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Abstract

Microarray technology has the potential to lead to a better understanding of bi-
ological processes and diseases such as cancer. When failure time outcomes are also
available, one might be interested in relating gene expression profiles to the survival
outcome such as time to cancer recurrence or time to death. This is statistically chal-
lenging because the number of covariates greatly exceeds the number of observations.
While the majority of work has focused on regularized Cox regression model and ac-
celerated failure time model, they may be restrictive in practice. We relax the model
assumption and and consider a nonparametric transformation model that makes no
parametric assumption on either the transformation function or the error distribution.
We propose a more flexible estimator, called penalized smoothed partial rank estima-
tor, by regularizing the partial rank estimator with SCAD penalty. We also develop
an efficient algorithm to obtain the whole solution path. Extensive simulations demon-
strate the advantages of the proposal and the new method has been applied to a real
genomic study.
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1 Introduction

Microarray technology enables researchers to measure the expression levels for tens of thou-
sands of genes in a tissue sample simultaneously, which has the potential to revolutionize
our understanding of biological processes and diseases such as cancer. Traditionally, gene
expression profiles have been used for predicting phenotypes such as cancer classification
or responses to certain treatment. This problem can be formulated as predicting binary
or multi-category outcomes and has been studied extensively in recent years (See Ma and
Huang (2008) for a comprehensive review). When, in addition to gene expression data, (pos-
sibly censored) failure times are available, one may naturally want to link gene expression
profiles to the survival outcomes such as time to cancer recurrence or time to death and to
better understand the prognosis of cancer patients. Our work is motivated by such needs in
multiple myeloma.

Multiple myeloma is the world’s second-most common hematological cancer, characterized
by excessive numbers of abnormal plasma cells in the bone marrow and overproduction of
intact monoclonal immunoglobulin. Despite recent progress in treatment, there are still wide
clinical and pathophysiologic heterogeneities. Patients experience survival periods of a few
months to more than 10 years. Identifying important biomarkers associated with survival
can help investigators better understand the molecular etiology of this disease and discover
new therapeutic targets. Also building a risk score system with good predictive power could
enable physicians to identify high risk patients and contribute to personalized medicine. In a
clinical study with 170 multiple myeloma patients and tens of thousands of gene expression
level measurements for each patient, classical methods as discussed below fail because the
number of genes greatly exceeds the number of patients.

A common approach that yields a sparse model is penalized estimation, which modifies the
minimization of a usual empirical risk function denoted by R̂n(θ) by adding a penalty λP (θ)
and thus minimize

R̂n(θ) + λP (θ)

where θ is the unknown parameter associated with outcome and λ is the tuning parameter
that controls the degree of regularization. Tibshirani (1997) and Gui and Li (2005) devel-
oped regularized Cox regression methods by adding an L1 LASSO penalty to the partial
likelihood. Fan and Li (2002) extended the smoothly clipped absolute deviation (SCAD)
penalty to Cox model. Meanwhile, regularization has also been applied to estimators under
the AFT model, see Huang et al. (2006), Cai et al. (2009) and Li et al. (2010).

However, these models may be restrictive in practice. For example, the proportional hazards
assumption for Cox regression model or the exponential risk form may not hold for certain
applications. One feasible remedy is the nonparametric transformation model (Khan and
Tamer, 2007), which postulates that a monotone increasing transformation of the failure
time depends on the covariates through a linear model and makes no parametric assump-
tions on either the transformation function or the error distribution. This model is general
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and includes the aforementioned Cox and AFT models as special cases.

Khan and Tamer (2007) proposed the partial rank (PR) estimator for the nonparametric
transformation survival model. Their approach allows the censoring time to depend on the
covariates as long as it is conditionally independent of the survival time given the covariates,
and there is not restriction on the support of the censoring time. However, this estimator is
based on maximization of a discontinuous function, making it impossible to compute when
there are multiple covariates. Song and Ma (2007) improved the PR estimator by smoothing
the discontinuous objection function. Their smoothed partial rank (SPR) estimator can be
obtained using Newton-Raphson algorithm. However, the SPR estimator cannot handle the
high-dimensional data encountered in microarray studies.

In this work, we build upon the SPR estimator and propose a penalized smoothed partial
rank (PSPR) estimator for variable selection and estimation in the nonparametric transfor-
mation survival model with high-dimensional covariates. The proposed estimator maximizes
a smoothed version of the SCAD-penalized objective function. The optimization is chal-
lenging because the objective function is nonconcave and the penalty is nonconcave and
non-differentiable at zero. We propose an efficient solution path algorithm for computing
the PSPR estimator.

The rest of this paper is organized as follows. In Section 2, we propose the PSPR estima-
tor. In Section 3, we introduce the coordinate accent algorithm and discuss implementation
issues. Simulation results are shown in Section 4. We illustrate a real application of the
proposed method to build a risk score for multiple myeloma patients in Section 5 and some
final remarks are provided in Section 6.

2 Methods

2.1 Model Definition

Let T denote the survival time, C denote the censoring time, and Z be a length p vector
of covariates. Under right censoring, the observed survival data are U = min(T,C) and
δ = I(T ≤ C). Assume that the survival time depends on the covariates through the
nonparametric transformation model,

g(T ) = β′Z + e (1)

where g(·) is an unspecified monotone increasing function, e is the error term with an un-
known distribution independent of Z, β is a length p vector of regression coefficients. This
model is flexible and includes several popular models as special cases. For example, the
Cox regression model is a special case of (1) with e following the standard extreme value
distribution; the AFT model is a special case of (1) with g(·) = log(·).
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The nonparametric transformation model is scale invariant and β is identifiable up to a scale
constant. Without loss of generality, we assume the the first component of β is 1, i.e. the
first covariate is the ‘anchor variable’. In a clinical setting, the anchor is often chosen to
be the treatment assignment. We suggest a simple way of selecting the anchor variable in
Section 3.2.

2.2 Smoothed Partial Rank Estimator

Suppose the observed data (Ui, δi,Zi), i = 1, . . . , n, are independent and identically dis-
tributed as (U, δ,Z). The partial rank estimator (Khan and Tamer, 2007) maximizes the
following objective function

R̃n(β) =
1

n(n− 1)

∑
i 6=k

δiI(Ui ≤ Uk)I(β′Zi < β′Zk) (2)

with the constraint that the first element of β equals 1.

However, the objective function R̃n(β) is a weighted sum of indicator functions and hence
discontinuous. Maximization is very difficult with multiple covariates, not to mention high-
dimensional inputs. Song and Ma (2007) proposed to use the scaled sigmoid function

sn(u) =
1

1 + exp(−u/σn)
(3)

to approximate the indicator function I(u > 0). σn is a sequence of strictly positive and

decreasing numbers satisfying limn→∞ σn = 0. Therefore, R̃n(β) can be approximated by

Rn(β) =
1

n(n− 1)

∑
i 6=k

δiI(Ui ≤ Uk) sn(β′(Zk − Zi)) (4)

The SPR estimator is obtained by maximizing (4) assuming the first variable is the anchor
variable. Since Rn(β) is a smoothing function of β, the computation of the SPR estimator
can be accomplished through standard Newton-Raphson algorithm.

2.3 Penalized Smoothed Partial Rank Estimator

From a biological point of view, it is important to identify a small subset of genes that may be
involved in the biological process determining the survival outcome. Extensive work has been
done on simultaneous variable selection and estimation through penalization. For example,
Tibshirani (1996) proposed the least absolute shrinkage and selection operator (LASSO)
which minimizes the least squares with L1 penalty defined as Pλ(|β|) = λ|β|. Frank and
Friedman (1993) considered the Lq penalty, Pλ(|β|) = λ|β|q, (q > 0), which yields the bridge
regression. Fan and Li (2001) proposed the smoothly clipped absolute deviation (SCAD)
penalty, defined by

P ′λ(β) = λ
{
I(β ≤ λ) +

(aλ− β)+
(a− 1)λ

I(β > λ)
}
, β ≥ 0 for some a > 2 (5)
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The SCAD has been shown to possess an oracle property with proper choice of regularization
parameter. Namely, the true regression coefficients that are zero are automatically estimated
as zero, and the remaining coefficients are estimated as well as if the correct submodel were
known in advance.

Due to the aforementioned nice theoretical properties, we consider adding the SCAD penalty
to (4) which leads to the following penalized smoothed partial rank (PSPR) estimator

β̂ = arg max
β

{
Rn(β)−

p∑
j=1

Pλ(|βj|)
}

(6)

where Pλ(·) is the SCAD penalty function with regularization parameter λ and p is the
number of covariates. For identifiability, we take the first variable to be the anchor variable.

3 Computation and Implementation

3.1 Coordinate-Minorization-Ascent Algorithm

The optimization problem in (6) is challenging because Rn(β) is nonconcave and the penalty
is nonconcave and non-differentiable at zero. Recently, Zou and Li (2008) developed a new it-
erative algorithm based on local linear approximation (LLA) for maximizing the nonconcave
penalized likelihood. However, LLA is not appropriate for nonconcave objective functions.
To overcome the computation difficulties, we propose a new coordinate-minorization-ascent
algorithm similar to that in Tseng (1988), Lange et al. (2000), Hunter and Lange (2004)
and Xue et al. (2010).

To proceed, we rewrite the optimization problem as

max
β

{
Rn(β)−

p∑
j=1

Pλ(|βj|)
}

where

Rn(β) =
1

n(n− 1)

∑
i 6=k

wki
1 + e−β′(Xk−Xi)

where wki = δiI(Ui ≤ Uk) and Xi = Zi/σn = (zi1/σn, . . . , zip/σn)′ is the scaled covariate
vector for the i-th observation.

Let β̃ be the current estimate. The coordinate-ascent algorithm sequentially updates β̃j by
solving the following univariate optimization problem

β̃j ⇐ arg max
βj

{
Rn(βj; βj′ = β̃j′ , j

′ 6= j)− Pλ(|βj|)
}

(7)

However, the maximizer of (7) does not have a closed-form solution. To speed up compu-
tation, we propose to use the MM idea to derive a closed-form update that increase rather
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than directly maximizing the objective function in (7).

Using a second order Taylor expansion and Theorem 1 from Zou and Li (2008), one can find
a minorization function of the objective function in (7). Following the MM algorithm we
show in Appendix that one can simply update

β̃newj = S(β̃j +
ãj

b̃j
,
P ′λ(|β̃j|)
b̃j

) (8)

where S(·, ·) is the soft-thresholding operator (Tibshirani, 1996)

S(r, t) = sign(r)(|r| − t)+

ãj =
1

n(n− 1)

∑
i 6=k

wki(xkj − xij)e−β
′(Xk−Xi)

(1 + e−β′(Xk−Xi))2

b̃j =
1

6
√

3n(n− 1)

∑
i 6=k

wki(xkj − xij)2

To recap, the proposed algorithm is summarized as follows.

Step 1 Initialization of β̃.

Step 2 Cyclically update β̃j (2 ≤ j ≤ p) via soft-thresholding β̃j ⇐ S(β̃j +
ãj
b̃j
,
P ′λ(|β̃j|)
b̃j

)

Step 3 Repeat Step 2 till convergence.

For any given λ, one may obtain a penalized estimator for β. Larger values of λ generate
more sparse models. One is usually interested in models for more than one value of λ. Toward
this end, we compute the solutions for a path of λ values. We begin with λ sufficiently large
to set the estimated β = 0, and decrease λ until we arrive near the unregularized solution.
Notice in the updating formula (8) that if P ′λ(0) = λ ≤ ãj, then β̃newj = 0. Thus, we set the
first λ to be

λmax = max
j 6=1

∣∣∣∣∣ 1

n(n− 1)

∑
i 6=k

wki(xkj − xij)e−(xk1−xi1)

(1 + e−(xk1−xj1))2

∣∣∣∣∣
Note that λmax is the smallest λ value that shrinks all covariate (except the anchor variable)
estimates to zero.

This algorithm can also accommodate other types of penalty as long as the penalty function
has finite derivative at zero. For example, to compute the LASSO-penalized estimator, one

simply replace P ′λ(|β̃|) with λ.
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3.2 Selection of the anchor variable

We identify the anchor variable as follows. Compute the c-statistics of the p variables on at
a time,

cj = max

{∑
i 6=k δiI(Ui ≤ Uk)I(zij < zkj)∑

i 6=k δiI(Ui ≤ Uk)
,

∑
i 6=k δiI(Ui ≤ Uk)I(zij > zkj)∑

i 6=k δiI(Ui ≤ Uk)

}
(9)

which is a scaled version of the partial rank objective function (2) for the model with only
one variable. It measures the marginal association between each variable and the survival
outcome under the nonparametric transformation model. The variable with the largest c-
statistics is chosen as the anchor variable. For the anchor variable, if the c-statistics is
attained at the first component of (9), β(1) = 1, otherwise β(1) = −1.

3.3 Selection of Tuning Parameters

The performance of the final model depends on the tuning parameter (λ, a) for the SCAD
penalty and the scaling constant σn for the smoothing function. We follow Fan and Li (2001)
and let a = 3.7. This value has been shown to work well in practice. Similar to Lin et al.
(2011), we can approximate Rn(β) with a quadratic form and regard the original problem as
a kind of penalized least squares. Thus, we propose to select the optimal λ by maximizing

AICλ = log(Rn(β̂))− dfλ
n

where the degree of freedom dfλ can be approximated by the number of nonzero coefficient
estimates. Although Wang et al. (2007) showed that the BIC type selector can identify the
true model consistently, we find it places too heavy penalty for new addition of variables in
our practice. The AIC criterion works well in our simulation studies.

The accuracy of the sigmoid approximation depends on the tuning parameter σn. Appar-
ently a smaller σn may lead to better approximation thus more precise estimator. However,
numerical studies also show that for extremely small σn, the maximization procedure may be
unstable. A rule of thumb for choosing σn is to guarantee a majority of |β′(Xk−Xi)/σn| > 5
(Gammerman, 1996). We propose the following approach for choosing σn. Initialize σ0

n = 1
and construct the PSPR estimate β̂0 using the afore mentioned tuning scheme. Then let σn
be the largest constant such that 95% of |β̂0′(Xk−Xi)/σn| is greater than 5. Our simulation
studies show that it works well.

4 Simulation Studies

In this section, we conduct simulation studies to assess the finite-sample performance of the
PSPR estimator and compare it with l1 penalized Cox proportional hazards model and reg-
ularized AFT model. Estimation and tuning for l1 penalized Cox model can be implemented
in R package glmnet. The optimal regularizing parameter is chosen using 10-fold cross val-
idation. For regularized AFT model, we used the algorithm developed by Cai, Huang and
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Tian (2008) and select the optimal tuning parameter following their suggestion, namely 5-
fold cross validation. The run time for AFT model becomes inhibitive when sample size or
number of covariates is moderate, which is the reason why we only include it in part of the
comparison.

First, we investigate the performance of the proposed PSPR estimator when p < n. We sim-
ulate 100 datasets with n = 100, 200 observations, respectively, from the following model:
log(T |Z) = β′0Z+e where e follows the standard extreme value distribution. We assume that
the first 5 out of a total of 50 variables are related to T through the above model and the
nonzero coefficients are 2.1, 1.8, 1.9, 2.2 and 2.7 (generated from an uniform(1, 3) distribu-
tion). The covariates Z = (Z1, . . . , Z50) is generated from a multivariate normal with mean
zero and variance covariace matrix Σ = (σjk)50×50 = (ρ|j−k|). We vary ρ to be 0, 0.5, 0.9,
respectively, to mimic the scenarios in which the correlation is weak, moderate and high.The
censoring variable C was generated from uniform[0, δ], where δ was chosen to achieve about
40% of censoring.

Model performance is evaluated from the following aspects.

1. False Negative Rate (FNR): the average proportion of true nonzero variables being set
to zero

2. False Positive Rate (FPR): the average proportion of true zero variables being set to
nonzero

3. Model size: the average number of nonzero variables in the selected model

4. Correct model rate: the percentage of the method identifying the true model (no false
positives or false negatives)

5. Wrong variable rate: the proportion of true zero variables among those being selected
as nonzero

6. Bias: average of (β̂ − β0)′(β̂ − β0). To remove the different scaling factors introduced
by the selection of the anchor variable, we rescale β̂ and β0 such that they all have l2
norm equals to 1.

7. AUC: average of

∑
i 6=k δiI(Ui ≤ Uk)I(β̂′Zi < β̂′Zk)∑

i 6=k δiI(Ui ≤ Uk)
. If one plug in β0 instead of β̂, this

provides an oracle reference as “the best one can do”.

As shown in Table 1, when the correlation is not very high, the proposed PSPR method
can identify the correct model with very high probability (over 92%) and estimate the co-
efficients with high accuracy. The FNR and FPR are almost 0 and the bias is very low.
The AUC is over 0.93 and the difference in AUC between the PSPR model and the true
model is smaller than 0.005. As sample size increases, the performance gets even better
with 100% correct model rate, smaller bias and higher AUC. When we move to the diffi-
cult high correlation setting, the proposed approach can still achieve AUC as high as 0.958,
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only 0.01 lower than the true model. Note that the FPR is still close to 0 which comes
with the price of a relatively high FNR. In other words, it tends to miss some nonzero
variables, which is expected to happen in order to keep FPR low when the correlation is
very high among variables. The good news is that as sample size increases from 100 to 200,
the FNR drops to 9% and PSPR method identifies the correct model nearly half of the times.

We also assess the model performance when the signal is weak (Table 2). The simulation
settings are the same as before except that the nonzero coefficients are 1.05, 0.9, 0.95, 1.1 and
1.35. The performance is still impressive with correct model rate about half and high AUC
over 0.85 in low and moderate correlations. The correct model rate improves to about 90%
as the sample size increases from 100 to 200.

Next we consider the scenarios when p > n. We adopt the same simulation settings as
before except that there are 950 extra zero variables, bringing 995 zero variables in total.
The results are presented in Table 3. The performance regarding identifying the correct
model, estimating the coefficients and prediction is very good when the correlation is not
high. When the sample size reaches 200, the proposed method can identify the correct model
almost all the time. The performance in the presence of very high correlations is also ac-
ceptable.

Finally, we consider the cases when the “true” model is not a Cox or AFT model. We
simulated 100 datasets with 100 observations, respectively, from the following models.

1. 3Φ−1(T |Z)− 1 = β′0Z + e where e follows an uniform(−2, 2) distribution.

2. 4Φ−1(T |Z) = β′0Z + e where e is a random variable with probability 0.5 to equal 1 or
−1.

3. 2Φ−1(T |Z) = β′0Z + e where e follows a standard Laplace distribution with density
function f(x) = 1

2
e−|x|.

where Φ−1(·) is the inverse of the standard normal cumulative distribution function and β0
is set to be 1.05, 0.9, 0.95, 1.1, 1, 35 plus 45 zero components. The results are shown in Table
4. The PSPR estimator is fairly robust as the performance is not affected by the change
of underlying model assumptions. Cox and AFT models tend to pick a much larger model
characterized by high false positive rates. This effect is more prominent when the correla-
tions are not high.

Correctly identifying the anchor variable is crucial in our proposed approach. Here we also
evaluate how our method performs regarding selecting an anchor variable whose true coeffi-
cient is nonzero. As we can see from Table 5− 8, regardless of sample size, correlation and
signal strength, a variable with true nonzero coefficient is selected almost every time. Fur-
thermore, the variable with the largest coefficient value is selected with highest probability
when the correlation is low. This trend strengthens as the sample size increases. However,
as the correlation becomes stronger, this effect is diluted as expected.
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5 Application to a Multiple Myeloma Study

We study overall survival for 170 multiple myeloma patients enrolled in a clinical trial. The
median followup was 58 months. During the study, a total of 76 deaths were observed, that
is 55% of observations were censored. Subject gene expression levels were measured using
Affymetrix Human Exon 1.0 ST Array before treatment. We randomly subset the 170 pa-
tients into a training set of 120 and a validation set of 50. We build the risk score using only
the data from the training set.

Expression values were measured for 18708 genes and log2-transformed. Since the expression
values were from the newer microarray technology whose noise level is low, we do not filter
out any gene due to low signal to noise ratio. We identify RUNX1 as the anchor variable
using the approach in Section 3.2. We keep the top 1000 genes with highest c-statistics and
apply the proposed procedure to the 120 patients in the training set and tune the model as
Section 3.3 describes. The final model select 10 genes besides RUNX1, which are presented
in Table 11. The Cox model selects 18 genes, among which 4 are common with those selected
by PSPR. The linear combination of the selected gene expression values and their parameter
estimate can be used as a risk score to classify future patients.

To evaluate the predictive performance of the proposed risk score, we calculate the risk scores
for the 50 patients in the validation set. The c-statistics for PSPR score and Cox score are
0.66 and 0.65, respectively, which suggests good predictive power. There is an apparent
linear trend between the PSPR and Cox risk score (Figure 5) with Spearman correlation of
0.76 which is highly significant. In practice, clinicians are interested in identifying 10-20%
of the patients with shorter survival for intensive treatment. Here we classify a patient to
be of high risk if the predicted risk score exceeds the 15th percentile in the training set. The
Kaplan-Meier curves for the high and low risk groups are shown in Figure 1. The separation
is highly significant with hazard ratio of 3.72 and p-value 0.0034. When half of patients are
classified as high risk, one can still see a significant effect of the grouping according to the
predicted risk score (Figure 2) with hazard ratio 3.15 and p-value 0.00754. The Cox score
does not have enough power to separate half high risk patients from the rest (Figure 4).

6 Conclusion

Our proposed PSPR estimator relaxes the model assumptions for popular methods used
for high-dimensional survival analysis. Compared to other estimation and variable selection
methods, ours poses minimal restrictions. Therefore, our estimator is more flexible and ro-
bust and should be preferred when the model assumptions cannot be justified. Based on the
smoothed approximation and coordinate-accent and MM algorithms, we develop an efficient
algorithm for the challenging optimization problem. Both simulation studies and real data
application demonstrate the potential of this new method.
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Appendix

A.1 Derivation of the update formula

The proposed algorithm is a hybrid of the coordinate-ascent algorithm (Tseng, 1988) and the
minorization-maximization (MM) algorithm (Lange et al., 2000; Hunter and Lange, 2004).

Let β̃ be the current estimate. The coordinate-ascent algorithm sequentially updates β̃j by
solving the following univariate optimization problem

β̃j ⇐ arg max
βj

{
Rn(βj; βj′ = β̃j′ , j

′ 6= j)− Pλ(|βj|)
}

(10)

However, the maximizer of (10) does not have a closed-form solution. Using some numerical
optimization technique to find the exact maximizer is not ideal because it may need slow
down the algorithm to reach convergence. To exploit the power of coordinate-ascent method,
one can use the MM idea to derive a closed-form update that increase rather than maximize
the objective function in (10).

Recall that

Rn(β) =
1

n(n− 1)

∑
i 6=k

wki
1 + e−β′(Xk−Xi)

∂Rn(β)

∂βj
=

1

n(n− 1)

∑
i 6=k

wki(xkj − xij)e−β
′(Xk−Xi)

(1 + e−β′(Xk−Xi))2

∂2Rn(β)

∂β2
j

=
1

n(n− 1)

∑
i 6=k

wki(xkj − xij)2e−β
′(Xk−Xi)(e−β

′(Xk−Xi) − 1)

(1 + e−β′(Xk−Xi))3

≥ − 1

6
√

3n(n− 1)

∑
i 6=k

wki(xkj − xij)2

where xij = zij/σn, i.e., the j-th scaled covariate for the i-th observation.

Then by Taylor’s expansion,

Rn(βj; βj′ = β̃j′ , j
′ 6= j)

= Rn(β̃) +
∂Rn(β)

∂βj

∣∣∣
β=β̃

(βj − β̃j) +
1

2

∂2Rn(β)

∂β2
j

∣∣∣
β=α(β̃)

(βj − β̃j)2

≥ Rn(β̃) + ãj(βj − β̃j)−
1

2
b̃j(βj − β̃j)2 (11)

≡ Q(βj)

where

ãj =
∂Rn(β)

∂βj

∣∣∣
β=β̃

=
1

n(n− 1)

∑
i 6=k

wki(xkj − xij)e−β
′(Xk−Xi)

(1 + e−β′(Xk−Xi))2
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b̃j =
1

6
√

3n(n− 1)

∑
i 6=k

wki(xkj − xij)2

Since Pλ(·) is concave on [0,+∞),

Pλ(|βj|) ≤ Pλ(|β̃j|) + P ′λ(|β̃j|) (|βj| − |β̃j|) ≡ L(|βj|) (12)

(11) and (12) together tells us that Q(βj)−L(|βj|) is a minorization function of the objective

function in (10). Following the MM algorithm one can update β̃j by

β̃j ⇐ arg max
βj

{
Q(βj)− L(|βj|)

}
After some algebra, one can get the simple update

β̃newj = S(β̃j +
ãj

b̃j
,
P ′λ(|β̃j|)
b̃j

)

where S(·, ·) is the soft-thresholding operator (Tibshirani, 1996)

S(r, t) = sign(r)(|r| − t)+

14



ρ Sample Method FNR FPR Model Correct Wrong Bias AUC
Size % % Size Model % Variable %

0 Truth 0.934 (0.002 )

100 PSPR 0 0 5.0 99 0.2 0.007 0.930 ( 0.003 )
Cox 0 32.8 19.8 0 73.5 3.980 0.924 ( 0.005 )
AFT 0 30.8 18.9 0 71.2 0.027 0.920 ( 0.008 )

200 PSPR 0 0 5.0 100 0 0.004 0.932 (0.002 )
Cox 0 39.2 22.6 0 76.8 3.992 0.929 ( 0.002 )

0.5 Truth 0.955 (0.001 )

100 PSPR 0.8 0.1 5.0 92 0.9 0.019 0.952 ( 0.006 )
Cox 0 27.9 17.6 0 69.4 3.977 0.950 ( 0.005 )
AFT 0 23.6 15.6 0 61.6 0.024 0.950 ( 0.004 )

200 PSPR 0 0 5.0 100 0 0.005 0.955 (0.001 )
Cox 0 34.8 20.7 0 74.9 3.991 0.953 ( 0.002 )

0.9 Truth 0.968 (0.001 )

100 PSPR 32.4 0.5 3.6 5 5.1 0.375 0.958 ( 0.005 )
Cox 0 21.4 14.6 0 62.1 3.904 0.963 ( 0.015 )
AFT 0 13.6 11.1 0 48.3 0.059 0.966 ( 0.002 )

200 PSPR 9.0 0.3 4.7 48 2.6 0.150 0.964 (0.003 )
Cox 0 22.2 15.0 0 65.1 3.974 0.967 ( 0.001 )

Table 1: Simulation: β = (2.1, 1.8, 1.9, 2.2, 2.7, rep(0, 45))
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ρ Sample Method FNR FPR Model Correct Wrong Bias AUC
Size % % Size Model % Variable %

0 Truth 0.868 (0.003 )

100 PSPR 2.2 1.3 5.5 58 8.5 0.063 0.851 ( 0.018 )
Cox 0 23.6 15.6 0 66.4 3.934 0.850 ( 0.010 )
AFT 0 26.6 17.0 0 68.5 0.098 0.841 ( 0.012 )

200 PSPR 0 0.6 5.3 83 4.0 0.017 0.863 (0.005 )
Cox 0 28.6 17.9 0 69.7 3.976 0.861 ( 0.005 )

0.5 Truth 0.909 (0.002 )

100 PSPR 8.4 0.6 4.9 48 5.2 0.118 0.897 ( 0.014 )
Cox 0 20.6 14.2 0 62.6 3.950 0.903 ( 0.004 )
AFT 0 18.7 13.4 0 54.6 0.062 0.901 ( 0.008 )

200 PSPR 0.4 0.1 5 92 1.0 0.025 0.907 (0.004 )
Cox 0 23.5 15.6 0 65.3 3.975 0.906 ( 0.003 )

0.9 Truth 0.935 (0.002 )

100 PSPR 45.2 0.9 3.1 0 10.4 0.560 0.924 ( 0.006 )
Cox 1.8 13.8 11.1 0 50.1 3.779 0.929 ( 0.015 )
AFT 1.3 12.0 10.3 7 44.9 0.194 0.930 ( 0.004 )

200 PSPR 34.6 0.4 3.5 1 4.5 0.379 0.929 (0.003 )
Cox 0 15.7 12.1 0 55.5 3.908 0.933 ( 0.002 )

Table 2: Simulation: β = (1.05, 0.9, 0.95, 1.1, 1.35, rep(0, 45))
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ρ Sample Method FNR FPR Model Correct Wrong Bias AUC
Size % % Size Model % Variable %

0 Truth 0.934 (0.002 )

100 PSPR 1.2 0 5.3 84 4.1 0.029 0.924 ( 0.034 )
Cox 0 3.3 37.5 0 86.1 3.953 0.912 ( 0.011 )

200 PSPR 0 0 5.0 97 0.5 0.003 0.932 ( 0.002 )
Cox 0 4.9 53.7 0 90.4 3.985 0.926 ( 0.003 )

0.5 Truth 0.956 (0.001 )

100 PSPR 5.2 0 5.0 68 4.1 0.070 0.944 ( 0.019 )
Cox 0 3.1 35.9 0 85.5 3.965 0.947 ( 0.004 )

200 PSPR 0 0 5.0 99 0.2 0.006 0.954 ( 0.002 )
Cox 0 4.6 51 0 89.9 3.986 0.951 ( 0.002 )

0.9 Truth 0.968 (0.001 )

100 PSPR 43.8 0 3.1 0 8.9 0.503 0.952 ( 0.009 )
Cox 0 2.5 29.6 0 82.0 3.913 0.963 ( 0.003 )

200 PSPR 33.2 0 3.7 1 7.9 0.369 0.958 ( 0.005 )
Cox 0 3.5 39.8 0 86.8 3.965 0.965 ( 0.002 )

Table 3: Simulation: β = (2.1, 1.8, 1.9, 2.2, 2.7, rep(0, 995))
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ρ Method FNR FPR Model Correct Wrong Bias AUC
% % Size Model % Variable %

Uniform error

0 Truth 0.883 ( 0.002 )
PSPR 1.2 2.0 5.8 51 12.0 0.062 0.866 ( 0.015 )
Cox 0 20.5 14.2 0 62.3 3.934 0.864 ( 0.010 )
AFT 0 23.9 15.7 0 63.9 0.076 0.872 ( 0.015 )

0.5 Truth 0.923 (0.002 )
PSPR 13.6 0.7 4.7 34 5.9 0.170 0.906 ( 0.015 )
Cox 0 18.9 13.5 0 58.5 3.923 0.913 ( 0.008 )
AFT 0 14.6 11.6 0 50.4 0.091 0.919 ( 0.011 )

0.9 Truth 0.946 (0.001 )
PSPR 45.0 0.8 3.1 0 9.9 0.556 0.936 ( 0.006 )
Cox 2.4 23 15.2 1 55.3 3.649 0.934 ( 0.023 )
AFT 7.3 10.9 9.5 0 43.7 0.305 0.944 ( 0.007 )

Point error

0 Truth 0.909 ( 0.002 )
PSPR 0.4 0.6 5.3 81 4.1 0.022 0.894 ( 0.016 )
Cox 0 23.8 15.7 0 65.3 3.946 0.879 ( 0.012 )
AFT 0 21.6 14.7 0 62.6 0.114 0.852 ( 0.020 )

0.5 Truth 0.940 (0.001 )
PSPR 9.2 0.5 4.8 49 3.3 0.111 0.922 ( 0.016 )
Cox 0 25.2 16.4 0 63.8 3.905 0.919 ( 0.022 )
AFT 2.0 15.9 12.1 0 51.6 0.196 0.900 ( 0.017 )

0.9 Truth 0.959 (0.001 )
PSPR 43.0 0.5 3.1 0 6.5 0.508 0.943 ( 0.006 )
Cox 1.6 20.2 14.0 0 53.7 3.719 0.943 ( 0.020 )
AFT 14.7 9.7 8.6 7 37.9 0.479 0.932 ( 0.015 )

Laplace error

0 Truth 0.874 ( 0.003 )
PSPR 3.2 1.9 5.7 50 11.7 0.083 0.852 ( 0.025 )
Cox 0.2 20 14.0 0 60.7 3.908 0.849 ( 0.016 )
AFT 0 20.4 14.2 0 60.4 0.161 0.833 ( 0.025 )

0.5 Truth 0.915 (0.002 )
PSPR 15.2 1.0 4.7 22 7.8 0.195 0.895 ( 0.017 )
Cox 0 17.6 12.9 1 54.6 3.883 0.900 ( 0.020 )
AFT 2.0 19.7 13.8 0 54.6 0.234 0.884 ( 0.020 )

0.9 Truth 0.939 (0.002 )
PSPR 47.0 0.8 3.0 0 10.2 0.583 0.927 ( 0.007 )
Cox 5.2 15.5 11.7 1 49.7 3.669 0.929 ( 0.022 )
AFT 16.7 7.5 7.5 3 38.9 0.419 0.926 ( 0.008 )

Table 4: Simulation: mis-specified model18



ρ Sample β0
Size 2.1 1.8 1.9 2.2 2.7 other

0 100 13 2 10 11 64 0
200 8 2 1 9 80 0

0.5 100 1 12 38 43 6 0
200 0 7 37 53 3 0

0.9 100 0 5 59 36 0 0
200 0 0 71 28 1 0

Table 5: Distribution of anchor variable in percentage: β = (2.1, 1.8, 1.9, 2.2, 2.7, rep(0, 45))

ρ Sample β0
Size 1.05 0.9 0.95 1.1 1.35 other

0 100 19 1 6 17 56 1
200 8 3 5 12 72 0

0.5 100 1 3 27 61 8 0
200 0 6 36 52 6 0

0.9 100 0 5 51 43 1 0
200 0 0 68 32 0 0

Table 6: Distribution of anchor variable in percentage: β =
(1.05, 0.9, 0.95, 1.1, 1.35, rep(0, 45))

ρ Sample β0
Size 2.1 1.8 1.9 2.2 2.7 other

0 100 13 6 7 7 64 3
200 8 5 4 5 78 0

0.5 100 0 10 25 58 7 0
200 0 9 30 59 2 0

0.9 100 0 4 65 31 0 0
200 0 0 64 36 0 0

Table 7: Distribution of anchor variable in percentage: β = (2.1, 1.8, 1.9, 2.2, 2.7, rep(0, 995))
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ρ β0
1.05 0.9 0.95 1.1 1.35 other

Uniform error

0 14 5 11 12 58 0
0.5 1 14 39 39 7 0
0.9 0 10 52 35 3 0

Point error

0 12 7 9 14 58 0
0.5 2 14 38 35 11 0
0.9 0 7 60 32 1 0

Laplace error

0 20 6 8 17 49 0
0.5 2 5 37 50 6 0
0.9 0 6 56 36 2 0

Table 8: Distribution of anchor variable in percentage: mis-specified model

Sample Number of Correlation

Size Variables 0 0.5 0.9

100 50 207 106 146
500 489 315 454
1000 496 375 479

200 50 227 247 294
500 3127 1838 1752
1000 3368 2893 2977

Table 9: PSPR: Total time (in seconds) averaged over 4 trials for choosing the scale parameter
and computing the solution path at 100 λ values. Timing was carried out on an Intel Xeon
2.33GHz processor.
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Sample Number of Correlation

Size Variables 0 0.5 0.9

100 50 7 24 25
500 10 7 8
1000 10 8 9

200 50 1 2 2
500 31 27 21
1000 44 32 29

Table 10: Cox (glmnet): Total time (in seconds) averaged over 4 trials for computing the
solution path at 100 λ values. Timing was carried out on an Intel Xeon 2.33GHz processor.

Gene Transcript ID PSPR Cox
Estimate Estimate

RUNX1 3930361 1 1
DFFA 2396125 -0.80 -1.30
ELOVL6 2781817 -0.91 -0.33
SLCO5A1 3139581 1.05 0.17
GGA2 3685188 0.82
LOC400713 3840196 0.49
CHSY3 2827867 1.22
NOC3L 3301012 -1.40
MST1 2674603 -1.62
TEAD1 3321056 -0.49
LRRC23 3402994 1.43
LTBP1 2476515 0.95
NONO 3980888 -0.78
PDCD11 3262201 -1.21
RBM9 3959207 2.33
CTNNBL1 3884328 -0.41
ADAM6 3581642 0.45
ZNF418 3872545 0.79
FRZB 2590721 0.74
C8orf33 3121024 -0.07
SUGT1L1 3511005 1.28
RELL1 2765866 0.26
FAM55C 2634059 -1.10
ERCC6 3288709 -0.01
ZNF417 3872529 0.33

Table 11: Final model
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Figure 1: PSPR model: Survival comparison between high/low risk groups on the validation
set (the high or low risk is defined based on whether the model-based risk score exceeds the
15th percentile in the training set)
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Figure 2: PSPR model: Survival comparison between high/low risk groups on the validation
set (the high or low risk is defined based on whether the model-based risk score exceeds the
median in the training set)
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Figure 3: Cox model: Survival comparison between high/low risk groups on the validation
set (the high or low risk is defined based on whether the model-based risk score exceeds the
15th percentile in the training set)
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Figure 4: Cox model: Survival comparison between high/low risk groups on the validation
set (the high or low risk is defined based on whether the model-based risk score exceeds the
median in the training set)
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Figure 5: Cox risk score against PSPR risk score. The horizontal and vertical lines are the
15% percentile of the Cox and PSPR risk score in the training patients, respectively.
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