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Selection of Latent Variables for Multiple
Mixed-Outcome Models

Ling Zhou, Huazhen Lin, Xin-Yuan Song, and Yi Li

Abstract

Latent variable models have been widely used for modeling the dependence struc-
ture of multiple outcomes data. As the formulation of a latent variable model is
often unknown a priori, misspecification could distort the dependence structure
and lead to unreliable model inference. More- over, the multiple outcomes are
often of varying types (e.g., continuous and ordinal), which presents analytical
challenges. In this article, we present a class of general latent variable models that
can accommodate mixed types of outcomes, and further propose a novel selection
approach that simultaneously selects latent variables and estimates model parame-
ters. We show that the proposed estimators are consistent, asymptotically normal,
and have the Oracle property. The practical utility of the methods is confirmed
via simulations as well as an application to the analysis of a dataset collected in
the World Values Survey (WVS), a global research project that explores peoples’
values and beliefs and what social and personal characteristics might influence
them.
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Summary

Latent variable models have been widely used for modeling the depen-

dence structure of multiple outcomes data. As the formulation of a latent

variable model is often unknown a priori, misspecification could distort

the dependence structure and lead to unreliable model inference. More-

over, the multiple outcomes are often of varying types (e.g., continuous

and ordinal), which presents analytical challenges. In this article, we

present a class of general latent variable models that can accommodate

mixed types of outcomes, and further propose a novel selection approach

that simultaneously selects latent variables and estimates model param-

eters. We show that the proposed estimators are consistent, asymptot-

ically normal, and have the Oracle property. The practical utility of

the methods is confirmed via simulations as well as an application to

the analysis of a dataset collected in the World Values Survey (WVS),

a global research project that explores peoples’ values and beliefs and

what social and personal characteristics might influence them.

Key words: Latent variables model; Selection of latent variables; Dependent

structure; SCAD penalty; Oracle property

1 Introduction

Multiple outcomes that include both continuous and ordinal variables are often col-

lected in applications where the responses of interest cannot be measured directly, or

are difficult or expensive to measure. Latent variable models (LVMs) are commonly

adopted, which state that different outcomes are conditionally independent measures

of the latent variables, possibly capturing various aspects of them. Thus, unlike

∗Center of Statistical Research, School of Statistics, Southwestern University of Finance and
Economics, Chengdu, China

†Department of Statistics, The Chinese University of Hong Kong, Hong Kong
‡Department of Biostatistics, University of Michigan, USA

1

Hosted by The Berkeley Electronic Press



conventional random effects, which are mainly used to address the heterogeneity or

dependence among observed outcomes, latent variables represent theoretical concepts

or constructs that cannot be directly assessed by a single observed variable, but in-

stead are measured through multiple observed variables. In practice, the formulation

of an LVM (e.g., what and how many latent variables should be included) is often

unknown a priori. Misspecification of the model would distort the dependence struc-

ture and lead to unreliable model inference (Leek and Storey, 2008). In particular,

overspecified LVMs may result in highly correlated latent variables of which the co-

variance matrix becomes singular or nearly singular, leading to both theoretical and

computational difficulties. Hence, a fundamental problem in the analysis of LVMs

is model selection, especially the selection of latent variables that are relevant to

substantive study.

Whereas the existing work on LVMs mainly focuses on the estimation of model

parameters, limited work has been devoted to the selection of latent variables, pre-

dominantly within the framework of factor analysis models—the most basic version of

LVMs. For example, the Akaike information criterion (AIC; Akaike, 1987), Bayesian

information criterion (BIC; Schwarz, 1978), and Bayesian approaches have been pro-

posed to select the factors in factor analysis models; see Press and Shigemasu (1989,

1997), Lee and Song (2002), Carvalho, et al. (2005), and Bhattacharya and Dunson

(2011). However, these methods incur a heavy computational burden and quickly be-

come infeasible when the number of possible factors becomes even moderately large.

In addition, the large sample model selection results (e.g., model selection consistency

and oracle property) are elusive, making it difficult to evaluate the statistical property

of the procedure.

In this article, we propose a new penalized pseudo-likelihood method that selects

latent variables and estimates regression parameters simultaneously for a general

LVM. Since the factor analysis model is a special case of the general LVM, our method

can be used to select the factors in factor analysis models. However, different from

the existing works on the factor selection in factor analysis models, the computational

burden of our method is free of the number of possible latent variables, hence allowing

for a large number of latent variables. Furthermore, our estimator is shown to have

desirable theoretical properties, including n1/2-consistency, asymptotic normality and

the oracle property—that is, it works as well as if the latent variables were known.

Although related, our context is different from that of random effect selection

in random effect models. Indeed, random effects are mainly introduced to describe

the unobserved heterogeneity and are covariate-independent, whereas latent variables
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represent specific traits associated with covariates and hence are covariate-dependent.

As a result, the methods for selecting random effects cannot be applied to the selection

of latent factors; see Chen and Dunson (2003), among others. However, as described

in Section 3, the proposed method can also be used to select random effects.

Analysis of multiple outcomes is further complicated by the fact that the outcomes

can typically be of mixed types (i.e., binary, continuous or ordinal), which presents

statistical challenges, as a natural multivariate distribution for mixed data does not

exist. Yang et al. (2007) and Wagner and Tüchler (2010) considered joint models

for Poisson and continuous data. Muthén (1984) proposed to define ordinal variables

using some unknown threshold parameters applied to underlying normal continuous

variables. However, the literature on underlying normal model has focused primar-

ily on joint models for low-dimensional ordinal outcomes and continuous outcomes

(Catalano and Ryan, 1992; Cox and Wermuth, 1992; Fitzmaurice and Laird, 1995;

Sammel, et al., 1997; Regan and Catalano, 1999; Dunson, 2000; Roy and Lin, 2000;

Gueorguieva and Agresti, 2001). This paper proposes a two-step approach for jointly

modeling continuous, binary and ordinal outcomes data under the underlying normal

framework. Our estimation and selection procedure utilizes a closed-form penalized

maximum likelihood estimator, which greatly facilitates computation.

The remainder of the paper is organized as follows. We introduce the proposed

general LVM in Section 2. We propose a new penalized pseudo-likelihood method

that allows us to select latent variables and estimate regression and threshold param-

eters simultaneously in Section 3. To implement the proposal, we provide a series

of estimating equation-based approaches to draw inference and further propose a

BIC-type procedure to select tuning parameters. In Section 4, we demonstrate our

estimators’ theoretical properties, including n1/2-consistency, asymptotic normality

and the oracle property. We report in Section 5 simulation results and an analysis of

the World Values Survey (WVS), a global research project that explores what social

and personal characteristics might influence people’s values and beliefs. We provide

concluding remarks in Section 6. We defer all proofs to the Appendix.

2 General Latent Variable Model

Suppose there are n randomly selected subjects, each with p distinct outcomes. Specif-

ically, for the ith subject, we observe vectors of covariates Xi and Zi, and a vector

of outcomes Yi = (Yi1, · · · , Yip)
′. Without loss of generality, we assume that the

3
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first p1 elements of Yi are continuous and that the remaining p2 = p − p1 elements

are ordinal, which are linked to some underlying continuous variables as in Muthén

(1984). That is, Yij = gj(Uij; cj) for j = 1, · · · , p, where Uij is a continuous underly-

ing variable of Yij. For the continuous outcomes, we have Yij = Uij, for j = 1, · · · , p1;

for an ordinal outcome Yij ∈ {1, · · · , dj}, where dj ≥ 2 is a positive integer, we have

Yij =
∑dj

l=1 lI(cj,l−1 < Uij ≤ cjl) for j = p1 + 1, · · · , p, where cj = (cj0, · · · , cj,dj
)′

are thresholds satisfying −∞ = cj0 < cj1 < · · · < cj,dj
= ∞. In summary, gj(·) is

the identity link for continuous outcomes, and is otherwise a threshold link mapping

from R → {1, · · · , dj} for the jth outcome. Let ξi = (ξi1, · · · , ξiq)
′, a q-dimensional

random vector of latent variables that represents an individual’s specific traits, q ≤ p.

We then relate the underlying continuous variables Ui = (Ui1, · · · , Uip)
′ to ξi via

Ui = βXi + αξi + εi, (2.1)

where β = (β1, · · · , βp)
′ is a regression coefficient matrix, α = (α1, · · · , αp)

′ is a

loading matrix with vector αj = (αj1, · · · , αjq)
′, and εi = (εi1, · · · , εip)

′ is a vector

of random errors distributed as N(0,Σε) with Σε = diag(σ2
ε1, · · · , σ2

εp). Model (2.1)

assumes that multiple outcomes are independent given latent variables, implying that

the correlation among Yij, j = 1, · · · , p is due entirely to the shared latent variables

in ξi, explaining all the dependence among responses.

We stress that, unlike random effects, the latent variables ξi are introduced to

reflect an individual’s unobservable traits, such as ‘life satisfaction’ and ‘job attitude,’

which, as in Roy and Lin (2000) and Skrondal and Rabe-Hesketh (2007), are linked

to observed covariates via

ξi = γZi + ei, (2.2)

where ei = (ei1, · · · , eiq)
′ ∼ N(0,Σe) is a vector of random errors independent of

Zi, and Σe = diag(σ2
e1, · · · , σ2

eq). Here, γ = (γ1, · · · , γq)
′ is a matrix of unknown

regression coefficients with vector γj = (γj1, · · · , γjm)′ and is used to describe effects

of observed predictors on latent variables and then on outcomes. We term model

(2.2), coupled with (2.1), a general LVM as it extends the common LVM by accom-

modating both continuous and ordinal outcomes. The covariates in Xi and Zi play

different roles in the proposed model; Zi records the covariates of interest and is

used to characterize the latent variables, whereas Xi exclusive of Zi is used to adjust

subjects’ characteristics that may affect the outcomes. In (2.2), the latent variable

ξij = γ ′jZi + eij is an observed covariate for σej = 0 if only one γjk 6= 0 among

{γjk, k = 1, · · · ,m} and a linear combination of observed covariates otherwise; ξij is

zero if σej = 0 and ‖γj‖ = 0; ξij is a random intercept if σej 6= 0 and ‖γj‖ = 0; ξij is

indeed a latent variable if σej 6= 0 and ‖γj‖ 6= 0, particularly, when σej 6= 0, γjk 6= 0
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(k ∈ A) and γjk = 0 (k * A), ξij is a latent variable characterized by the predictors

{Zik, k ∈ A}. However, the latent variables or the random effects to be included in

models (2.1) and (2.2) are often unknown a priori, which presents a dilemma: too

few latent variables would lead to a large modeling bias, whereas too many would

result in overfitting. This inevitably leads to a task of selecting important latent

variables. On the other hand, as model (2.2) stipulates, certain predictors influence

the responses only through intermediate latent variables, meaning that latent vari-

ables are characterized by subsets of predictors Zi. In practice, identification of such

subsets of latent variables is important in that it facilitates interpretation. Therefore,

it is essential to develop a procedure that automatically selects latent variables and

the corresponding underlying subsets of predictors.

To proceed, we first discuss the identifiability issue of models (2.1) and (2.2),

which can be rewritten as

Ui = βXi + αγZi + αei + εi. (2.3)

Hence Ui ∼ N(βXi + αγZi,Σ), where Σ = αΣeα
′ + Σε. Given that only αγ and

αΣeα
′ are identifiable, we follow the common practice in factor analysis (Anderson

and Rubin, 1956; Lee, 2007; Lee and Song, 2002) to introduce the constraints αjk = 0

for all j < k, where j = 1, · · · , p, k = 1, · · · , q ≤ p, to eliminate the indeterminacy of

rotation in a model with q factors, and introduce constraints αkk = 1, k = 1, · · · , q

to fix the sign of each column of α. To identify the ordinal variables, we further set

σεj = 1 for j > p1 (Dunson, 2000; Shi and Lee, 2000; Lee and Song, 2004) and exclude

the intercept term from Xi. This way, all α,Σe and γ are identifiable.

Although related, the proposed model (2.3) with regressors (X;Z) and particular

covariance error structure differs from an ordinary mixed effect model. The ran-

dom effects in the latter just address the heterogeneity or dependence of the data

but have no specific meanings, whereas the latent variables in model (2.3) represent

certain unobservable traits that are characterized by some covariates. Thus, model

(2.3) not only addresses the heterogeneity, but also provides insights into the causes

and impacts of such heterogeniety, consequently increasing its capability in terms of

interpretation.

3 Selection and Estimation

3.1. Penalized Likelihood Function

5
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Let Ui = (U′
i1,U

′
i2)

′, where Ui1 corresponds to the first p1 continuous components—

which are completely observed—and Ui2 is a collection of Uij corresponding to the

last p − p1 discrete components. For example, Yij = k implies that Uij falls into

[cj,k−1, cj,k), where {cjk} are threshold parameters and need to be estimated. Let

Ai =
∏p

j=p1+1[cj,Yij−1, cj,Yij
]. Then the likelihood for the observed data {Y1, · · · ,Yn}

can be expressed as

Ln(Θ) ∝
n∏

i=1

|Σ|−1/2

∫

Ui2∈Ai

exp

[
−1

2

{(
Ui1

Ui2

)
− βXi −αγZi

}′

×Σ−1

((
Ui1

Ui2

)
− βXi −αγZi

)]
dUi2,

(3.1)

where Θ = {α, β,Σε,Σe, γ} includes all unknown structural parameters. We assume

{cjk} to be known for now, and we estimate them in Section 3.3.

As explained in Section 2, ξij may be a latent variable, random effect, manifest

variable (that is, observable variable) or zero, depending on whether σej and ‖γj‖ are

zero or not. If ξij is indeed a latent variable, it is of interest to know the corresponding

subset of the predictors. The selection of the subset corresponds to some elements of

{γjk, k = 1, . . . , m, j = 1, . . . , q} being zero, which leads to the following likelihood

with penalties on (σej, γjk, k = 1, . . . , m, j = 1, . . . , q)′,

Q(Θ) = log Ln(Θ)− n

q∑
j=1

pρ1n(σej)− n

q∑
j=1

m∑

k=1

pρ2n(|γjk|). (3.2)

Here, pλ(·) is a penalty function, the common choices of which include Lq penalty,

pλ(|β|) = λ|β|q, (q > 0), yielding a well-known ridge regression with q = 2. The

smoothly clipped absolute deviation (SCAD) penalty function (Fan and Li, 2001)

takes the form

ṗλ(β) = λ

{
I(β 6 λ) +

(aλ− β)+

(a− 1)λ
I(β > λ)

}
for some a > 2 and β > 0, (3.3)

with ṗλ(0) = 0, where ḟ(t) = df(t)/dt for any smooth function f . The tuning

parameter a is often taken to be 3.7 as suggested by Fan and Li (2001). As the SCAD

penalty has been shown to render oracle properties in many penalized likelihood

settings (Fan, Lin and Zhou, 2006), we adopt it in our ensuing development. However,

our method does accommodate more general penalty functions.

Indeed, by maximizing the penalized likelihood Q(Θ), we can show that there is

a positive probability of some estimated values of σej and γjk equaling zero and thus

of automatically selecting latent variables and corresponding predictors. Thus, the

6
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procedure combines the selection of latent variables and corresponding subsets of pre-

dictors, with the estimation of parameters into one step, reducing the computational

burden substantially.

3.2. Penalized Expectation Maximization Algorithm

With the likelihood function Ln(Θ) involving a p − p1 dimensional intractable

integral, a direct application of the maximum likelihood (ML) estimation procedure

is nearly impossible. We propose below a penalized Expectation Maximization (EM)

algorithm. Given the complexity of the proposed algorithm, we describe the basic

steps and computation of the conditional means required for the maximization in two

subsections.

3.2.1. The basic steps of the penalized EM-algorithm

The random variable eij ∼ N(0, σ2
ej) if σej 6= 0, and eij ≡ 0, otherwise. Hence,

ei is a mixture of zero and normal components. For ease of presentation, we rewrite

ei = Σ1/2
e wi, where wi = (wi1, · · · , wiq)

′ ∼ N(0, I). Then, model (2.3) can be

rewritten as

Ui = βXi + αγZi + αΣ1/2
e wi + εi. (3.4)

To set up a penalized EM algorithm, consider the random variables Ui2 and wi to be

the missing data. The complete data for individual i is Di = {Xi,Zi,Ui,wi}. The

penalized complete-data log-likelihood function is

Qc(Θ) = log L(Θ)− n

q∑
j=1

pρ1n(σej)− n

q∑
j=1

m∑

k=1

pρ2n(|γjk|), (3.5)

where

log L(Θ) ∝ −1

2

n∑
i=1

[
p∑

j=1

{
log σ2

ε,j +
(Uij −X′

iβj −α′
jγZi −α′

jΣ
1/2
e wi)

2

σ2
ε,j

}]
, (3.6)

In the maximization step, we maximize the conditional expectation of Qc(Θ) given

the observed data. The maximization step depends on the conditional expectation

of some function of Ui2 and wi, which is evaluated in the expectation step. The two

steps are iterated until convergence.

3.2.2. Implementation of the penalized EM-algorithm

Let δij(Θ) = Uij −X′
iβj −α′

jγZi−α′
jΣ

1/2
e wi. For any given threshold parameter

cjk, we estimate Θ by maximizing E{Qc(Θ)|Yi,Xi,Zi, i = 1, · · · , n} with respect

7
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to Θ. By differentiating E{Qc(Θ)|Yi,Xi,Zi, i = 1, · · · , n} with respect to Θ and

setting the derivatives to zero leads to the following estimation equations

σ2
ε,j =

1

n

n∑
i=1

E
{
δij(Θ)2|Yi,Xi,Zi

}
for j = 1, · · · , p, (3.7)

βj =

(
n∑

i=1

XiX
′
i

σ2
ε,j

)−1 n∑
i=1

XiE(Uij −α′
jγZi −α′

jΣ
1/2
e wi|Yi,Xi,Zi)

σ2
ε,j

for j = 1, · · · , p,(3.8)

αjk =

[
n∑

i=1

E {(Z′iγk + σekwik)
2|Yi,Xi,Zi}

σ2
ε,j

]−1

×



n∑
i=1

E
{(

Uij −X′
iβj −

∑
m6=k αjm(γ ′mZi + σemwim)

)
(Z′iγk + σekwik) |Yi,Xi,Zi

}

σ2
ε,j


 ,

for j = 1, · · · , p and k < j, (3.9)
n∑

i=1

p∑

k=1

αkjZirE {δik(Θ)|Yi,Xi,Zi}
σ2

ε,k

− nṗρ2n(|γjr|)sgn(γjr) = 0,

for j = 1, · · · , q, r = 1, · · · ,m, (3.10)
n∑

i=1

p∑

k=1

αkjE(wijδik(Θ)|Yi,Xi,Zi)

σ2
ε,k

− nṗρ1n(σej) = 0 for j = 1, · · · , q. (3.11)

We estimate γ and Σe by rewriting the equations (3.10) and (3.11) as

γjr =

(
n∑

i=1

p∑

k=1

α2
kjZ

2
ir

σ2
ε,k

+ nṗρ2n(|γjr|)/|γjr|
)−1

×
n∑

i=1

p∑

k=1

αkjZir

σ2
ε,k

E

(
Uik −X′

iβk −
∑

m6=j

αkmγ ′mZi −
∑

l 6=r

αkjZilγjl −α′
kΣ

1/2
e wi|Yi,Xi,Zi

)
,

for j = 1, · · · , q, r = 1, · · · ,m, (3.12)

and

σej =

{
n∑

i=1

p∑

k=1

α2
kjE(w2

ij|Yi,Xi,Zi)

σ2
ε,k

+ nṗρ1n(σej)/σej

}−1

×




n∑
i=1

p∑

k=1

αkjE
[
wij

(
Uik −X′

iβk −α′
kγZi −

∑
m6=j αkmσemwim

)
|Yi,Xi,Zi

]

σ2
ε,k



 ,

for j = 1, · · · , q. (3.13)

Then, we estimate Θ by repeatedly using equations (3.7), (3.8), (3.9), (3.12) and

(3.13) until Θ converges. For each step, Θ in the left side of the equations is replaced

by the value from the last step.
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To obtain the estimate of Θ using the above equations, we need to compute the

conditional mean and conditional variance matrices of (Ui2,wi) given (Yi,Xi,Zi),

which has the form of E
(
U⊗r1

i2 ⊗w⊗r2
i |Yi, Xi,Zi

)
for r1+r2 ≤ 2, r1 = 0, 1, 2, and r2 =

0, 1, 2, where a⊗2 = aa′, a⊗1 = a and a⊗b = ab′. Because E
(
U⊗r1

i2 ⊗w⊗r2
i |Yi,Xi,Zi

)
=

E
{
U⊗r1

i2 ⊗ E
(
w⊗r2

i |Ui,Xi,Zi

) |Yi,Xi,Zi

}
, and given Ui,Xi and Zi, wi is a normal

random variable with mean Σ1/2
e α′ (αΣeα

′ + Σε)
−1 (Ui − βXi −αγZi) and covari-

ance matrix I−Σ1/2
e α′ (αΣeα

′ + Σε)
−1 αΣ1/2

e . To calculate E
(
U⊗r1

i2 ⊗ e⊗r2
i |Yi,Xi,Zi

)
,

it is sufficient to compute E
(
U⊗r

i2 |Yi,Xi,Zi

)
, for r = 1, 2, which is

E
(
U⊗r

i2 |Yi,Xi,Zi

)
= E

{
U⊗r

i2 I (Ui2 ∈ Ai) |Ui1,Xi,Zi

}
/P (Ui2 ∈ Ai|Ui1,Xi,Zi) ,

where both the numerator and denominator can be approximated with Monte Carlo

simulations.

3.3 Estimation of the Threshold Parameters

We are now in a position to estimate {cjk} with an iterative series of estimating

equations proposed below. The parameters Θ are then updated by maximizing the

pseudo-likelihood E{Qc|Yi,Xi,Zi, i = 1, · · · , n} with {cjk} replaced by their esti-

mated values. The procedure is repeated until convergence.

Because Uij = X′
iβj + α′

jγZi + α′
jei + εij, for any given j > p1, k ∈ {1, · · · , dj},

Xi, and Zi, we have

Pr(Yij = k|Xi,Zi) = Φ

{
cjk −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}
− Φ

{
cj,k−1 −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}
,

where Φ(·) is the cumulative distribution function of the standard normal random

variable. With cj0 = −∞, we estimate cj1, · · · , cj,dj−1, one-by-one, using

n∑
i=1

[
I (Yij = k)− Φ

{
cjk −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}

+Φ

{
cj,k−1 −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}]
= 0, (3.14)

for k = 1, · · · , dj − 1.

3.4 Selection of Tuning Parameters

We select the tuning parameters ρ1n and ρ2n using a BIC-based procedure. As

shown by Wang, et. al. (2007), such a procedure typically yields model selection

consistency for linear regression models. Specifically, we choose ρ1n and ρ2n separately

9
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as they control the complexity of two separate components of models. First, noting

ρ2n controls the number of non-zero elements in γ, we rewrite model (2.3) as

Ui = βXi + αγZi + ε̃i, (3.15)

where ε̃i = αei + εi ∼ N(0,Σ). The parameters γ are regression coefficients. We

then select the optimal ρ2n by maximizing

BIC2 = log Ln(Θ)− 1

2
DFρ2nlog(np), (3.16)

where Ln(Θ) is the observed-data likelihood function defined by model (3.1) and

DFρ2n is the generalized degree of freedom, which can be consistently estimated by∑q
j=1

∑m
k=1 I(|γ̂jk| 6= 0) +

∑p
j=1

∑q
k=1 I(α̂jk 6= 0) +

∑q
j=1 I(σ̂ej 6= 0), the number of

nonzero coefficients; see Zhang, Li and Tsai (2010) for models with generalized linear

structure.

We now estimate ρ1n, which controls the dimension of the random effect ei, that is,

the number of non-zero elements in Σe = diag(σ2
e1, · · · , σ2

eq). The model (3.4) shows

that Σ1/2
e is the regression effect of wi. To select Σe, we hence regard the random

variable wi and the covariates Xi and Zi as input variables in model (2.3) and only

εi as random noise. We then select the optimal ρ1n by maximizing

BIC1 = E{log L(Θ)|Yi,Xi,Zi, i = 1, · · · , n} − 1

2
DFρ1nlog(np), (3.17)

where L(Θ) is the complete-data likelihood function defined by (3.6), DFρ1n is the

weighted generalized degree of freedom DFρ1n =
∑q

i=1 wiI(σ̂ei 6= 0)+
∑q

j=1

∑m
k=1 I(|γ̂jk| 6=

0) +
∑p

j=1

∑q
k=1 I(α̂jk 6= 0) with wi = 1/σ̂ini

ei , and σ̂ini
ei is the estimate of σei without

penalty. Here, we replace the complete data likelihood with the conditional expecta-

tion of the complete data likelihood, because the complete data likelihood depends

on the missing data wi and is useless in the estimation of ρ1n. On the other hand,

the conditional expectation of the complete data likelihood is a reasonable estimator

for the complete data likelihood. We test the performance of our tuning procedure

via simulation studies in Section 5. In simulation study and the real data analysis,

the selections of both ρ1n and ρ2n are performed on grids of the tuning parameters.

4 Large Sample Properties

We now establish the consistency and asymptotic normality of the proposed estimator.

For ease of presentation, we rewrite Θ = (Θ′
1, σe

′, ~γ ′)′ as the vectorial form of the
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collection of all unknown parameters. Here Θ1 = (~α′, ~β
′
, σε

′)′. Throughout, we

use the subscript “0” to represent the true value. Without loss of generality, let

σe0 = (σ′
e(1)0, σ

′
e(2)0)

′, ~γ0 = (γ ′(1)0, γ
′
(2)0)

′ and σe(2)0 = 0 and γ(2)0 = 0. Define

σe = (σ′
e(1), (σ

′
e(2))

′, ~γ = (γ ′(1), γ
′
(2))

′ to have the corresponding decompositions.

Considering a more generalized non-concave penalty function, we set an1 = maxj{ṗρ1n(σej0) :

σej0 6= 0}, an2 = maxj,k{ṗρ2n(|γjk0|) : |γjk0| 6= 0}, and an = max {an1, an2} . Let

g̈(t) = d2g(t)/dt2. The following theorems summarize the large sample properties of

the proposed estimator; their proofs are deferred to the supplementary material, and

the related regularity conditions are given in the Appendix 7.2.

Theorem 1 Under conditions 1−3 stated in the Appendix 7.2, if maxj{|p̈ρ1n(σej0)| :
σej0 6= 0} → 0 and maxj,k{|p̈ρ2n(|γjk0|)| : |γjk0| 6= 0} → 0, then, as n →∞,

(1) for any j = p1 + 1, · · · , p, k ∈ {1, · · · , dj}, we have

ĉjk →P cjk0 and ‖ĉjk − cjk0‖ = Op(n
−1/2 + an). (4.1)

(2) There is a maximizer Θ̂ = (Θ̂′
1, σ̂

′
e, ~̂γ

′
)′ of Q (Θ) such that

‖σ̂e − σe0‖ = Op(n
−1/2 + an1), ‖γ̂ − γ0‖ = Op(n

−1/2 + an2),

and ‖Θ̂1 −Θ10‖ = Op(n
−1/2). (4.2)

Clearly, using the SCAD penalty defined in (3.3) with λ → 0 and β > 0, we have

ṗλ(β) = λ
{

(aλ−β)+
(a−1)λ

}
= (aλ−β)+

(a−1)
= 0. Hence, with λ = ρ1n → 0 and λ = ρ2n → 0, we

obtain an1 = 0 and an2 = 0, respectively. Therefore, there exists a root-n consistent

penalized estimator for the parameters Θ and the threshold parameters c. Next, we

show that the penalized estimator demonstrates the oracle property.

Theorem 2 Assume that the penalty function, pρ1n(θ) and pρ2n(θ), satisfies

lim inf
n→∞

lim inf
θ→0+

ṗρ1n(θ)/ρ1n > 0, and lim inf
n→∞

lim inf
θ→0+

ṗρ2n(θ)/ρ2n > 0.

Under conditions 1−3 in the Appendix 7.2, if as n → ∞, ρ1n → 0,
√

nρ1n → ∞,

ρ2n → 0 and
√

nρ2n → ∞, the root-n consistent local maximizers σ̂e = (σ̂′
e(1), σ̂

′
e(2))

′

and ~̂γ = (~̂γ(1), ~̂γ(2))
′ in Theorem 1 must satisfy the following properties:

(a) Sparsity: σ̂e(2) = 0 and ~̂γ(2) = 0.

11
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(b) Asymptotic normality:
√

n (Λ2 + U1)
{
σ̂e(1) − σe(1)0 + (Λ2 + U1)

−1 (C21b1 + C22b2)
} → N (0, A2) ,

√
n (Λ3 + U2)

{
~̂γ(1) − ~γ(1)0 + (Λ3 + U2)

−1 (C31b1 + C32b2)
}
→ N (0, A3) ,

where Λ2,Λ3,U1,U2,b1,b2, C21, C22, C31, C32, A2 and A3 are defined in the Ap-

pendix 7.1.

Theorem 3 When n →∞, if all conditions of Theorem 2 are satisfied, we have
√

nΛ1

{
Θ̂1 −Θ10 + Λ−1

1 (C11b1 + C12b2)
}
→ N (0, A1) ,

where Λ1, C11, C12 and A1 are defined in the Appendix 7.1.

Theorem 4 When n →∞, if satisfying all the conditions of Theorem 2, we have
√

n {ĉjk − cjk0 + C4j1(k)b1 + C4j2(k)b2} → N {0, A4j(k)} ,

where C4j1(k), C4j2(k), and A4j(k) are defined in the Appendix 7.1.

For the SCAD penalty function, if ρ1n → 0 and ρ2n → 0, then an1 = an2 = 0,

b1 = 0, b2 = 0, U1 = 0 and U2 = 0. Theorems 2-4 imply that the SCAD-based

penalized likelihood estimators for σe, γ, Θ1 and cjk have the oracle property—that

is, when the true parameters contain zero components, they are estimated as 0, with

the probability approaching 1, and the nonzero components are estimated as well as

in the case where zero components are known.

In practice, to approximate the distribution and construct the confidence interval

for Θ̂(1) = (Θ̂′
1, σ̂

′
e(1), ~̂γ

′
(1))

′, the estimators of non-zero parameters, we need to esti-

mate the variances of Θ̂(1). However, the complex form of the limiting covariance

matrix of Θ̂(1) in Theorems 2 and 3 prohibits direct use. Instead, we propose using

the resampling method of Jin, Ying and Wei (2001) to estimate the variance. First,

we generate n exponential random variables Vi, i = 1, · · · , n with mean 1 and vari-

ance 1. Then, we solve the following Vi-weighted estimation equations and denote

the solutions as Θ∗
(1) and c∗:

n∑
i=1

Vi
∂ log{Li(Θ; c)}

∂Θ(1)

|σe(2)=0,~γ(2)=0 = 0 and

n∑
i=1

Vi

[
I (Yij = k)− Φ

{
cjk −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}

+Φ

{
cj,k−1 −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}]
|σe(2)=0,~γ(2)=0 = 0, for

k = 1, · · · , dj − 1

j = p1 + 1, · · · , p
,

12
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with cj,0 = −∞, where Li(Θ; c) is the observed-data likelihood function (3.1) for

subject i. The estimates Θ∗
(1) and c∗ can be obtained using the same algorithm

proposed in Sections 3.1−3.3. Using Theorems 2−4, the validity of the proposed

resampling method is established as the following theorem. We omit its proof, as the

arguments follow Jin et al. (2001).

Theorem 5 Under the conditions of Theorem 2, the conditional distribution of n1/2(Θ∗
(1)−

Θ̂(1)) given the observed data converges almost exactly to the asymptotic distribution

of n1/2(Θ̂(1) −Θ(10)), where Θ(10) is the true value of Θ(1) = (Θ′
1, σ

′
e(1), ~γ

′
(1))

′.

By repeatedly generating V1, · · · , Vn, we obtain a large number of realizations of

Θ∗
(1). The variance estimate of Θ̂(1) can be approximated by the empirical variance

of Θ∗
(1).

5 Simulation Study

We have conducted extensive simulations to investigate the effect of misspecifying

latent variables on the mean and the variance structure. Specifically, we consider the

model with two latent variables, denoted as LV2. In practice, the model selection

procedure might reduce a latent variable to a manifest variable or a random effect.

We hence misspecify the latent variables in the following manner: (1) the variance of

one latent variable is misspecified to 0—that is, one of latent variables is misspecified

as a manifest variable, denoted by LV1MV1. (2) The regression coefficients of one

latent variable is misspecified to 0—that is, one of the latent variables is misspecified

as random effect, denoted by LV1RV1.

We simulated 1000 datasets, each with n = 200 observations. For each subject,

the latent variable is generated by the model ξij = Z′iγj + eij, j = 1, 2, where

Zi = (Zi1, Zi2, Zi3)
′, Zij, j = 1, 2, 3 are independently drawn from a standard normal

random variable, γ1 = (2, 0, 0)′, γ2 = (0, 2, 0)′, ei = (ei1, ei2)
′ is a normal random

vector with mean zero, and the covariance Σe = diag(σ2
e1, σ

2
e2) = diag(1, 1). ei and Zi

are independent. The outcomes Yi = (Yi1, Yi2, Yi3, Yi4)
′ are generated from the models

Yij = X ′
ijβj + αj1ξi1 + αj2ξi2 + εij, j = 1, 2, 3, 4, where β1 = (β11, β12)

′ = (1, 2)′,

β2 = (β21, β22)
′ = (2, 2)′, β3 = (β31, β32)

′ = (1, 1)′, β4 = (β41, β42)
′ = (1.5, 2)′, Xij =

(1, Xij2)
′, and Xij2 is independently generated from a standard normal variable. Note

that εi = (εi1, εi2, εi3, εi4)
′ are normal random vectors with mean zero and covariance

13
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Σε ≡ diag(σ2
ε,1, σ

2
ε,2, σ

2
ε,3, σ

2
ε,4) = diag(1, 1, 1, 1). α′ ≡

(
α11 α21 α31 α41

α12 α22 α32 α42

)
=

(
1 0.8 0.8 0.8

0 1 0.8 0.8

)
. For each simulated data set, we fit data with the LV2, LV1MV1

and LV1RV1 models and estimate the related unknown parameters using the ML

method. The bias and empirical SDs of the estimators are reported in Table 1, where

#CF is the number of convergence failures out of the 1000 simulation runs.

Using the data presented in Table 1, we make the following conclusions. (1) the

estimate of the fixed effect in measurement models are reported in the first part of

Table 1. All estimators are unbiased, and LV2 has the smallest variance. The first

part of Table 1 shows that misspecification of latent variables will lead to a slight loss

of efficiency for β. Misspecification of latent variables has relatively minor effect for

the parameters in the mean part. (2) The second part of Table 1 displays estimators

of α and γ. A useful rule to keep in mind when checking bias, as suggested by Olsen

& Schafer (2001), is that biases do not have a substantial negative impact on inference

unless standardized bias (bias over SD) exceeds 0.4. By this rule, LV2 is unbiased, and

LV1MV1 and LV1RV1 are seriously biased. Table 2 in the supplementary material

shows that misspecification of latent variables leads to biased estimators of α and γ,

the regression coefficients of the latent variable. (3) The third part of Table 1 shows

the estimators of variances in the measurement and latent variable models. As shown,

LV2 is unbiased and has the smallest variance; LV1RV1 and LV1MV1 are biased for

the variance parameters in both the measurement and latent variable models.

In summary, misspecification of latent variables hardly affects the estimators of

the parameters in the mean structure, but may lead to biased estimators of the

components of the covariance structure, including α, γ and the variances of the error

and the latent variables.
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Table 1: Estimation results for Simulation 1.

LV 2(true) LV 1MV 1 LV 1RV 1

#CF 0 2 33

bias(SD) bias(SD) bias(SD)

β11 -0.003(0.097) -0.003(0.097) -0.006(0.133)

β12 -0.002(0.102) -0.002(0.102) 0.001(0.139)

β21 0.001(0.112) 0.002(0.113) 0.005(0.119)

β22 -0.003(0.116) -0.003(0.117) -0.004(0.123)

β31 0.000(0.106) 0.000(0.107) 0.002(0.109)

β32 -0.002(0.106) -0.002(0.107) -0.003(0.109)

β41 0.001(0.104) 0.001(0.105) 0.003(0.107)

β42 0.000(0.107) 0.000(0.108) -0.001(0.110)

α21 -0.000(0.054) 0.940(0.248) 0.758(0.278)

α31 0.000(0.050) 0.758(0.200) 0.618(0.229)

α41 -0.000(0.049) 0.754(0.202) 0.613(0.226)

α32 0.000(0.045) 0.003(0.046) -0.085(0.291)

α42 -0.003(0.043) -0.000(0.044) -0.076(0.300)

γ11 -0.000(0.094) -0.010(0.098) -0.719(0.262)

γ12 0.006(0.099) 0.004(0.101) 0.950(0.102)

γ13 0(0) 0.002(0.101) 0.003(0.066)

γ21 0(0) -1.868(0.509) *

γ22 -0.001(0.111) -0.009(0.172) *

γ23 0.002(0.097) -0.003(0.168) *

σ2
ε,1 -0.030(0.173) 0.471(0.157) 2.119(0.472)

σ2
ε,2 -0.028(0.153) 0.035(0.152) -0.007(0.225)

σ2
ε,3 -0.021(0.127) -0.031(0.127) -0.029(0.147)

σ2
ε,4 -0.023(0.131) -0.033(0.131) -0.033(0.157)

σ2
e1 -0.017(0.180) -0.466(0.138) -0.760(0.149)

σ2
e2 -0.022(0.207) * 0.472(0.809)

∗ not applicable.

As reported in the supplementary material, we have further conducted simula-

tion studies (marked by Simulation 2) to assess the finite-sample performance of the

proposed method in terms of bias and empirical standard deviation (SD). We also

examine the performance of models (3.16) and (3.17) in selecting ρ1n and ρ2n . We

have also conducted simulations (marked by Simulation 3) to check the performance

of the proposed procedure when the signal is not sufficient, and to investigate the va-
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lidity of treating an ordinal response as a continuous variable, which is the approach

taken when we apply the analysis to real data. All the results point to the good

performance of the proposed method and hint the appropriateness of dada analysis

reported in the next section.

6 The analysis of people’s values and beliefs using

latent variable model

The World Values Survey (WVS) gathers information from participants around

the world on contemporary societal issues such as individuals’ attitudes about their

work and religious beliefs. The goal of the survey is to enable a cross-national, cross-

cultural comparison and surveillance of respondents’ core values. Namely, partici-

pants’ responses help identify what or how social and personal factors affect individ-

uals’ core values. For this application, we use data from the India cohort (n = 759);

our specific aim is to investigate whether respondents’ financial situation and atti-

tudes about their job (adjusted for demographic factors) influence their core values,

as gauged by the following nine questions:

Y1: How important is God in your life?(1=Not at all, 10=very)

Y2: Overall, how satisfied or dissatisfied are you with your home life?(1=dissatisfied,

10=very satisfied)

Y3: All things considered, how satisfied are you with your life as a whole in these

days?(1=dissatisfied, 10=very satisfied)

Y4: How satisfied are you with the financial situation of your household? (1=dis-

satisfied, 10=very satisfied)

Y5: Overall, how satisfied or dissatisfied are you with your job?(1= dissatisfied,

10=very satisfied);

Y6: Individuals should take more responsibility for providing for themselves. (1=agree

completely, 10=disagree completely)

Y7: Competition is good. It simulates people to work hard and develop new ideas.

(1=agree completely, 10=disagree completely)

Y8: In the long run, hard work usually brings about a better life. (1=agree com-

pletely, 10=disagree completely)

Y9: How much pride, if any, do you take in the work that you do?(1=a great deal,

2=some, 3=little, 4=none)
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Because the outcomes Y1, · · · , Y8 are measured on a scale from 1 to 10 and Y9 takes

values of 1 to 4, we treat the first eight outcomes as continuous variables and the last

outcome as ordinal. With nine outcomes, it is reasonable to consider at most nine

latent variables ξ1, · · · , ξ9 in the proposed model:

Yk = bk +
9∑

j=1

αkjξj + εk, k = 1, . . . , 8,

U9 = b9 +
9∑

j=1

α9jξj + ε9,

ξk = Z′γk + ek, k = 1, . . . , 9,

where Y9 = I(U9 ≤ c1) + 2I(c1 < U9 ≤ c2) + 3I(c2 < U9 ≤ c3) + 4I(c3 < U9) and

Z = (Z1, . . . , Z6)
′, in which (Z1, Z2) = marriage ((1, 0), more than once; (0, 0), only

once; (0, 1), never), Z3 = age, Z4 = gender (1, male; 0, female); Z5 = income (1:

<12,000 rupees per year; 2: 12,001−18,000; 3: 18,001−24,000; 4: 24,001−30,000; 5:

30,001−36,000; 6: 36,001−48,000; 7: 48,001−60,000; 8: 60,001−90,000; 9: 90,001−
120,000; and 10: >120,000); and Z6 = freedom of decision-making on the job (1,

none at all; 10, a great deal). To unify scales of covariates, we standardize the

elements in Z before analysis. For identifiability, the matrix α is assumed to be

a lower triangular matrix, with 1’s as diagonal entries, b9 = 0 and σε,9 = 1. The

tuning parameter ρ1n = 0.2 and ρ2n = 0.1 are chosen by maximizing equations

(3.16) and (3.17). We also consider the method without the selection of the latent

variables and the predictor variables (Non-p); Tables 4−6 display point estimates

and the estimated SDs (in parenthesis). We used 1000 Monte Carlo replications to

approximate conditional means. We calculated the SDs via the resampling method

described in Section 4, with 1000 replications. We decided on a sample size of 1000

by monitoring the stability of the SDs; we found that when the bootstrap sample

size was between 500 and 1000, the resulting SDs stabilized and the difference was

only marginal. For the proposed method, the algorithm failed to converge in 76 of the

1000 replications; the results from the proposed method are based on 924 replications.

The Non-p method had difficulty fitting the data properly, resulting in about 665 of

1000 runs failing to converge; the results from the Non-p method are based on 335

replications. Hence, the SDs of the Non-p estimator appear to be underestimated by

those displayed in Tables 4−6.
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Table 4: Estimates of γ1, . . . , γ9 for WVS data

γ1 γ2 γ3

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 -0.130(0.121) 0 -0.136(0.090) 0 0.143(0.087)

Z2 0 0.060(0.090) 0 -0.032(0.079) 0 0.018(0.065)

Z3 0 0.143(0.086) 0 0.041(0.076) 0 0.010(0.078)

Z4 0 -0.104(0.093) 0 0.096(0.081) 0 -0.121(0.076)

Z5 0 -0.207(0.101) 0.546(0.070) 0.567(0.078) 0 -0.073(0.138)

Z6 0 0.390(0.096) 0 0.220(0.097) 0 0.066(0.097)

γ4 γ5 γ6

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 0.094(0.092) 0 0.022(0.096) 0 -0.109(0.124)

Z2 0 -0.039(0.073) 0 -0.061(0.063) 0 -0.119(0.119)

Z3 0 -0.014(0.063) 0 0.079(0.075) 0 0.129(0.106)

Z4 0 -0.090(0.064) 0 0.046(0.086) 0 -0.137(0.114)

Z5 0 0.257(0.107) 0 -0.009(0.111) 0 0.176(0.177)

Z6 0 0.023(0.080) 0.511(0.082) 0.485(0.096) 0 0.113(0.149)

γ7 γ8 γ9

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 -0.233(0.112) 0 -0.080(0.173) 0 0.032(0.138)

Z2 0 -0.085(0.092) 0 -0.087(0.133) 0 0.146(0.099)

Z3 0 -0.051(0.106) 0 0.110(0.116) 0 0.021(0.115)

Z4 0 -0.093(0.128) 0 -0.076(0.125) 0 0.060(0.104)

Z5 0 -0.240(0.162) 0 0.007(0.178) 0 -0.345(0.150)

Z6 0 -0.167(0.140) 0 -0.039(0.145) 0 0.046(0.170)

The results from the proposed method reveal that ‖γj‖, j = 1, 3, 4, 6, 7, 8, 9, σe4,

and σe9 are estimated as zero. As discussed in Section 2, {σe4 = 0, ‖γ4‖ = 0} and

{σe9 = 0, ‖γ9‖ = 0} imply that ξ4 and ξ9 are zero and can be ignored completely;

{σej 6= 0, ‖γj‖ = 0, j = 1, 3, 6, 7, 8} imply that ξj, j = 1, 3, 6, 7, 8 are simply random

effects; {σe2 6= 0, ‖γ2‖ 6= 0} and {σe5 6= 0, ‖γ5‖ 6= 0} imply that ξ2 and ξ5 are indeed

latent variables. Moreover, nonzero γ25 and γ56 indicate that the latent constructs that

elicit heterogeneity actually originate from income and job freedom. Based on model

(3.4), the following findings are obtained. First, the dependence between outcomes

is explained jointly by random effect ασ
1/2
e wi and latent variables {ξ2, ξ5}. While

the random effect induces dependence among Y1, · · · , Y9, the two latent constructs

further aid interpretation of such dependence. The significantly positive estimates of
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factor loadings α̂32 = 0.896 (0.148), α̂42 = 1.015 (0.144), and α̂52 = 0.609 (0.129)

imply that respondents’ income has positive effects on outcome variables Y3, Y4 and

Y5. The significantly negative estimates of factor loadings α̂92 = −0.253 (0.093) and

α̂95 = −0.486 (0.125) reveal that both income and job freedom have positive effects on

respondents’ feelings of pride in their job, given a reversed coding of Y9. Furthermore,

insignificant factor loadings {α62, α72, α82} and {α65, α75, α85} indicate negligible im-

pacts of income and job freedom on outcomes Y6, Y7 and Y8. Second, the two latent

constucts also help interpret the heterogeity between subjects. For example, people

with close value in terms of income and job freedom tend to give similar answers to

questions Y3, Y4, Y5, and Y9. Therefore, in addition to addressing the dependence

between outcomes and heterogeneity between subjects, model (2.3) or (3.4) reveals

the different structures and sources of such dependence and heterogeneity.

Table 5: Estimates of c and variance for WVS data

Proposed(SD) Non-p Proposed(SD) Non-p

c1 0.140(0.053) 0.299(0.107) c2 1.506(0.082) 3.209(0.662)

c3 2.624(0.156) 5.590(1.133)

σ2
ε,1 4.487(0.951) 3.875(0.548) σ2

e1 2.025(0.860) 2.368(0.523)

σ2
ε,2 1.515(0.468) 0.902(0.539) σ2

e2 1.368(0.462) 2.150(0.668)

σ2
ε,3 1.979(0.323) 1.307(0.614) σ2

e3 0.705(0.345) 1.598(0.905)

σ2
ε,4 2.135(0.432) 1.731(0.694) σ2

e4 0 0.780(0.848)

σ2
ε,5 1.907(0.863) 1.360(0.775) σ2

e5 1.052(0.904) 1.652(0.888)

σ2
ε,6 3.760(2.330) 3.815(1.880) σ2

e6 3.120(2.336) 2.995(1.998)

σ2
ε,7 1.981(1.188) 2.224(0.899) σ2

e7 2.054(1.534) 2.004(1.313)

σ2
ε,8 3.221(1.732) 3.478(1.223) σ2

e8 0.603(1.966) 0.617(1.644)

σ2
ε,9 1 1 σ2

e9 0 3.587(1.591)

Unlike ordinary multiple regression models, which account for the effects of co-

variates on outcomes separately, the general LVM proposed in this study groups

multiple outcomes into two latent constructs, which reduces the model dimension,

simultaneously accommodates dependence between outcomes and heterogeneity be-

tween subjects, as well as provides simpler interpretation of the associations among

multidimensional outcomes.
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Table 6: Estimates of α for WVS data

Proposed(SD) Non-p Proposed(SD) Non-p

α21 0.742(0.316) 0.540(0.114) α42 1.015(0.144) 0.627(0.192)

α31 0.581(0.278) 0.351(0.123) α52 0.609(0.129) 0.430(0.136)

α41 0.369(0.217) 0.312(0.098) α62 0.205(0.170) -0.030(0.108)

α51 0.385(0.163) 0.310(0.103) α72 -0.187(0.128) -0.137(0.099)

α61 0.039(0.141) 0.126(0.108) α82 0.128(0.146) 0.013(0.108)

α71 -0.218(0.123) -0.178(0.100) α92 -0.253(0.093) -0.320(0.091)

α81 -0.447(0.148) -0.358(0.112) α43 0.739(0.350) 0.531(0.149)

α91 -0.237(0.079) -0.463(0.098) α53 0.598(0.353) 0.362(0.190)

α32 0.896(0.148) 0.750(0.208) α63 -0.369(0.367) -0.108(0.196)

α73 0.447(0.331) 0.094(0.175) α75 -0.228(0.149) -0.082(0.193)

α83 -0.504(0.367) -0.295(0.258) α85 -0.227(0.186) -0.091(0.210)

α93 -0.272(0.179) -0.412(0.155) α95 -0.486(0.125) -0.770(0.222)

α54 0 0.386(0.292) α76 0.500(0.299) 0.456(0.330)

α64 0 0.227(0.456) α86 0.299(0.284) 0.337(0.295)

α74 0 0.244(0.442) α96 0.030(0.052) 0.060(0.113)

α84 0 0.271(0.417) α87 0.853(0.269) 0.762(0.281)

α94 0 -0.047(0.249) α97 0.063(0.067) 0.154(0.142)

α65 0.048(0.153) -0.101(0.190) α98 -0.123(0.140) 0.003(0.290)

7 Discussion

We have proposed a penalized ML estimator to develop a general framework of latent

variable selection. The proposed method is able to select latent variables and estimate

parameters simultaneously. Under mild conditions, the estimator is n1/2-consistent

and asymptotically normal. Given an appropriate choice of regularization parame-

ters, the proposed estimator demonstrates the oracle property. A BIC-type tuning

parameter selection method is suggested to select the regular parameters.

We have focused on mixed outcomes with ordinal and continuous variables under

the linear regression framework. As the assumption of normality may not always be

practical, our future work is to extend our methods to other regression frameworks

(e.g., generalized linear regression) for non-normal responses. Moreover, we have

focused on selecting important latent variables, but one can easily extend the proposed

method to simultaneously select manifest variables and latent variables.
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Appendix

7.1 Notation

Let the parameter Θ = (Θ′
1, Θ

′
2, Θ

′
3)
′, where Θ1 = (~α′, ~β

′
, σε

′)′, Θ2 = (Θ21, · · · , Θ2q)
′ =

σe and Θ3 = (Θ31, · · · , Θ3,q×m)′ = ~γ, m is the length of Zi. Let threshold cj(y) = cjy,

cj0(y) = cjy0,

dkj(y) =
Eφ

(
cj0(y)−Wij(Θ)

νj

){
∂Wij(Θ)

∂Θk
+ [cj0(y)−Wij(Θ)]

∂ log(νj)

∂Θk

}

Eφ
(

cj0(y)−Wij(Θ)

νj

) |Θ=Θ0 ,
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where dkj(y) is the derivative of ĉj(Θ; y) with respect to Θk at Θ = Θ0, ĉj(Θ; y) is

the estimator of cj(y) given Θ, νj =
√

α′
jΣeαj + 1, and Wij (Θ) = X′

iβj + α′
jγZi.

Similar to σe = (σ′
e(1), σ

′
e(2))

′ or ~γ = (~γ ′(1),~γ
′
(2))

′, let Θ2 = (Θ′
2(1), Θ

′
2(2))

′, Θ3 =

(Θ′
3(1), Θ

′
3(2))

′, d2j(y) = (d2j(1)(y)′, d2j(2)(y)′)′ and d3j(y) = (d3j(1)(y)′, d3j(2)(y)′)′. Let

B(rs) = E

(
∂2logLi(Θ0; c0)

∂Θr(1)∂Θ′
s(1)

+

p∑
j=p1+1

(
∂2logLi(Θ0; c0)

∂Θr(1)∂cj(Yij)
d′sj(1)(Yij) +

∂2logLi(Θ0; c0)

∂Θr(1)∂cj(Yij − 1)
d′sj(1)(Yij − 1)

))
and

Brs = E

(
∂2logLi(Θ0; c0)

∂Θr∂Θ′
s

+

p∑
j=p1+1

(
∂2logLi(Θ0; c0)

∂Θr∂cj(Yij)
d′sj(Yij) +

∂2logLi(Θ0; c0)

∂Θr∂cj(Yij − 1)
d′sj(Yij − 1)

))
, (7.1)

where Li(Θ; c) is the observed-data likelihood function for subject i. The matrix

B = (Brs) is the mean of the Hessian matrix of log Ln(Θ; ĉ(Θ)) respect to Θ and the

matrix (B(rs)) is B corresponding to non-zero components of Θ.

Let

U1 = diag{p̈ρ1n(σe10), . . . , p̈ρ1n(σes0)}; b1 = (ṗρ1n(σe10), . . . , ṗρ1n(σes0))
′ ,

U2 = diag
{
p̈ρ2n(|γ110|), · · · , p̈ρ2n(|γ1,h1,0|), · · · , p̈ρ2n(|γq,1,0|), · · · , p̈ρ2n(|γq,hq ,0|)

}
,

b2 = (ṗρ2n(|γ110|)sgn(γ110), . . . , ṗρ2n(|γ1,h1,0|)sgn(γ1,h1,0),

· · · , ṗρ2n(|γq10|)sgn(γq10), . . . ṗρ2n(|γq,hq ,0|)sgn(γq,hq ,0)
)′

.

U1 and U2 are used to express the uncertainty due to adding the penalties on Σe and

γ, respectively, while b1 and b2 are corresponding biases.

Denote

B(rs.k) = B(rs) −B(rk)B
−1
(kk)B(ks), B∗

(rs.k) = B(rs) −B(rk)

(
B(kk) − U1

)−1
B(ks),

Λ1 = −B∗
(11.2) + B∗

(13.2)

(
B∗

(33.2) − U2

)−1
B∗

(31.2),

Λ2 = −B(22.1) + B(23.1)

(
B(33.1) − U2

)−1
B(32.1),

Λ3 = −B(33.1) + B(32.1)

(
B(22.1) − U1

)−1
B(23.1).

Ak, k = 1, 2, 3 and A4j(y) are defined as:

Ak = E
[(

mk1Υi(1) + mk2Υi(2) + mk3Υi(3)

)⊗2
]
,

A4j(y) = E

[(
νj0

ψj(y)
$ij(y)− (m4j1(y)Υi(1) + m4j2(y)Υi(2) + m4j3(y)Υi(3))

)⊗2
]

, (7.2)
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where Λ−1
1 A1(Λ

′
1)
−1, Λ−1

2 A2(Λ
′
2)
−1, Λ−1

3 A3(Λ
′
3)
−1 and A4j(y) are asymptotic stan-

dard errors of
√

n(Θ̂1−Θ10),
√

n(σ̂e(1)−σe(1)0),
√

n(~̂σ(1)− ~σ(1)0) and
√

n(ĉjy− cjy0),

respectively, when zero components are known, and

m11 = m22 = m33 = −1, m13 = B∗
(13.2)

(
B(22) − U1

)−1
,

m12 = −
(
B(13.2)

∗ (
B∗

(33.2) − U2

)−1
B(32) −B(12)

) (
B(22) − U1

)−1
,

m21 = (B(21)B(11)
−1 −B(23.1)

(
B(33.1) − U2

)−1
B(31)B(11)

−1),

m23 = B(23.1)

(
B(33.1) − U2

)−1
, m32 = B(32.1)

(
B(22.1) − U1

)−1
,

m31 = (B(31) −B(32.1)

(
B(22.1) − U1

)−1
B(21))B(11)

−1,

m4jk(y) = d1j(y)′Λ−1
1 m1k + d2j(1)(y)′(Λ2 + U1)

−1m2k + d3j(1)(y)′(Λ3 + U2)
−1m3k,

Υi(k) =
∂logLi (Θ0; c0)

∂Θk(1)

+

p∑
j=p1+1

(
ϕij1,(k) + ϕij2,(k)

)
,

ϕrj1,k = E

{
∂2logLi(Θ0; c0)

∂Θk∂cj(Yij)

νj0

ψj(Yij)
$rj(Yij)|Yr,Xr,Zr

}
,

ϕrj2,k = E

{
∂2logLi(Θ0; c0)

∂Θk∂cj(Yij − 1)

νj0

ψj(Yij − 1)
$rj(Yij − 1)|Yr,Xr,Zr

}
,

ψj(y) = Eφ

(
cj0(y)−Wij(Θ0)

νj0

)
, $ij(y) = I(Yij ≤ y)− Φ

(
cj0(y)−Wij(Θ0)

νj0

)
,

where νj0 is the true value of νj, ϕrj1,(k) and ϕrj2,(k) are the corresponding parts of

ϕrj1,k and ϕrj2,k to non-zero parameters, respectively.

Finally, let

C21 = C32 = 1, C12 = −B∗
(13.2)

(
B∗

(33.2) − U2

)−1
,

C11 = −
(
B(12) −B∗

(13.2)

(
B∗

(33.2) − U2

)−1
B(32)

)
(B(22) − U1)

−1,

C22 = −B(23.1)

(
B(33.1) − U2

)−1
, C31 = −B(32.1)

(
B(22.1) − U1

)−1
and

C4jk(y) = −d1j(y)′Λ−1
1 C1k − d2j(1)(y)′(Λ2 + U1)

−1C2k − d3j(1)(y)′(Λ3 + U2)
−1C3k.
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7.2 Conditions

(1) The matrix B = (Brs)r,s=1,2,3 defined by (7.1) is negative definite.

(2) A1, A2, A3 and A4j(k) defined by (7.2) are positive definite matrices.

(3) Xi and Zi are bounded.

Condition (1) is an identifiability condition for Θ. A1, A2, A3 and A4j(k) are

asymptotic variances of
√

nΛ1(Θ̂1 − Θ10),
√

nΛ2(σ̂e(1) − σe(1)0),
√

nΛ3(~̂γ(1) − ~γ(1)0)

and
√

n(ĉjk − cjk0), respectively.
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