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Abstract

The link between the nonparametric estimator of the crude cumulative incidence
of a competing risk and the Kaplan-Meier estimator is exploited. The equiva-
lence of the nonparametric crude cumulative incidence to an inverse-probability-
of-censoring weighted average of the sub-distribution function is proved. The link
between the estimation of crude cumulative incidence curves and Gray’s family of
nonparametric tests is considered. The crude cumulative incidence is proved to be
a Kaplan-Meier like estimator based on the sub-distribution hazard, i.e. the quan-
tity on which Gray’s family of tests is based. A standard probabilistic formalism
is adopted to have a note accessible to applied statisticians.
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ABSTRACT

The link between the nonparametric estimator of the crude cumulative incidence

of a competing risk and the Kaplan-Meier estimator is exploited. The equivalence of

the nonparametric crude cumulative incidence to an inverse-probability-of-censoring

weighted average of the sub-distribution function is proved. The link between the

estimation of crude cumulative incidence curves and Gray’s family of nonparametric
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have a note accessible to applied statisticians.
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1 INTRODUCTION

In the competing risks setting several events may originate the occur-
rence of failure and are thought as competing causes of failure. The crude
cumulative incidence of a given event (CCI), i.e. the cumulative probabil-
ity of observing the event as first, is a quantity is of theoretical interest and
practical application. The decomposition of the overall cumulative incidence
of failure (CI) in sum of CCIs of each event, enable to analyse the events
contributions in originating the failure.

1 *Correspondence: L. Antolini, Unità di Statistica Medica e Biometria, Istituto
Nazionale per lo Studio e la Cura dei Tumori di Milano, Via Venzian 1, 20133 Milano,
Italy; E-mail: laura.antolini@unimib.it
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The nonparametric maximum likelihood estimator of the CCI (Kalbfleish
and Prentice, 1980) is the sum of unconditional probabilities of failure (due
to the event of interest), obtained multiplying the cause-specific hazard by
the overall survival probability. The Gray’s family of nonparametric tests for
comparing CCIs considers weighted averages of the sub-distribution hazards
(Gray, 1988). This family of tests is akin to the Harrington and Fleming’s
one (Harrington and Fleming, 1982) for comparing overall survivals (or over-
all CIs, i.e. the complement to one of the overall survivals), which in turn,
are usually estimated by the Kaplan and Meier method (Kaplan and Meier,
1958). The estimator of the overall survival obtained by this method is the
product of conditional survival probabilities derived from the overall haz-
ard of failure, which in turn, is the key quantity on which Harrington and
Fleming’s family of tests is based. The estimator of the overall CI can also
be expressed as an inverse-probability-of-censoring weighted average (Sat-
ten and Datta, 2001), having the form of a Horvitz-Thompson estimator
(Horvitz and Thompson, 1952) of the distribution function of the time to
failure.

It is worth noticing as although there are analogies between the struc-
ture of the estimator of the CCI and that of the overall CI, the literature
shows as if the interest is focused on the CCI, the use of the Kaplan-Meier
method treating as censored events different from the one of interest, leads
to an overestimate of the underlying CCI. The applied literature shows sev-
eral examples where this incorrect use of the Kaplan-Meier methodology is
present. From a theoretical viewpoint this is discussed in (Gooley et. al,
1999; Satagopan et. al, 2004). Nonetheless, to facilitate the applied statisti-
cian in understanding the link between nonparametric estimation and testing
of the CCI, there is a need to explicitate whether the CCI’s estimator can
be expressed as a Kaplan-Meier like estimator based on the sub-distribution
hazard, which, in turn is the key quantity on which Gray’s family of tests is
based.

The aim of the present note is to show as the CCI’s estimator can be writ-
ten in two equivalent forms: as an inverse-probability-of-censoring weighted
average of the sub-distribution function of the time to failure, and as a
Kaplan-Meier like estimator based on the sub-distribution hazard.

In the first section, setting the notation, the estimators of the CCI and
of the overall CI (with its equivalent forms) are reviewed. In the second sec-
tion, the CCI is expressed in the form of an inverse-probability-of-censoring
weighted average. In the third section, the interpretation of the CCI as
the cumulative incidence of an artificial failure time random variable whose
hazard is the sub-distribution hazard (Elandt-Johnson and Johnson, 1980),
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is reviewed. Then, the estimator is proved to be obtainable as a Kaplan-
Meier like estimator of the cumulative incidence of the artificial failure time
random variable.

2 NOTATION AND BACKGROUND

Let Tf denote the possibly right censored failure time random variable in the
competing risks setting, where there are R ≥ 2 mutually exclusive causes
of failure (r = 1, ..., R). Let ε denote the actual cause of failure, T =
min {Tf ;Tc} the observed time, where Tc is the right censoring time, and δ
the status indicator (δ = 1 if T = Tf and δ = 0 otherwise). Tf and Tc are
assumed independent (i.e. random censoring). Let (ti, di, di·ei) (i = 1, ..., N)
a sample of observations independent and identically distributed (IID) to
(T, δ, δ · ε). The goal is to estimate the CCI of a cause r, defined as the
sub-distribution function

Fr(t) = Pr {Tf ≤ t; ε = r} (1)

where the semicolon is the intersection operator. Let us consider the follow-
ing notation: τ0 = 0, τ1 < τ 2 , ...,< τJ (J ≤ N) are the distinct observed
times; njr =

∑N
i=1I{ti = τ j; ei = r} is the number failures at τ j due to the

cause r; nj =
∑R
r=1 njr is the number of failures (due to any cause) at τ j ;

mj =
∑N
i=1I{ti = τ j ; ei = 0} is the number of censorings at τ j . Ifmj ·njr > 0

for some j and r, i.e. there are ties among failures and censorings at τ j ,
the mj censorings are assumed to occur right after the njr failures. The
observed number of subjects at risk of failure at τ j is

Y (τ j) =
N∑

i=1

I {ti ≥ τ j} =
J∑

k=j

(nk +mk) (2)

and the observed number of subjects at risk of being censored is Y (τ j)−nj .
The nonparametric maximum likelihood estimator of Fr (1) proposed by

Kalbfleish and Prentice (1980) (KP) is

F̂r(t) =
∑

j:τj≤t

ĥr(τ j) · ŜTf (τ j−1) (3)

The term ĥr(τ j) = njr/Y (τ j) estimates

lim
∆t→0+

Pr {t < T ≤ t+∆t; δ · ε = r|T > t} /∆t
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in t = τ j, which under random censoring, equals the cause-specific hazard
function (Kalbfleish and Prentice, 1980)

hr(t) = lim
∆t→0+

Pr {t < Tf ≤ t+∆t; ε = r|Tf > t} /∆t

The term ŜTf (τ j−1) is the Kaplan-Meier estimator (Kaplan and Meier, 1958;
KM) of the overall survival STf (t) = Pr {Tf > t}

ŜTf (t) =
∏

j:τj≤t

(
1− ĥTf (τ j)

)
(4)

where ĥTf (τ j) = nj/Y (τ j) is the estimate of

lim
∆t→0+

1

∆t
· Pr {t < T ≤ t+∆t; δ = 1|T > t} (5)

in t = τ j , which, under random censoring, is equal to the overall hazard of
failure

hTf (t) = lim
∆t→0+

1

∆t
· Pr {t < Tf ≤ t+∆t|Tf > t}

The complement to one of (4), F̂Tf (t) = 1 − ŜTf (t), is the KM estimator

of the overall CI (FTf (t) = Pr {Tf ≤ t}). It is worth of note as F̂Tf can be
equivalently written as

F̂Tf (t) =
∑

j:τj≤t

ĥTf (τ j) · ŜTf (τ j−1) (6)

In fact, for t such as τk ≤ t < τk+1, the complement to one of (4) can be
written as

F̂Tf (t) = 1−
[
1− ĥTf (τk)

]
· ŜTf (τk−1)

= 1− ŜTf (τk−1) + ĥTf (τk) · ŜTf (τk−1)

= F̂Tf (τk−1) + ĥTf (τk) · ŜTf (τk−1)

and, reiterating this argument for F̂Tf (τk−1), ..., F̂Tf (τ2), follows the (6).
The KM estimator of the overall CI has also been expressed by Satten

and Datta (2001) in the form of a Horvitz-Thompson (Horvitz and Thomp-
son, 1952) estimator as the inverse-probability-of-censoring weighted average

F̂Tf (t) =
1

N

N∑

i=1

I {ti ≤ t; ei · di = 1}

ŜTc(ti−)
=
1

N

∑

j:τj≤t

nj

ŜTc(τ j−1)
(7)
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where: ti− = max {τk : τk < ti}, and ŜTc is the KM estimator of the cen-
soring free survival function STc(t) = Pr {Tc > t}

ŜTc(t) =
∏

j:τj≤t

[
1−

mj
Y (τ j)− nj

]

It is worth of note as, unlikely the overall CI (6), which involves the hazard
and the survival function of the same random variable (Tf ), the CCI (3)

involves again ŜTf , but now the hazard is ĥr, which is defined in terms of
(Tf , δ) and does not match the definition of hazard function of any random

variable (Boracchi et al., 2005). Thus, F̂r cannot be thought as the gener-
alisation of the (6), and equivalent expressions with a structure of the (7)
and of the complement to one of (4) cannot be directly derived.

3 F̂r AS A HORVITZ-THOMPSON LIKE ESTI-

MATOR

Let us consider first the case of absence of censoring. The observed data
would be (tfi, εi) (for i = 1, ...,N). An estimate of Fr (1) equivalent to the
(3), is the empirical sub-distribution function

F̂r (t) =
1

N

N∑

i=1

I {tfi ≤ t; εi = r} =
1

N

∑

j:τj≤t

njr (8)

Considered as random variable for each t, F̂r (t) is an average of N terms IID
to the random variable I{Tf ≤ t; ε = r}, which follows a Bernoulli distribu-
tion of parameter Fr(t). The equality between (8) and (3) follows observing
as from (2) we can write Y (τk) − nk =

∑J
l=k+1 nl = Y (τk+1). Thus, for t

such as τ j−1 ≤ t < τ j, ŜTf ( 4) becomes

ŜTf (t) =
∏

k:τk≤t

Y (τk+1)

Y (τ
k
)
=
Y (τ2)

N
·
Y (τ3)

Y (τ2)
· · ·

Y (τ j)

Y (τ j−1)
=
Y (τ j)

N

Finally, substituting this result in (3), follows the (8). In the presence of
right censoring, similarly to (Jewell et al, 2006) we can write

F̂r(t) =
1

N

N∑

i=1

I {ti ≤ t; di · εi = r}

ŜTc(ti−)
=
1

N

∑

j:τj≤t

njr

ŜTc(τ j−1)
(9)
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which is a weighted average of N terms IID to the random variable I{Tf ≤ t;

ε = r} and weighted inversely by ŜTc(ti−). The equality between (9) and
(3) can be proved observing as both are right continuous step functions with
possible jumps at τ j . At τ j , the jump of F̂r (3) is F̂r(τ j)− F̂r(τ j−1) = njr ·
ŜTf (τ j−1)/Y (τ j). The corresponding jump of F̂r (9) is F̂r(τ j)− F̂r(τ j−1) =

njr/[N · ŜTc(τ j−1)]. Thus, the equality between the functions holds if and
only if

ŜTf (τ j−1) · ŜTc(τ j−1) =
Y (τ j)

N
(10)

for any j. Now, starting from the left hand of (10), we can write

ŜTf (τ j−1) · ŜTc(τ j−1) =
j−1∏

k=1

[
1−

nk
Y (τk)

]
·

[
1−

mk
Y (τk)− nk

]

=
j−1∏

k=1

Y (τk)− (nk +mk)

Y (τk)
(11)

Finally, from (2) Y (τk) − (nk +mk) =
∑J
l=k+1 (ml + nl) = Y (τk+1) and

substituting this result in (11), it follows

ŜTf (τ j−1) · ŜTc(τ j−1) =
j−1∏

k=1

Y (τk+1)

Y (τk)
=
Y (τ2)

Y (τ1)
·
Y (τ3)

Y (τ2)
· · ·

Y (τ j)

Y (τ j−1)
=
Y (τ j)

N

4 F̂r(t) AS A KAPLAN-MEIER LIKE ESTIMA-

TOR

The CCI (1) can be thought as the cumulative incidence of the artificial
random variable T ∗ (where the subscript r was omitted for sake of writing)
having support R+ ∪ {+∞} (Gray, 1988), defined from (Tf ; ε)

T ∗ = Tf · I {ε = r}+∞ · I {ε 
= r} (12)

For t ∈ R+, FT ∗ (t) = Pr {T
∗ ≤ t} = Pr {Tf ≤ t; ε = r} = Fr(t). The hazard

function of T ∗ (sub-distribution hazard), for t ∈ R+, is

hT ∗(t) = lim
∆t→0+

Pr {t < T ∗ ≤ t+∆t|T ∗ > t} /∆t

which, under random censoring, can be equivalently written as

hT∗(t) = lim
∆t→0+

·Pr {t < T ∗ ≤ t+∆t|T ∗ > t;Tc > t} /∆t

6
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Using the definition (12), hT ∗ can also be written in terms of the observable
random variables (T, δ, δ · ε) and of Tc (which in general is observable only
for actually censored observations) as

= lim
∆t→0+

1

∆t
·Pr {t < T ≤ t; δ · ε = r|T > t ∪ (T ≤ t; δ · ε 
= r;Tc > t)} (13)

Let us consider now a sample (ti, di, ei · di) (i = 1, ...,N). Before deriving
a suitable estimator of hT ∗(τ j), let us observe as the number of subjects at
risk of failure due to any cause at τ j (2) can be also written as

Y (τ j) = N · ŜTf (τ j−1) · ŜTc(τ j−1) (14)

where ŜTf (τ j−1) · ŜTc(τ j−1) is the estimate of the probability of the condi-
tional event in (5) (the equality between (2) and (14) follows from (10). Now,
we can argue similarly to derive the number of subjects at risk according to
the conditional event in (5). The probability of the latter is

STf (t) · STc(t) +
∑

s�=r

Fs(t) · STc(t)

thus, number of subjects to at risk at τ j is

Y ∗(τ j) = N ·


ŜTf (τ j−1) · ŜTc(τ j−1) +

∑

s�=r

F̂s(τ j−1) · ŜTc(τ j−1)


 (15)

From (14) and (9), Y ∗(τ j) becomes

Y ∗(τ j) = Y (τ j) +
N∑

i=1

I {ti ≤ τ j; di · ei 
= r, 0} · wti(τ j) (16)

where wti(τ j) = ŜTc(τ j−1)/ŜTc(τ i−). Thus, in addition to Y (τ j), Y
∗(τ j) in-

cludes also the subjects who failed before τ j for an event v 
= r, weighted by
wti(τ j). The latter is an estimate of Pr {Tci ≥ τ j |Tci ≥ ti} = STc(τ j−1)/STc(ti−),
which for ti ≤ τ j is less or equal than one and decreases the less is ti. Let
us observe as (16) is equal to the number of subjects considered at risk in
the estimating equation of the Fine and Gray’s (1999) regression model.

Moreover, Y ∗(τ j) can be also written expanding Y (τ j) as

Y ∗(τ j) = Y (τ j) ·

[
1− F̂r(τ j−1)

ŜTf (τ j−1)

]
(17)

7
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The multiplier of Y (τ j) is greater or equal than one, being from (7) and (9)

1− F̂r(τ j−1) = ŜTf (τ j−1) +
∑

s �=r

F̂s(τ j−1) > ŜTf (τ j−1) (18)

The greater is the competing action of events v 
= r (within τ j−1), i.e. the
greater is

∑
s �=r F̂s(τ j−1) in (18), the greater is the multiplier of Y (τ j). To

prove the equality between (16) and (17), starting from (15), and observing
as from (10) ŜTc(τ j−1) = Y (τ j)/[N · ŜTf (τ j−1)], we can write

Y ∗(τ j) =


ŜTf (τ j−1) +

∑

s �=r

F̂s(τ j−1)


 · Y (τ j)

ŜTf (τ j−1)

and from (18) the (17) follows. Let us observe as (17) is equal to the number
of subjects considered at risk in the statistic for the comparison of crude
cumulative incidence curves (Gray, 1988).

An estimate of Fr (1) , equivalent to (3), having the structure of the KM
estimator can be obtained generalising the (4) to T ∗ , by

F̂r(t) = 1−
∏

j:τj≤t

[
1− ĥT ∗(τ j)

]
(19)

where ĥT ∗(τ j) = njr/Y
∗(τ j) is the estimate of the sub-distribution hazard

function (13) in t = τ j. The equality between the step functions (19) and
(3) holds true if

j∑

k=1

ĥr(τk) · ŜTf (τk−1) = 1−
j∏

k=1

[
1− ĥT∗(τk)

]
(20)

for any j, which can be proved by induction. For j = 1, ĥT ∗(τ1) = ĥTf (τ1)

and ŜTf (τ0) = 1, thus (20) is verified. Now, assuming that (20) holds true
for a given j, this implies (20) holds true for j + 1, in fact

j+1∑

k=1

ĥr(τk) · ŜTf (τk−1) =
j∑

k=1

ĥr(τk) · ŜTf (τk−1) + ĥr(τ j+1) · ŜTf (τ j)

and using the hypothesis

= 1−
j∏

k=1

[
1− ĥT ∗(τk)

]
+ ĥr(τ j+1) · ŜTf (τ j)

8
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Now, observing as ĥr(τ j+1) = ĥT ∗(τ j+1) · Y
∗(τ j)/Y (τ j) and using (17), it

follows

= 1−
j∏

k=1

[
1− ĥT ∗(τk)

]
+ ĥT ∗(τ j+1) ·

[
1− F̂r(τ j)

]

finally, using again the hypothesis

= 1−
j∏

k=1

[
1− ĥT ∗(τk)

]
+ĥT ∗(τ j+1)·

j∏

k=1

[
1− ĥT ∗(τk)

]
= 1−

j+1∏

k=1

[
1− ĥT ∗(τk)

]

5 DISCUSSION

The KP estimator of the CCI is a fundamental tool when dealing with
survival data in the presence of competing risks. As a part of the estima-
tion process, it invlolves the KM estimator of the overall survival/CI. Both
estimators are usually introduced as nonparametric maximum likelihood es-
timators.

The KM estimator is the product of conditional survival probabilities,
which are directly obtained from the nonparametric estimate of the un-
derlying overall hazard. KM curves, derived from two or more groups of
subjects, are usually accompanied by the result of a nonparametric hypoth-
esis testing on their equality. The log rank test, and more generally the
Harrington and Fleming’s family of tests (Harrington and Fleming, 1982),
considering weighted averages of hazards, are based on the equality of the
underlying hazards, and indeed rely on the one-to-one correspondence hold-
ing between hazard functions and survival/cumulative incidence functions.
A natural link between estimation and the hypothesis testing procedures
is that the overall hazard common to the groups under the null hypothe-
sis, is estimated employing the same nonparametric estimator of the hazard
used to derive the curves. The KM estimator can be alternatively expressed
as an inverse-probability-of-censoring weighted average having the form of
a Horvitz-Thompson estimator of the distribution function of the time to
failure, leading to a convenient form for the asymptotic theory (Satten and
Datta, 2001). The estimators of the CCI and of the overall CI are intrinse-
caly linked as the summation of the CCI estimates equals the estimate of the
overall CI, in a coherent way with the corresponding population quantities.
Moreover, both CI and CCI estimators can be written as sum of estimated
unconditional probabilities. In the first case, they are the product of the
overall survival by the overall hazard. This leads, indeed, to a third equiva-
lent form for the KM estimator of the overall CI, which is derived eventually

9
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in terms of the overall hazard. In the case of the CCI, the unconditional
probability involved is the product of the overall survival by the cause-
specific hazard. However, in this case, the CCI estimator cannot be written
only in terms of the cause-specific hazard as the overall survival involves the
overall hazard, which in turn, depends on the cause specific hazards of all
causes. As a consequence, the KM procedure cannot be employed to derive
CCI estimates substituing the cause-specific hazard in place of the overall
hazard (Gooley et al., 1999; Satagopan et. al, 2004). Nonetheless, an alter-
native expression of the CCI estimator as an inverse-probability-of-censoring
weighted average having the form of a Horvitz-Thompson estimator can still
be derived as showed in section 3.

Concerning the comparison among CCI curves, it has to be pointed out as
the equality among CCI curves do not necessarily imply the equality between
the corresponding overall survivals and cause specific hazards (Gray, 1988).
Gray’s family of tests, in fact, relies on the equality among the groups of
the sub-distribution hazard, which being the hazard of a fictitious improper
random variable having the CCI as cumulative incidence guarantees a one-
to-one correspondence between the CCIs and sub-distribution hazards. To
facilitate the applied statistician in understanding the link between non-
parametric estimation and testing of the CCI, we proved in section 4 as the
KP estimator of the CCI can be expressed in terms of the sub-distribution
hazard present in Gray’s tests obtaining a KM like estimator. The sub-
distribution hazard was estimated observing as the number of subjects at
risk when estimating the overall hazard can be thought as the expected num-
ber of sampling subjects free from failure and from censoring. This concept
was generalised to the case of the sub-distribution hazard, considering the
expected number of subjects free from any event or who developed an event
different from the one interest, and free from censoring by the time point
considered. This leads to an estimate of the sub-distribution hazard equal
the one employed in Gray’s tests to compute the sub-distribution hazard
common to the groups under the null hypothesis. The Horvitz-Thompson
form of the CCI estimator was employed to prove the alternative KM form
in section 4. Further work is needed to generalise the asymptotic results ob-
tained using the Horvitz-Thompson form in the absence of competing risk
to the case of the presence competing risks.
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