patterns for one-mode networks. The framework allowed different measures of

uncertainty for each parameter as does the extension considered here. This section focuses on

3

Hosted by The Berkeley Electronic Press



a method to generate bipartite networks with prescribed degree sequence that are consistent

with a probability distribution on degree or non-degree mixing parameters; see the supplement

for extensions.

Describing the method for generating bipartite networks requires defining terminology and

notation. Let nodes be designated as either type 1 or 2; as the networks are bipartite, edges only

exist between distinct node types. Let vector Mt(g) denote the covariate pattern distribution

for nodes of type t ∈ {1, 2} of a graph g, where the ith entry of Mt(g), Mt
i(g), is the number of type

t nodes with covariate pattern i. Let mt(g) represent the vector of covariate patterns for type

t nodes in network g, where the ith entry, mt
i(g), is the covariate pattern of the ith type t node.

Let MM(g) be a matrix representing the mixing pattern of graph g. The entry MMk,l(g) is the

number of edges from a type 1 node with covariate pattern k to a type 2 node with covariate

pattern l. We use slightly different notation for similar quantities describing nodal degrees. Let

Dt(g) and dt(g) represent the degree distribution and degree sequence for nodes of type t. We

use the notation DMM(g) to represent degree mixing matrices, where entry DMMi, j(g) is the

number of edges from a type 1 node of degree i to a type 2 node of degree j.

The collection of generated networks form a subset of networks from the space, G , of bipartite

graphs with n nodes and a prescribed degree sequence. To construct such a collection, we begin

by partitioning G into congruence classes, {Ci}
λ
i=1, such that each network in the congruence

class has the same values for all entries of the (degree) mixing matrix. Let Cg represent the

congruence class containing network g. Networks g and h reside in the same congruence class

if and only if MM(g) = MM(h). Let PC denote a probability mass function on the space of

congruence classes where PC (Cg) represents the probability of sampling a network from the

congruence class Cg. Each network g in G is assigned a probability, PG (g), of being selected

into the collection based solely on the congruence class the network resides, i.e. if Cg = Ch then

PG (g) = PG (h). Therefore, the network g has a probability mass equal to the probability of the

congruence class Cg divided by the number of networks in Cg, |Cg|. So, we have the following

probability mass function for G :

PG (g) ∝
(

1
|Cg|

)
∗ PC (Cg). (1)

The setup described above allows an investigator to control the probability of sampling a

4

http://biostats.bepress.com/harvardbiostat/paper137



network with specific values for network properties. For example, to construct networks with

a discrete uniform (non-informative) distribution on mixing matrices, let the ratio PC (Cg)
PC (Ch) = 1 for

all congruence classes; this is the probability distribution assigned to degree mixing matrices as

described in section 5. To construct a collection of networks from an informative distribution,

one would assign values other than 1 to the ratio; examples of such distributions are provided

in section 4.

A Markov chain Monte Carlo (MCMC) procedure–in particular a Metropolis-Hastings

algorithm–is used to generate a collection of networks, {g1, · · · , gt}, that satisfy the probability

distribution assigned to the congruence classes. In order to implement the Metropolis-Hastings

algorithm, four aspects must be specified: 1) initial starting element, 2) target function, 3) pro-

posal function, and 4) acceptance probability. Appendix B describes a method to construct an

initial starting element and equation (1) describes the target function, so we discuss only 3) and

4) below.

2.1 Proposal Function

The algorithm for generating a proposal network, pt+1, at time t + 1 is based on a procedure

called edge switching, which slightly modifies the current network, gt, while preserving the

degree sequence. The procedure selects two edges at random, (a, b) and (c, d), from gt. If the

edges (a, d) and (c, b) do not create multiple edges or self-loops, the network which is created

by replacing edges (a, b) and (c, d) with (a, d) and (c, b) is proposed. Otherwise the proposed

network is just gt. To ensure that the edge switching procedure produces a bipartite network,

nodes a and c must be of the same type, as must b and d. The algorithm produces an irreducible

Markov chain among all graphs with fixed degree sequence. The chain also has equal forward

and backward probabilities.

2.2 Acceptance Probability

Given a proposed network, pt+1, the Metropolis-Hastings algorithm will either accept, gt+1 =

pt+1 or reject, gt+1 = gt, the proposal. As derived in Goyal et al. (2013), the Metropolis-Hastings

acceptance probability for the target and proposal function described above is the following:
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P(Accept gpt+1|gt) = min
(
1,

f (Cgpt+1 ,Cgt)
f (Cgt ,Cgpt+1)

∗
PC (Cgpt+1)
PC (Cgt)

)
(2)

where f (Cg,Ch) as the average number of elements in Ch that are valid proposals from an element

g ∈ Cg. The value of f (Cg,Ch) can be calculated from the mixing matrices, MM(g) and MM(h),

associated with Cg and Ch. Since we only are interested in the ratio of f (Cg,Ch) and f (Ch,Cg),

we will assume that Cg , Ch, otherwise the ratio is one. Given that Cg , Ch, f (Ch,Cg) > 0 only

if MM(g) and MM(h) have exactly four distinct entries,(i, j), (k, l), (k, j) and (i, l), such that the

following relationships hold:

MM(r,s)(h) =


MM(r,s)(g) − 1 if r = i and s = j or r = k and s = l

MM(r,s)(g) + 1 if r = k and s = j or r = i and s = l

MM(r,s)(g) else.

(3)

Using this insight, we are able to calculate an approximate acceptance probability, as described

in the proposition below, for each proposal graph in our MCMC procedure.

Proposition: If Cg , Ch, Mt
s � max({di : i ∈ g}), and relationships outlined in equation (3) hold, then

f (Cg,Ch) ≈ MM( j,k)(g) ∗MM(l,i)(g) ∗ (1 − P1 − P2 + P1 ∗ P2), where P1 =
(γ1(i)−1)∗(γ2( j)−1)∗MM(i, j)(g)

(
∑

r MM(i,r)(g)−1)∗(
∑

r MM(r, j)(g)−1) ,

P2 =
(γ1(k)−1)∗(γ2(l)−1)∗MM(k,l)(g)

(
∑

r MM(k,r) g−1)∗(
∑

r MM(r,l) g−1) , and γt(r) is the average degree of a type t node with covariate pattern r.

Details of proposition are located in Appendix A. Since the degree sequence is fixed, the degree

of a node can be treated as a covariate; therefore, the following corollary provides the necessary

formula to calculate the acceptance probability using congruence classes defined by degree

mixing matrices.

Corollary: If Cg , Ch, Dt
s � max({di : i ∈ g}), and relationships outlined in equation (3) hold, then

f (Cg,Ch) ≈ DMM( j,k)(g) ∗ DMM(l,i)(g) ∗ (1 − P1 − P2 + P1 ∗ P2), where P1 =
(i−1)∗( j−1)∗DMM( j,i)(g)

(i∗D2
i −1)∗( j∗D1

j−1) and

P2 =
(k−1)∗(l−1)∗DMM(k,l)(g)

(k∗D2
k−1)∗(l∗D1

l −1) .
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3 BCPP Cluster Randomized Trial

A series of recent findings regarding the efficacy of antiviral treatment in reducing HIV trans-

mission rates from infected people provided motivation for a large cluster-randomized trial, the

Botswana Combination Prevention Project (BCPP). This study is designed to ascertain whether

combination preventive modalities can bring about a marked reduction in HIV incidence. Com-

plicating evaluation of properties of the study design, however, is the fact that only limited

data are available for estimation of parameters associated with the sexual networks within and

among the communities in the study. Because no reliable information to estimate the distri-

bution of number of partnerships per individual is available in Botswana, investigators made

use of information from a sexual network study in Likoma Island, Malawi–the most complete

sexual network ever collected for Sub-Saharan Africa (Jones et al., 2007). Degree sequences

representing number of sexual partners were generated by applying methods described by

Handcock and Jones (2004) to data from this study. Even after fixing the degree sequence, how-

ever, there are many unknown or imprecise estimates for network properties, including spatial

and degree mixing, that must be considered to calculate reliable estimates of statistical power

of the study. The methods proposed in section 2 are useful in investigating the importance of

two types of mixing, spatial and degree mixing, on statistical power. The bipartite networks

we generated were utilized in simulations of both the epidemic spread and the effect on it of

interventions to estimate power to detect this effect (Wang et al., 2013).

A complicating factor in design and analysis of cluster-randomized trials is cross-contamination

of intervention and control clusters (Hayes et al., 2000). In network models, cross-contamination

occurs when edges exist between communities randomized to distinct treatments; in the case of

BCPP the treatments are standard of care (SOC) and combination prevention (CP). As shown in

Wang et al. (2013), the power of the BCPP trial is significantly impacted by the sexual network–

as the level of mixing, i.e. cross-contamination, between the communities assigned to CP and

SOC is associated with the degree of attenuation of intervention effects. In section 4, we demon-

strate the use of methods described in section 2 to characterize the impact of this form of spatial

mixing.

In this paper, we also investigate degree mixing, sometimes referred to as mixing by activity

level, i.e. number of sexual partners. Newman (2002) concluded that degree assortative
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networks dissseminate disease more easily and are more robost to removal of their highest

degree nodes than do disassortative networks. This insight may have important implications

for the prevention interventions proposed for BCPP. A wide range of values for mixing by

sexual activity levels have been used in epidemic simulations. Many mathematical models

calibrated to historical HIV prevalence data select parameter values associated with assortative

mixing in the population under study (Eaton et al., 2012), but other modeling studies used

parameters associated with disassortitive mixing (Palombi et al., 2012). Morris et al. (2007)

expressed the belief that people do not tend to select partners according to their degree, thereby

implying the appropriateness of parameter values leading to random mixing by degree; such

parameter values were used in a network model of HIV in the United States (Morris et al.,

2009). Random degree mixing generates networks that are neither assortative or disassorative.

However, many real-world networks do not exhibit random mixing (Newman, 2002). There

have been relatively few sexual network studies where estimation of degree assortativity was

possible; Bearman et al. (2004) studied student relationships and concluded that they were

disassortative. But other studies conducted in STD clinics show evidence for assortivative

mixing in populations in the United States and Sweden (Garnett et al., 1996; Granath et al.,

1991). The Mochudi pilot program has only collected ego-centric data, and therefore, it is not

possible to estimate degree mixing patterns. Network-centric data from Likoma Island, Malawi

does provide an estimate for a network in Sub-Saharan Africa, but its relevance for Botswana

is unknown. Due to the lack of consensus on degree mixing patterns, we used the proposed

methods to generate networks over a wide range of possible degree mixing patterns in order

to evaluate the intervention; details are provided in section 5.

4 Spatial Mixing Patterns

To assess whether cross-contamination between intervention and SOC clusters have any effect

on the proposed intervention, we first generated bipartite networks from a range of spatial

mixing values. After concluding that spatial mixing has a significant impact on estimates of

intervention effect and statistical power of the trial, we generated networks using a probability

distribution on spatial mixing based on self-reported data from the pilot study in Mochudi,
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Botswana.

All the generated bipartite networks contained 1340 nodes that consisted of nodes of type

male and type female. The nodes also were given a spatial covariate, either SOC or CP, detailing

which community they reside. The nodes were equally labeled as one of four designations,

female/SOC, male/SOC, female/CP, or male/CP, and all four designations had identical degree

sequences. The congruence classes, as described in section 2, were defined by the mixing

matrix. Since the degree sequence is fixed, the proportion of edges between nodes labeled

SOC and nodes labeled CP, regardless of the gender label, creates an equivalent partition of the

network space G ; therefore networks g and h exist in the same congruence class if and only if

the proportion of edges between CP and SOC nodes are the same for both g and h. Equation

(1) can be equivalently stated as the following:

PG (g) ∝
(

1
|Cg|

)
∗ Pη(η(g)), (4)

where η(g) denotes the proportion of mixing between SOC and CP in network g.

In the exploratory stage of investigating the impact of spatial mixing, a total of five collec-

tions of networks were generated. Each collection was centered at a distinct level of mixing

between two communities. The level of mixing ranged from 0.1 to 0.5 (random mixing be-

tween communities); a mixing level of 0.2 denotes that 20% of all relationships are between

an individual designated as SOC and an individual designated as CP. Bipartite networks were

generated under the following five probability distributions on the congruence classes,

η ∼ N(µ, σ2), (5)

where µ ∈ {.1, .2, .3, .4, .5} and σ2 = (.02/1.96)2.

The MCMC algorithm outlined in section 2 was used to generate a chain of 5,050,000

networks for each simulation. The first 50,000 were discarded for MCMC burn-in. Of the

remaining 5,000,000 networks, every thousandth network was used to calculate the proportion

of mixing between the two communities. Figure 1a shows the trace and convergence plots

of our MCMC algorithm along with the mixing values for each sampled network. Figure 1b

plots the probability density distribution as described in equation (5) as a dashed red line, and

the density associated with the proportion of mixing for the simulated networks as a dashed
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Figure 1: Convergence Plots. (a) Trace and cumulative means for five distinct network mixing
patterns. (b) Probability density distribution plots of proportional of mixing described in
equation (5) (dashed red line) and the corresponding distribution calculated for the collection
of simulated networks (dashed blue line).

blue line for mixing values of {.1, .2, .3, .4, .5}. As all 5 simulated density curves match closely

with the 5 corresponding target functions, this provides evidence that the methods described

in section 2 generated the desired collection of networks.

Epidemic simulation models were run on each of the sampled networks; these simulation

studies showed that difference in 3-year cumulative incidence between SOC and CP commu-

nities depended on the amount of mixing; see Wang et al. (2013) for further details regarding

the epidemic simulations and results. In order to explore the reason for large variation in

3-year incidence associated with spatial mixing, we investigated how global properties of the

networks are affected by changes in mixing. Figure 2 plots values of global network properties

for level of mixing from 0.1 to 0.5. The global properties varied little over this range; therefore,

we conclude that changes in global properties do not contribute greatly to the effect of mixing

on the intervention proposed by BCPP.

As level of mixing across communities has a large effect on statistical power, we generate

networks that reflect the uncertainty in this network property among villages that participate in

the BCPP trial. Review of data from the pilot study in Mochudi, Botswana implied that about
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Figure 2: Global Network Property Distributions. Boxplots of global network properties for
five distinct network mixing patterns. The first row of plots shows the mean and max of two
different centrality measures, betweenness and closeness. The second row shows eigenvalue
centrality, diameter, and mean and max component size.

20% of relationships (standard error 2.5%) would be expected to have partners assigned to a

different treatment condition from that in their village; for further details regarding the spatial

mixing estimates refer to Wang et al. (2013). This implies about 95% of sampled values will be

between 15% to 25%; it was considered that a reasonable distribution for the amount of mixing

is the following:

η ∼ N(µ = .2, σ2 = (.05/1.96)2). (6)

The MCMC algorithm outlined in section 2 was used to generate 5 chains of 5,050,000

networks. The first 50,000 of each chain were discarded for MCMC burn-in. Of the remaining

5,000,000 networks, every thousandth network was used to calculate proportion of mixing.

Figure 3a shows the trace and convergence plot for all 5 chains combined. The MCMC algorithm

used equation (6) and equation (4) to define the target function. Figure 3b depicts a plot of

the probability density distribution as described in equation (6) as a dashed red line, and the

density associated with the proportion of mixing for the simulated networks as a dashed blue

line; the spatial mixing values from the generated networks match the target function closely.
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Figure 3: Convergence Plots. (a) Trace, cumulative mean, overall mean, and overall 2.5% and
97.5% quantiles for proportion of mixing for the simulated networks along with the mean and
quantiles from the target distribution. (b) Probability density distribution plots of propor-
tional of mixing described in equation (6) (dashed red line) and the corresponding distribution
calculated for the collection of simulated networks (dashed blue line).

The increase in variance in equation (6) compared to equation (5) requires a longer MCMC

chain to achieve convergence as seen by contrasting the cumulative mean curve in figure 3a to

the curves in figure 1a.

5 Degree Mixing Patterns

This section addresses the scenario wherein no estimate exists for a possible influential network

property, as is the case for degree mixing in villages that participate in the BCPP trial. To address

this lack of information, we construct networks corresponding to a uniform distribution on

degree mixing matrices. We note that our proposed approach differs from existing models that

generate networks uniformly from the space of all networks conditional on prescribed degree

sequence; such an approach produces networks with the undesired property that values for

the degree assortativity coefficient will be near zero, see Newman (2002) for details regarding

one-mode networks. By contrast, our use of a non-informative degree mixing distribution

results in sampling each matrix with equal probability; such a sampling scheme is consistent
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with an assumption that individuals can form partnerships based on the partner’s degree, but

that no information is known about the frequency about this partnership formation process.

To describe the process of constructing collections of networks, we first provide a theorem

that states criteria for determining whether a degree mixing matrix DMM is graphical, i.e.

correspond to a simple undirected bipartite network. This theorem is required because the

probability distribution in equation (1) only applies to graphical matrices, and some degree

mixing matrices are not graphical.

Theorem: A matrix, DMM, is graphical by a bipartite undirected network if and only if the following
four conditions are met :

1. D1
i := (

∑
j DMM(i, j))/i ∈ Z

+
∀i

2. D2
j := (

∑
i DMM(i, j))/ j ∈ Z+

∀ j

3. DMM(i, j) ≤ D1
i ∗D2

j

4. DMM(i, j) ≥ 0.

Refer to Append B for the proof of Theorem 1.

Exactly as in to section 4, all the generated bipartite networks contained 1340 nodes that

were equally designated as type male or type female. By setting PC (Cg) ∝ 1 for all congruence

classes Cg ∈ C , we are able to generate networks with a uniform distribution on degree mixing

matrices. Therefore, the collection of networks will reflect the large uncertainty in degree

mixing patterns. The MCMC algorithm outlined in section 2 was used to generate a chain

of 5,010,000 networks. The first 10,000 were discarded for MCMC burn-in. Of the remaining

5,000,000 networks, every thousandth network was used to calculate network properties.

To investigate the impact of degree mixing on power for the BCPP trial, the networks

generated based on a uniform distribution on degree mixing matrices were used in the epidemic

disease simulations, just as they were for the study of spatial mixing. Figures 4 and 5 show

predicted cumulative incidence for each of the generated networks under conditions associated

with SOC and CP, respectively. The x-axis is the degree assortativity coefficient, a summary

13
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Figure 4: Cumulative Incidence for SOC Community. The x-axis is the degree assortativ-
ity coefficient and the red line depicts the lowess curve for the estimated 3-year cumulative
incidence.

statistic of a degree mixing matrix. The red line in each of the figures depicts the lowess curve

for the estimated 3-year cumulative incidence across the range of degree mixing values for the

control and intervention communities. There appears to be no association between cumulative

incidence and degree assortativity coefficient for either the SOC or CP communities.

Figure 6 contains scatter plots of degree mixing and global properties of the networks

generated under the uniform degree mixing matrix distribution. The first row of plots shows

the mean and max of two different centrality measures, betweenness and closeness. The

second row shows eigenvalue centrality, diameter, and mean and max component size. The

network properties are computed using the igraph library (Csardi and Nepusz, 2006) in R (R

Development Core Team, 2011).

In contrast to little variation in global property distributions over different levels of spatial

mixing, as shown in figure 2, global properties are highly correlated with degree mixing pat-

terns, shown in figure 6. Nonetheless, the impact of the intervention proposed for BCPP does

not appear to be modified by variability in degree mixing patterns.
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Figure 5: Cumulative Incidence for CP Community. The x-axis is the degree assortativ-
ity coefficient and the red line depicts the lowess curve for the estimated 3-year cumulative
incidence.

Figure 6: Global Network Property Distributions. Scatter plots of global network properties for
range of network degree mixing patterns. The first row of plots shows the mean and max of two
different centrality measures, betweenness and closeness. The second row shows eigenvalue
centrality, diameter, and mean and max component size.
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6 Discussion

We present novel methods to generate bipartite networks that incorporate probability distribu-

tions associated with network properties. These methods provide additional flexibility com-

pared to current methods which are based on mean values for networks properties. Networks

generated using the proposed methods demonstrated the importance of estimating spatial mix-

ing in the design of the BCPP. In this paper, we make use of the same epidemic model used in

the design of the trial, and demonstrate that knowledge regarding degree mixing patterns is

not essential in estimating the impact of the trial.

We also investigate the distribution of global network properties of networks constructed

over a range of degree and non-degree mixing patterns. Results from the former are associ-

ated with large variability in global network properties; nonetheless, this variability does not

adversely affect the ability of the model to predict HIV incidence and the efficacy of proposed in-

terventions on incidence. These results demonstrate the complex relationship between network

interventions and network topology; therefore, network simulation studies have an important

role in predicting the impact of network interventions. The methods presented are useful for

generating networks that reflect a given level of uncertainty in order to simulate network pro-

cesses under investigation. It is important to understand the ways in which network properties

impact processes that operate on networks as well as the consequences of lack of information

about specified network properties on the ability to predict impact of network interventions.

The supplement describes additional methods to calculate the accept-reject probability as

described in equation 2 for network properties associated with density, degree distribution,

and mixing patterns–without the requirement that the degree sequence is known. However,

further research is necessary to generalize the methods to higher-order network properties.
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Supplementary Materials

Additional Methods for Bipartite Network Construction: The supplement includes details to

extend the proposed method to density, degree distribution and mixing patterns without

requiring a prescribed degree sequence. (pdf file)
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7 Appendix A: Proof of Proposition

Proposition: If Cg , Ch, Mt
s � max({di : i ∈ g}), and relationships outlined in equation (3) hold, then

f (Cg,Ch) ≈ MM( j,k)(g) ∗MM(l,i)(g) ∗ (1 − P1 − P2 + P1 ∗ P2), where P1 =
(γ1(i)−1)∗(γ2( j)−1)∗MM(i, j)(g)

(
∑

r MM(i,r)(g)−1)∗(
∑

r MM(r, j)(g)−1) ,

P2 =
(γ1(k)−1)∗(γ2(l)−1)∗MM(k,l)(g)

(
∑

r MM(k,r) g−1)∗(
∑

r MM(r,l) g−1) , and γt(r) is the average degree of a type t node with covariate pattern r.

Proof of Proposition: Let T1(g) be the edges in g where the endpoint of type 1 has covariate

pattern i and the other endpoint of type 2 has covariate pattern j; so |T1(g)| = MM(i, j)(g). Let T2(g)

be the edges in g where the endpoint of type 1 has covariate pattern k and the other endpoint

of type 2 has covariate pattern l, so |T2(g)| = MM(k,l)(g). Let h(e1, e2; g) denote the resulting

graph after swapping the endpoints of edges e1 and e2; it is possible that h(e1, e2; g) contains a

multi-edge, and hence not a valid proposal graph, i.e h(e1, e2; g) < G . The average number of

valid proposals from a graph g ∈ Cg to a graph in Ch can be expressed as the following,
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A B

C D

Figure 7: Edge switching by replacing edges (A,B) and (C,D), solid lines, with edges (A,D) and
(C,B), dashed lines.

f (Cg,Ch) =
1
|Cg|

∑
g∈Cg

∑
e1∈T1(g)
e2∈T2(g)

Ih(e1,e2;g)∈G

= MM(i, j)(g) ∗MM(k,l)(g) −
1
|Cg|

∑
g∈Cg

∑
e1∈T1(g)
e2∈T2(g)

Ih(e1,e2;g)<G

= MM(i, j)(g) ∗MM(k,l)(g) −
1
|Cg|

∑
g∈Cg

MM(i, j)(g) ∗MM(k,l)(g) ∗ P(h(e1, e2; g) < G )

= MM(i, j)(g) ∗MM(k,l)(g)(1 − P), (7)

where P(h(e1, e2; g) < G ) is the probability of creating a multi-edge by switching edges e1 ∈ T1(g)

and e2 ∈ T2(g), P is the average probability of P(h(e1, e2; g) < G ) over all g ∈ Cg, and Iα is the

indicator function for an event α. P can be calculated by studying an arbitrary edge switch in

g ∈ Cg that could lead to a valid h ∈ Ch. Let A,B,C, and D be nodes in g with the following

covariate patterns: m1
A = i,m2

B = j,m1
C = k, and m2

D = l; A and C are of type 1 and B and D are

of type 2. Let h be the resulting graph after replacing edges (A,B) and (C,D) with (A,D) and

(C,B) where (A,B) ∈ g and (C,D) ∈ g. A multi-edge occurs in h when (A,D) ∈ g or (C,B) ∈ g; an

illustration is shown in figure 7. The probability of a multi-edge can be express as the following:
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P = P((A,D) ∈ g or (C,B) ∈ g|(A,B), (C,D) ∈ g) (8)

≈ P1 + P2 − P1 ∗ P2, (9)

where P1 = P((A,D) ∈ g|(A,B), (C,D) ∈ g) and P2 = P((C,B) ∈ g|(A,B), (C,D) ∈ g).

To calculate an expression for P1 and P2, we need to introduce some notation. Let S1 be the

set of edges between node A and nodes with covariate pattern l. Let p(S1,D|(C,D) ∈ g) be the

probability that an edge e ∈ S1 connects to D given (C,D) ∈ g. An approximate expression for

P1 is the following:

P1 ≈ p(S1,D|(C,D) ∈ g) ∗ |S1|. (10)

Let γ1(i) denote the average degree of a type 1 node with covariate pattern i; if covariate

patterns are defined by nodal degree then γ1(i) = i. The size of S1 approximately followings the

distribution below:

|S1| ∼ Bin
(
γ1(i) − 1,

MM(i,l)∑
r MM(i,r) − 1

)
. (11)

Since one edge of node A is known to attach to node B and mB , mD, there are only γ(i) − 1

remaining edges that can attach to D. Let S2 be the set of edges between node D and nodes

with covariate pattern i. Similar to S1, the size of S2 approximately followings the distribution

below:

|S2| ∼ Bin
(
γ2(l) − 1,

MM(i,l)∑
r MM(r,l) − 1

)
. (12)

Figure 8 depicts many of the quantities described above.

p(S1,D|(C,D) ∈ g) is equal to the probability that one of the edges in S1 connects to one of the

edges in S2. Each edge in S1 can only connect to one of a possible MM(i,l) edges associated with
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...

...

...

...

...

A

2

M1
i

D

2

M2
l

......

1

|S1|

MM(i,l)

1

|S2|

MM(i,l)

Edges from type 1 nodes with covariate pattern i
to type 2 nodes wiht covariate pattern l

Edges from type 2 nodes with covariate pattern l
to type 1 nodes with covariate pattern i

Figure 8: A depiction of the edges associated with type 1 nodes with covariate pattern i and
edges associated with type 2 nodes with covariate pattern l. A multi-edge, as described in
figure 7 can occur if one of the edges depicted connects node A and node D.

nodes of covariate pattern l. Since |S1| and |S2| are small compared to M1
i and M2

l , each of the S1

edges have approximately |S2|/MM(i,l) probability of connecting with an edge in S2. Therefore,

P1 ≈ E[|S1| ∗ |S2|/MM(i,l)] = E[|S1|] ∗ E[|S2|] ∗ 1/MM(i,l) (13)

=
(γ1(i) − 1) ∗ (γ2( j) − 1) ∗MM(i, j)(g)

(
∑

r MM(i,r)(g) − 1) ∗ (
∑

r MM(r, j)(g) − 1)
. (14)

Similarly,

P2 = P((C,B) ∈ g|(A,B), (C,D) ∈ g) ≈
(γ1(k) − 1) ∗ (γ2(l) − 1) ∗MM(k,l)(g)

(
∑

r MM(k,r)g − 1) ∗ (
∑

r MM(r,l)g − 1)
. (15)

Substituting equations (14) and (15) in equation (9) and using that quantity in equation (7),

we get f (Cg,Ch) ≈MM( j,k)(g) ∗MM(l,i)(g) ∗ (1 − P1 − P2 + P1 ∗ P2).
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8 Appendix B: Proof of Theorem

Theorem: A matrix, DMM, is graphical by a bipartite undirected network if and only if the following
four conditions are met :

1. D1
i := (

∑
j DMM(i, j))/i ∈ Z

+
∀i

2. D2
j := (

∑
i DMM(i, j))/ j ∈ Z+

∀ j

3. DMM(i, j) ≤ D1
i ∗D2

j

4. DMM(i, j) ≥ 0.

Proof of Theorem: Given an undirected bipartite graph it is clear that the degree mixing matrix

will satisfy the conditions in the Theorem. Thus, we need only show that a matrix which

satisfies the four criteria is graphical via a bipartite graph. This will be shown by constructing

a realization of the matrix. We begin by generating an empty network with
∑

i D1
i and

∑
i D2

i

nodes of type 1 and type 2, respectively, where D1
i and D2

i of type 1 and type 2 will have degree

i. Conditions (1) and (2) guarantee that D1
i and D2

i are non-negative integers.

The next step is to add edges between type 1 nodes of degree i to type 2 nodes of degree j,

for each i ∈ {1, · · · , r} and j ∈ {1, · · · , s}. We will use a similar approach to connect type 1 nodes

with degree i to type 2 nodes of degree j as presented in the proof for Theorem 1 in Goyal et al.

(2013). The approach starts by defining the components of ~α(1)
i , α(1)

ik
, as the available edges left

to be connected for the kth type 1 node with degree i. The components of ~β(1)
i are defined so

that β(1)
ik
∈ {b

DMM(i, j)

D1
i
c, d

DDM(i, j)

D1
i
e},

∑
k β

(1)
ik

= DMM(i, j), and β(1)
i1
≥ β(1)

i2
≥ · · · ≥ β(1)

iD1
i

. Let ~α(2)
j and ~β(2)

j be

defined similarly for type 2 nodes with degree j. Without loss of generality assume that ~α(1)
i and

~α(2)
j are in decreasing order. The construction procedure will connect the first type 1 node of

degree i to the first β(1)
i1

type 2 nodes in ~α(2)
j . Next, we connect the second type 1 node of degree

i to the next β(1)
i2

nodes in ~α(2)
j , and repeat this process for all D1

i degree i nodes. There are only

three issues that could arise.

Issue 1: β(1)
ik
> D2

j .
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Issue 1 occurs when a single node of type 1, k, of degree i must connect to β(1)
ik

type 2 nodes of

degree j, but β(1)
ik

is greater than the number of type 2 nodes of degree j, D2
j . Thus, node k must

form two edges with the same node of degree j. This cannot occur because β(1)
ik
≤ d

DDM(i, j)

D1
i
e ≤ D2

j

by our condition (3).

Issue 2: α(1)
ik
< β(1)

ik
.

Initially there is a total of
∑

j DMM(i, j) available edges of type 1 nodes of degree i to connect

to type 2 nodes. At each step of connecting type 1 nodes of degree i to type 2 nodes of l,

DMM(i,l) available edges are removed. Thus, at the step of connecting type 1 nodes of degree

i to connect to type 2 nodes of degree j, there exists at least DMM(i, j) available edges. So,∑
k α

(1)
ik
≥ DMM(i, j) =

∑
k β

(1)
ik

. Let p1 and p2 denote partitions of
∑

k α
(1)
ik

and
∑

k β
(1)
ik

into D1
i values

such that the values in the partitions are decreasing and as balanced as possible. These partitions

have the property that p1 ≥ p2 for each pairwise element. These particular partitions are exactly

what the algorithm is generating with α(1)
ik

and β(1)
ik

. So, it can be concluded that α(1)
ik
≥ β(1)

ik
.

Issue 3: α(2)
jk
< β(2)

jk
.

Due to the symmetry of type 1 and type 2 nodes, the proof that α(2)
jk
< β(2)

jk
is not possible is

identical to the proof for issue 2. n
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