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1. Introduction

The HIVNET 012 Study is a randomized clinical trial conducted by the HIV Prevention Trial

Network (HPTN) between 1997 and 2001 (The HIVNET/HPTN Group, 2003). It showed an

astounding prevention benefit for a short course nevirapine (NVP) versus zidovudine (AZT) among

HIV infected pregnant women in Uganda: NVP was associated with a 41% reduction in relative

risk of mother-to-child transmission (MTCT) of HIV-1 through to the age of 18 months (Jackson

et al., 2003).

Besides the prevention benefit, it was also important for this study to assess whether or not

the NVP would eventually improve the newborn’s 18-month survival. As shown in Figure 1(a),

Kaplan-Meier curves indicate that the NVP group appears to have better infant survival. However,

a log-rank test does not show a desired statistical significance (p value: 0.147). Although such a

lack of significance may be due to insufficient sample size, if the hazard ratio is not proportional,

the power of the log-rank test may be compromised as well. We hence plot the log-log-transformed

estimated cumulative hazard functions in Figure 1(b). As shown in the figure, the two Kaplan-

Meier curves indeed appear to be closer as time progresses. This may suggest that the hazards ratio

is not constant at any time.

[Figure 1 about here.]

In fact, for the HIVNET 012 Study, the NVP was only given once to the mothers at labor onset

and once to the babies within 72 hours of birth, while AZT was given to the mothers from labor

onset to delivery and to the babies twice daily for 7 days after birth. As a result, it was not expected

that the NVP effect would necessarily sustain throughout the entire 18-month of follow-up. In

addition, even if the babies were born uninfected, they could be infected after birth via breastmilk

feeding. For example, the concentration of cells in breastmilk decreases over time while the ratio

of HIV susceptible cells to total breastmilk cells increases over time. Therefore, the risk reduction

of 18-month infant mortality may be unlikely to stay constant over time. If so, it is important to
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develop appropriate statistics to test whether or not there is any infant survival benefit for NVP

under the alternative of time-varying hazards ratio.

As alluded, the power of log-rank test, or the score test based on the partial likelihood for the

Cox proportional hazards model (Cox, 1972), relies on the alternative assumption of proportional

hazards. They may lose power if the assumption does not hold, as in the HIVNET 012 Study

example. This paper aims to develop some flexible testing procedures when a treatment effect

measured by the hazards ratio is potentially time-varying.

To be specific, we consider an extended Cox proportional hazards model as follows,

λ(t|X,Z) = λ0(t) exp{X Tβ + Zθ(t)}. (1)

Here, λ(· |X,Z) is the hazard function for the p-dimensional covariate vector X ∈ Rp and the

treatment indicator Z ∈ R, and λ0(·) is the baseline hazard function. The superscript T is for

vector (matrix) transpose. Moreover, β is the time-independent regression parameter of the same

p-dimension for X , and θ(·) is the time-varying coefficient for Z that is assumed to be a smooth

function of time. Apparently, when θ(t) is constant, model (1) reduces to the usual Cox model.

Under model (1), we are interested in testing the null hypothesis if Z has effect at any time while

adjusting for X , i.e., H0 : θ(t) = 0 for any t > 0.

There have been several approaches in the statistical literature for hypothesis testing involving

θ(·) in (1). For example, ? and ? considered adaptively weighted log-rank tests, assuming para-

metric forms of θ(·) to be polynomial functions. For nonparametric or semiparametric approaches,

Gray (1994) applied B-spline bases to approximate θ(·) with a careful manual choice of tuning

parameters, such as the degrees of freedom and the number and location of knots. Nevertheless, the

choice of tuning parameters would depend on the functional shape of true θ(·) and was generally

unknown; and different choices of tuning parameters could affect power considerably and lead

to different p-values. Other approaches may resort to direct nonparametric estimation of θ(·), as

seen in O’Sullivan (1988), Hastie and Tibshirani (1990), Zucker and Karr (1990), Sleeper and

Harrington (1990), Kooperberg et al. (1995), Brown et al. (2007), and references therein. Generally

speaking, these works tend to be useful in understanding the overall shape of θ(·). Although
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asymptotic properties are developed for an estimated θ̂(t) at a specific time t, they are usually

not intended for testing the global null H0 : θ(t) = 0 for any t > 0.

The null hypothesis of interest is related to but fundamentally different from H0,PH : θ(t) = c for

some constant c ∈ R. In fact, H0,PH is exactly equivalent to the proportional hazards assumption,

with testing procedures including Pettitt and Bin Daud (1990), Gray (1994) and Lin et al. (2006).

Specifically in Lin et al. (2006), θ(·) was approximated by smoothing spline bases, and the authors

proposed a score test for H0,PH that does not involve tuning parameters. Nevertheless, we would

like to emphasize that these approaches are proposed to test a different null hypothesis from the

proposed test, and are thus not comparable with our work. The differences between our work and

other previous literature are further clarified in Section 3.5.

In this article, we aim to develop proper testing methods specifically for the null hypothesis

H0 : θ(t) = 0 for any t > 0 under model (1), based on spline representation of the hazard ratio

θ(t). The rest of the paper is organized as follows. In Section 3, we study the extended Cox model

and derive the proposed statistics. Extensive Monte-Carlo simulations studies are presented in

Section 4 with various choices of θ(t) to evaluate a finite sample properties of our score statistics.

Their performances are compared with the log-rank statistic and Gray’s statistics (Gray, 1994). We

also apply our proposed statistics to compare the 18-month infant survival of the HIVNET 012

Study. We conclude in Section 5 by summarizing our results and discussing relevant issues and

future directions.

2. The extended Cox model

Throughout the rest of this paper, we assume the extended Cox model as in (1). Our aim is to

develop powerful and omnibus hypothesis testing procedures for H0 : θ(t) = 0 for any t > 0.

Apparently when θ(·) is constant, model (1) reduces to the usual Cox proportional hazards model.

Nevertheless, θ(t) can be quite flexible. It allows the hazard ratio between two treatment groups

to change over time for any given X . Some properties regarding this model are summarized as

follows:
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Property. Denote the cumulative hazard function by Λ(t) =
∫ t

0
λ(s)ds. Let θ(0) = θ0 and assume

that limt→∞ θ(t) = θ1 <∞. Then

(1) limt→0 log{Λ(t |X,Z)/Λ0(t)} = X Tβ + Zθ0, and

(2) limt→∞ log{Λ(t |X,Z)/Λ0(t)} = X Tβ + Zθ1.

Proof of this property is straightforward. Based on this, when θ(·) is monotone, θ0 and θ1 define

the boundaries of the relative risk in cumulative hazard functions adjusted for X . For example,

when θ(t) = 0.7 exp(−t), the hazard ratio for Z is 0.7 at t = 0, but gradually reduces to zero

as time progresses. More examples of θ(·) are shown in Figure 2. ? and ? considered special

parametric submodels, where the shape θ(·) is represented by a family of polynomial functions

indexed by a few parameters, to account for early or late effects.

2.1 Spline representations of θ(t)

We assume that the collected data consist of n independent and identically distributed (iid) copies

of (Y,∆, X, Z), where Y is the minimum of time to event T and censoring time C, i.e., Y =

min(T,C), ∆ = I(T 6 C) is the event indicator, X is the vector of covariates other than the

treatment indicator, and Z is the treatment indicator, namely {(Yi,∆i, Xi, Zi), i = 1, 2, . . . , n}.

Let to1 6 to2 6 · · · 6 tor denote the ordered observed failure times, i.e., ordered statistics of

{Yi : i = 1, 2, · · · , n, and ∆i = 1}, where r =
∑n

i=1 ∆i is the number of observed failure time

points.

To model the time-varying treatment effect flexibly, we consider representing θ(t) by fixed knots

B-splines or smoothing splines, i.e.,

θ(t) = θ0 +
K∑
k=1

θkBk(t), (2)

where Bk(t)’s form a set of basis functions. Note that the methods development below works for

both B-spline or smoothing spline approaches, and our experience is that the performance of the

two approaches are comparable as long as the number of knots are reasonably dense. If one is using

fixed knots B-splines, the number of basis function K is fixed and depends on the number of knots
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and the order of polynomials. For the smoothing spline approach, on the other hand, the number

of basis functions depends on the sample size and the order of polynomials, i.e., K = r +m− 1.

Since the partial likelihood involves θ(t) evaluated at the observed failure time to1, . . . , t
o
r only,

we define γ = { θ(to1), . . . , θ(tor) }T = 1θ0 + Bθ, where 1 ∈ Rr is a vector whose elements are all

1, θ = (θ1, . . . , θK)T ∈ Θ ⊂ Rr and B is a r ×K matrix whose (i, j) element is Bi(t
o
j).

2.2 Penalized likelihood

The spline representation introduces K parameters θk’s for the hazard ratio function to allow

flexiblity. However, with a large degree of freedom, the model could overfit and the power to detect

deviations from the null may be low. One strategy to avoid overfitting is to introduce a penalized

partial likelihood function by penalizing the roughness of θ(t), e.g., in the form of
∫
{θ′(t)}2dt. It

can be shown that the penalty term is a quadratic function of θ,∫
{θ′(t)}2dt =

∫ {∑
k θkB

′

k(t)
}2
dt = θTΣθ,

where Σ is a K ×K matrix whose (i, j) element is
∫
B

′
i(t)B

′
j(t)dt, which is fully determined by

the choice of splines. Thus, the penalized partial log likelihood function is defined by

` {β, θ(·), τ} ≡ `P {β, θ(·)} −
1

2τ

∫
{θ′(t)}2dt

= `P (β, θ0, θ)−
1

2τ
θTΣθ, (3)

where τ is a tuning parameter that controls smoothness of θ(t), and `P is the partial likelihood

corresponding to hazard ratio function θ(t),

`P (β, θ(·)) =
n∑
i=1

∆i

[
XT
i β + Siθ(Yi)− log

{
n∑
j=1

exp
{
XT
j β + Sjθ(Yi)

}
I(Yj > Yi)

}]
.

Note that τ controls the level of smoothness of θ(t) and thus effective degree of freedom. When τ

is small, the penalized partial likelihood encourages solutions that are close to the Cox proportional

model with df = 1 for treatment effect. When τ is large, the effect of penalty is negligible and the

model involves K + 1 parameters for the treatment effect, e.g., df = K + 1. Under this model,

the null hypothesis can be represented as H0 : θk = 0, , k ∈ {0, 1, · · · , K}. Gray (1994) used B-

splines and studied asymptotic properties of Wald, score and likelihood ratio tests for fixed tuning
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parameter τ . For the choice of tuning parameter, they suggested choosing a suitable degree of

freedom (“df”) and find τ to achieve the desired df. However, in practice, the choice of suitable df

is subjective, and the power performance depends on the tuning parameter.

To construct tests that does not depend on tuning parameters, one can exploit the connection

between the penalized splines and random effects models (?). Note that the second term of (3) is

proportional to the logarithm of a multivariate normal density with mean zero and the covariance

matrix τΣ−1. Hence, one can treat θ as “random effects,” and integrate θ out with respect to the

multivariate normal density to obtain the marginal partial log likelihood

`m(β, θ0, τ) =

∫
θ∈Θ

exp {`P (β, θ0, θ)} exp

(
− 1

2τ
θTΣθ

)
dθ. (4)

We use this marginal likelihood as our objective function to derive the score statistics. In fact, since

τ is the variance component for the random effects, setting τ = 0 shall lead to θ = 0. As a result,

testing H0 is equivalent to H0 : θ0 = 0, τ = 0. Note that this mixed effect model representation

holds for both B-splines and smoothing splines.

Remark 1. Lin et al. (2006) considered a smoothing splines approach, where the log hazard ratio

θ(t) can be represented by

θ(t) = θ0 +
m−1∑
j=1

δj t
j +

r∑
k=1

θkR(t, tok),

where δj’s and θk’s are spline coefficients, {1, t, · · · , tm−1} is a set of basis functions for (m−1)th

order polynomials, and R(t, s) =
∫ 1

0
(t− u)m−1

+ (s− u)m−1
+ /{(m− 1)!}2du, where x+ = x ∨ 0 =

max{x, 0}. The choice of m in (2) depends on a pre-specified level of smoothness. If one choose

m = 1, the time-varying coefficient (2) is simplified as θ(t) = θ0 +
∑r

k=1 θkR(t, tok), where

R(t, s) = min{t, s}. It can be shown that the matrix B is exactly the same as Σ in this case.

Remark 2. There are several key differences between Lin et al. (2006) and our work. First, they

are interested in testing the proportional hazards assumption, HPH
0 : τ = 0, which is a different

null hypothesis. Thus, our approach and theirs are not directly comparable. Second, their null

hypothesis involves the variance component parameter only, where ours involve in an additional

fixed effects parameter θ0. Statistically, as will be seen later, our work involves address challenges
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to combine score tests for both θ0 and τ , due to some non-standard properties for the variance

component τ . Third, our approach here is not limited to the smoothing splines approach, and

works for other choices of basis functions such as B-splines and others.

3. Proposed test statistics

The aim of this paper is to propose “omnibus” testing procedures for possily time-varying treatment

effects, without making parametric assumptions on the shape of the hazard ratio. The idea is to

combine evidence from both the average magnitude and shape of the hazard ratio function and

construct test statistics that are powerful under both PH and various non-PH alternatives.

3.1 A two-stage test

In the literature, there were developments on hypothesis testing procedures for the proportional

hazards assumption, e.g., Lin et al. (2006), denoted by TLZD. If one aims to test treatment effect

H0 while accounting for potential non-proportionality, a natural strategy is to construct a two-stage

procedure as follows (henceforth denoted T 2stg),

S1: apply the test TLZD for the PH assumption. Reject H0, if the p value is less than a pre-determined

significance level α1; otherwise, go to the second stage;

S2: apply the standard log-rank test for treatment effect. Reject H0 if the p value is less than another

pre-determined significance level α2.

This procedure is a straightforward extension of the log-rank test and TLZD. Note that S1 tests

the proportional hazards assumption, while S2 tests treatment effect given the proportional hazards

assumption is plausible. The overall null hypothesis is rejected, if either stage rejects the null. The

overall type I error rate of this two-stage procedure depends on the correlation of two tests, but

is bounded by α1 + α2 from above according to the Bonferroni inequality. The parameters α1

and α2 controls how much type I error was assigned to the two tests. In practice, one can choose

α1 = α2 = α/2 without prior information on the plausibility of proportional hazards, where α is
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the targeted overall significance level. The performance of this simple two-stage procedure will be

compared with the standard log-rank test as well as other proposed methods to be discussed below.

3.2 Score statistics

Next, we construct a few test statistics based by combining score statistics for θ0 and τ . Taking the

derivatives of (4) with respect to θ0 and τ , one obtains

Uθ0 =
∂`m(β, θ0, τ)

∂θ0

∣∣∣∣
β=β̂, θ0=0, τ=0

= 1T
∂`P (β̂, θ0 = 0, θ = 0)

∂γ
,

and

Uτ =
∂`m(β, θ0, τ)

∂τ

∣∣∣∣
β=β̂, θ0=0, τ=0

=
1

2

∂`P (β̂, θ0 = 0, θ = 0)

∂γT
BΣ−1BT ∂`P (β̂, θ0 = 0, θ = 0)

∂γ

+
1

2
tr

[
∂2`P (β̂, θ0 = 0, θ = 0)

∂γ∂γT
BΣ−1BT

]
, (5)

where β̂ is the maximum partial likelihood estimate of the Cox model without treatment effect,

i.e., the maximizer of the partial likelihood `P (β, θ0 = 0, θ = 0). First, we look at the derivative

with respect to θ0. Denote S(β, θ0, θ) = (∂/∂γ)`P (β, θ0, θ), the kth element of S(β̂, 0, 0) is then∑
i I(Yi = tok)∆i{Si−

∑
j Sj exp(β̂TXj)I(Yj > tok)/

∑
j exp(β̂TXj)I(Yj > tok)}. It can be shown

that the covariance matrix of S(β, θ0, θ) is given by V = Iγγ − IγβI
−1
ββ Iβγ , where the Fisher

information matrices are evalued under the true parameter values. Thus, 1TS(β̂, 0, 0) is in fact the

usual partial likelihood score function evaluated under the null. The standard score test statistic for

θ0 can be written as

TLR = {1TS(β̂, 0, 0) }2/var{1TS(β̂, 0, 0)} = I0
−1S(β̂, 0, 0)T 11T S(β̂, 0, 0),

which is a quadratic form of S(β̂, 0, 0) and converges to χ2
1 due to rank(11T ) = 1. Note here

I0 = var{1TS(β̂, 0, 0)} = 1TV 1 is exactly the efficient Fisher information for θ0 under the Cox

model. Thus, the standardized score test statistic TLR converges to a χ2
1 distribution under the null

hypothesis. Next, we look at the derivative with respect to τ . It has been shown that the variation

of second term of (5) is negligible relative to the first term (Lin et al., 2006). The first term of (5)

is a quadratic form of S(β̂, 0, 0). According to quadratic form theory, its limiting distribution is
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weighted sum of χ2’s, with weights determined by the eigenvalues of Σ. This suggests that the

asymptotic behavior of the score function for τ is non-standard.

Remark 3. For the smoothing splines approach with first order polynomials (Lin et al., 2006), the

term BΣ−1BT simplifies to Σ as B = Σ = BT in this case. They evaluated the score for τ at

(β = β̃, θ0 = θ̃0, θ = 0) instead, where β̃ and θ̃0 are their maximum likelihood estimates under the

Cox model, because they are testing a different null hypothesis HPH
0 .

3.3 Combine scores for θ0 and τ

To test H0 : θ0 = 0, τ = 0, since the null hypothesis involves both θ0 and τ , one needs to

combine score functions with respect to θ0 and τ (denoted as Uθ0 and Uτ , respectively), which

reflect information from the average magnitude and shape of the hazard ratio function, respectively.

Under regularity conditions, score functions for multiple parameters follows multivariate normal

distribution asymptotically, and the standard approach is contructing linear combination of Uθ0 and

Uτ weighted by the square root of the joint Fisher information matrix. However, this procedure does

not work here, due to non-standard properties in testing variance components.

As discussed above, the parameter τ = 0 is on the boundary of its parameter space under the

null. The dominating term of the score function with respect to τ converges to a weighted sum of

χ2
1’s, instead of a Gaussian distribution. To overcome the challenges, we propose a few methods of

combing two score functions to construct test statistics. Uθ0 and Uτ are linear and quadratic forms

of S(β̂, 0, 0), respectively. We propose a few combinations that are quadratic forms of S(β̂, 0, 0),

whose asymptotic distribution can be derived conveniently.

The first test statistics T1 is constructed by taking the sum of Uτ and U2
θ0

,

T1 ≡ ST (β̂, 0, 0)BΣ−1BTS(β̂, 0, 0) + (Î0)−1ST (β̂, 0, 0)11TS(β̂, 0, 0)

= ST (β̂, 0, 0)
{
BΣ−1BT + (Î0)−111T

}
S(β̂, 0, 0), (6)

where Î0 is an estimate of the efficient information for θ0 in the usual Cox model. Note that T1

is also a quadratic form of S(β̂, 0, 0), and thus its limiting distribution can be easily calculated.

It converges to a weighted sum of χ2
1’s, with weights determined by eigenvalues of the matrix

Hosted by The Berkeley Electronic Press



M1 = BΣ−1BT + (Î0)−111T . Using the Satterthwaite approximation, the limiting distribution

can be further simplified. Our score statistic rejects the null hypothesis H0 at the nominal level

α if T1 > k1χ
2
α,v1

where χ2
α,v is a 100(1 − α) percentile of the χ2

v random variable with degree

of freedom v. Here, k1 = tr(M1VM1V )/tr(M1V ), and v1 = {tr(M1V )}2/tr(M1VM1V ), where

V = ∂2`P{β̂, (θ0, θ
T ) = 0}/∂γ∂γT . The details on deriving the limiting distribution and its ap-

proximations are discussed in Appendix A.

The test statistic T1 is a sum of two quadratic forms. However, these two parts are not indepen-

dent, and taking the sum directly may not be optimal in terms of power, with potential power loss

depending their correlation. We propose to remove the projection of Sτ on Sθ0 , so that the modified

score statistics for τ (denoted by subscript “mPH”, i.e., modified test for PH) is asymptotically

independent to the score statistics for θ0. Let

TmPH ≡ ST (β̂, 0, 0)W TBΣ−1BTWS(β̂, 0, 0), (7)

whereW = Ir×r−V 11T/{1TV 1}. The matrixW is constructed so thatWS(β̂, 0, 0) and 1TS(β̂, 0, 0)

are asymptotically independent (see Appendix C). Note that TmPH is also a quadratic form of

S(β̂, 0, 0) that reflects evidence on proportionality, on the direction that is orghogonal to the

average magnitude of hazard ratio. The degree of freedom of TmPH depends on realizations of

the data, and can be calculated by tr(V −1W TBΣ−1BTW ).

We now construct the second test statistic by taking the sum of TLR and TmPH ,

T2 ≡ TLR + TmPH = ST (β̂, 0, 0)
{
W TBΣ−1BTW + (Î0)−111T

}
S(β̂, 0, 0), (8)

The test statistic T2 is also a quadratic form, and we can obtain the approximate asymptotic distribu-

tion according to Appendix A. Our score statistic T2 rejects the null hypothesis H0 at the nominal

level α if T2 > k2χ
2
α,v2

where k2 = tr(M2VM2V )/tr(M2V ), v2 = {tr(M2V )}2/tr(M2VM2V ),

and M2 = W TBΣ−1BTW + (Î0)−111T .

Remark 4. More generally, one can consider the family of linear combinations of TLR and TmPH ,

i.e., using test statistics

T (ρ) = ρTLR + (1− ρ)TmPH , where 0 6 ρ 6 1, (9)
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where ρ determines the weights from two parts. The test statistics T (ρ) becomes the standard

log-rank test when ρ = 0, and modified test for proportionality when ρ = 1. The proposed test

T2 corresponds to ρ = 0.5. The optimal choice of tuning parameter ρ is not clear and we plan

to investigate this family of test statistics in the future. Our simulation studies suggest that T2

performs well in terms of power in finite samples.

3.4 Combination procedures based on p values

We also explored a few other methods to combine information, e.g., ?, taking advantage of the fact

that TLR and TmPH are asymptotically independent. For example, two commonly used procedures

for combining independent tests are based on p values, Fisher’s and Tippett’s procedures. Specif-

ically, let PLR and PmPH denote p values from TLR and TmPH respectively. The test statistics for

Fisher’s procedure is

T3 = −2 logPLR − 2 logPmPH .

Under H0, it can be shown that T3 follows χ2
4, and thus p values can be calculated by P3 =

1 − Fχ2
4
(T3), where Fχ2

4
is the cumulative distribution function of χ2

4. We reject the null when

T3 > χ2
4,1−α at significance level α. On the other hand, Tippett’s procedure rejects the null when

either PLR or PmPH is small, i.e., the test statistics is the minimum of two p values

T4 = min(PLR, PmPH).

Under (asymptotic) independence of two tests, one can show that the formula for p values for the

combined test is P4 = 1 − (1 − T4)2. At significance level α, the rejection regaion is given by

T4 < 1− (1− α)1/2.

Note that the two-stage test T 2stg described in Section can also be viewed as a combination

procedure based on p values. However, the proposed T3 and T4 combines two test statistics that

are asymptotically independent, while the two statistics of T2stg are possibly correlated. The finite

sample performance of these procedures will be evaluated in simulation studies.
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3.5 Connection with previous literature

As pointed above, there are two existing work, Gray (1994) and Lin et al. (2006), mostly relevant

to our proposed test statistics. However, there are substantial differences between their work and

the proposed tests.

First, Gray (1994) used B-splines to model θ(t) and proposed Wald, score and likelihood ratio

statistics based on penalized partial likelihood for fixed values of tuning parameter. Their approach

is applicable to several hypothesis testing problems, including testing time-varying treatment effect

H0 (see Section 4 of their paper). However, it depends on a tuning parameter that controls the

effective degree of freedom of splines. The tuning parameter affects the power of these tests

substantially and is often difficult to choose in practice. If we use the same B-spline approach,

our work can be viewed as extensions of Gray (1994) through mixed effects model framework. In

contrast, our proposed tests are automatic procedures that do not depend on tuning parameters, and

are shown to be as or more powerful in finite samples (see the next section).

Second, Lin et al. (2006) proposed smoothing spline based score tests in extended Cox models.

They discussed several hypothesis testing problems, including testing the proportional hazards null

H0,PH : θ(t) = θ0 versus an alternative model with a time-varying hazard function. From a random

effects model perspective, their null hypothesis can be represented via the variance component, i.e.,

H0,PH : τ = 0. Although our development adapts some technical arguments from Lin et al. (2006),

we target at a different null hypothesis H0 : θ(t) = 0, or equivalently H0 : θ0 = 0, τ = 0. Their

approach is applicable only when the null hypothesis is represented via the variance component τ

only, thus excluding the problem of testing H0. Other than the fundamental differences in the null

hypotheses of interest, the primary challenge of extending their approach to our problem is how to

combine information from θ0 and τ , and this is not straightforward given the non-standard nature

of variance components. We proposed a few approaches to combine score statistics for θ0 and τ ,

and this is one of the main contributions of this paper from a methological perspective.
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4. Numerical Studies

4.1 Simulations

To study the finite sample performance of the proposed tests, survival data of sample sizes n = 100

and n = 500 were generated from the extended Cox model (1) with a binary treatment indicator and

no additional covariates. The baseline hazard function was a constant function, i.e., λ0(t) = 1. The

censoring distribution was the uniform distribution on [0, c] where c was chosen to yield censoring

probability 30% for each scenario. We conducted extensive simulation studies with various choices

of θ(t), corresponding to different shapes of hazard ratio functions. The shapes of θ(t) are shown in

Figure 2, most of which were considered by Gray (1994) and Lin et al. (2006) up to scale changes.

[Figure 2 about here.]

For each simulated dataset, we compared our methods with the log-rank test (denoted TLR), the

two stage procedure with α1 = α2 = 0.025% as described in Section 3.4 (denoted T 2stg), and the

score statistic of Gray (1994) with pre-selected degree of freedom (denoted GK
S,df with K knots

and degree of freedom df ). For the score statistic of Gray (1994), we considered four choices, with

the number of knots K = 10 and 20, and degrees of freedom df = 1.5 and 5. The performances

of the likelihood ratio and Wald statistics of Gray (1994) are similar to the score statistic, and thus

we only reported results for their score statistics. We also reported power from the modified test

for proportionality, TmPH , since it is a valid test for H0 with a correct type I error. However, we

do not mean to compare its performance with other tests directly, as TmPH summarizes evidence

from non-constant shape of the hazard ratio only; rather our intention is to gain insights of how

each method combine information from the magnitude and shape of the hazard ratio.

Table 1 summarizes results from our simulations. In terms of type I error, all test statistics

maintained the nominal level of size (α = 0.05) approximately under the null hypothesis H0.

In terms of power, none of the test statistics is optimal in detecting all types of alternatives. It is

well known that the log-rank test is most powerful for treatment effect under the PH assumption,

but may lose power otherwise. The aim of our work is to propose new “omnibus” tests that do not

Hosted by The Berkeley Electronic Press



lose much power compared to log-rank under the PH assumption and also have decent power to

detect non-PH alternatives.

We now compare power of various test statistics under both PH alternatives and a wide variety of

non-PH alternatives. When the PH assumption holds and the true model is the Cox model (H0,PH),

the log-rank test was the most powerful as expected. Gray’s score tests performed well, particularly

with low degree of freedom (df = 1.5), but lost power substantially with higher degree of freedom

(df = 5). The proposed linear combination statistics T1 and T2 have slightly lower power compared

to the log-rank test, but the differences are small. The proposed p-value based statistics T3 and T4

are less powerful than the linear combination tests from simulations.

[Table 1 about here.]

Under non-PH alternatives, there is no universally best test according to Table 1. First, we

compare power performance between two proposed statistics T1 and T2. Under several scenarios

(L, Q, E1, Expit, Log2), T1 has slightly higher power than T2 by around 2% and 6%. On the other

hand, T2 outperforms T1 in other settings (E2, Log1, S, C), but generally with a more substantial

power gain that varies between 7% to as high as 38% (Log1). Thus, the statistic T2 is considered

“omnibus” in the sense that it has decent power against all types of alternatives and is our preferred

choice, while T1 is prone to very low power to detect certain types of alternatives. The substantial

power gain of T2 is likely due to the fact that the latter exploits orthogonality between information

on the magnitude and shape of the hazard ratio function.

Next, we compare the proposed score statistic T2 versus the log-rank test (TLR), the modified PH

test (TmPH) and the two-stage procedure (T 2stg) under non-PH alternatives. Under many settings,

T2 outperforms both TLR and Ttwo−stg. For example, under alternative curve Log2 and sample size

of 500, the power for T2 is 61.4%, much higher than both TLR (44.9%) and T 2stg (55.7%). Under

some alternatives (E1, E2, Expit), the power of T2 is lower than the log-rank test TLR but only

by very slight margins. Thus, the proposed test T2 is generally comparable or more powerful than

TLR, since it combines information from the shape of hazard functions. The proposed test can

potentially pick up evidence of treatment effects even if both TLR and TwoStg fail to suggest so.
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We also compared T2 versus Gray’s score tests. The power of Gray’s score tests varies with tuning

parameters, especially with the degree of freedom, which needs to be pre-specified and can affect

power performance considerably. Their score tests with low df (G10
S,1.5 and G20

S,1.5) perform well

when the hazard function is close to a constant or linear function but poorly otherwise, while the

opposite holds for the tests with high df (G10
S,5 and G20

S,5). The proposed test T2 is often comparable

or close to Gray’s statistics with the “better” choice of df in terms of power, and sometimes

outperform all of them under certain alternatives (Log1 and C ).

To summarize, the proposed test statistics, especially the preferred T2, demonstrate decent power

performances under various alternative hypotheses in simulations. Other testing procedures, such

as the log-rank test, the two-stage procedure and Gray (1994)’s score tests, are often powerful

against certain alternatives but may lose power substantially against others. In addition, T2 does

not depend on tuning parameters, making it an omnibus and desirable testing procedure to use in

practice.

4.2 Application to HIVNET 012 Study

We demonstrate our proposed methods by analyzing our motivating example of infant survival in

the HIVNET 012 Study mentioned in Section 1. In our data set, 310 women were assigned to the

NVP group and 306 women to the AZT group. We exclude the second twins or more and babies

with still birth from the analysis. Mean CD4+ counts at the baseline for mothers in both groups

were 482 and 465 (p = .41); mean log RNA viral copies with base 10 at visit 101 were 4.35 and

4.39 (p = .59); mean birth weights were 3080 kg and 3197 kg (p = 0.001), respectively. The total

follow-up time is 18 months. The HIV-1 transmission risk and risk of death at the end of the study

is 14.9 % and 23.5% (p = 0.007), and 9.3% and 12.7% (p = .18).

As we discussed in Section 1, the log-rank test does not show significance (p = 0.145), with

estimated hazard ratio 0.701 (95 % CI: 0.43-1.13). However, the lack of statistical significance

may be due to the fact that the log-rank test is not powerful when the PH assumption does not

hold, which seemed to be the case in this application (Figure 5).
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Next, we applied alternative tests, including weighted log-rank test, Gray’s test and the proposed

tests. For weighted log-rank tests, we used weights corresponding to Peto-Peto modification of

the Wilcoxon statistic (Peto and Peto, 1972) considering the drug effect gradually disappeared

over time, but the result is not significant (P = 0.125). We also tried weights from the Gρ

family (Harrington and Fleming, 1982) with different ρ’s, but the usual choice of ρ between 0

and 1 did not yield a significant result. Gray’s score tests yielded different results depending

on tuning parameters such as degrees of freedom and numbers of knots. Specifically, p values

corresponding to df = 1.5, 3 and 5 are 0.073, 0.032 and 0.057, respectively, with K = 10 knots,

and are 0.069, 0.032 and 0.053, respectively, with K = 20 knots. These results may be confusing

to practitioners since different df led to different p values, and it is not clear which df one should

choose for this specific application. The proposed test T2 suggested significant treatment effects

(p = 0.015). To confirm the proportionality of the hazard ratio, we also applied the test and

obtained p value (p = 0.013), which suggested that the hazard ratio is time-varying and that the

log-rank test is not optimal in this setting.

5. Discussion

We developed spline based score tests for time-varying treatment effects in an extended Cox

model. The proposed approach is designed to test treatment effects when the proportional hazards

assumption may not hold. These test statistics do not depend on tuning parameters and are easy to

compute since they only requires fitting the null model (Cox model). Simulation studies suggested

that our methods gained power substantially compared to the log-rank test when the proportional

hazards assumption do not hold.

There are some connections between the proposed tests and the widely used weighted log-rank

test. As shown in Appendix B, the family of quadratic form tests Q = STUS, which include

the weighted log-rank test, Lin et al. (2006)’s proportionality test and the proposed tests, are

equivalent to a linear combination of several weighted log-rank tests with weights determined by

the eigenvectors of the matrix U . The weighted log-rank test (when U has rank 1) is powerful when
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the chosen weights are close to the true hazard ratio functions, but may lose power substantially

otherwise. In contrast, the proposed tests combine several plausible weighted log-rank tests, some

of which reflect information on the smoothness of the hazard ratio function, and thus provide

omnibus testing procedures that are powerful to detect a variety of alternatives.

There are a few areas for future research. As discussed in Section 2.2, one main challenge is how

to combine scores for parameters θ0 and τ , given the non-standard nature of variance components

testing. While the two proposed statistics are natural choices, they are not necessarily optimal in

terms of power. There may be other ways to combine the score statistics. For example, one may

explore the family of linear combinations and find an optimal weight within this family, or even

identify the optimal statistics among nonlinear combinations if possible. The proposed methods

can also be applied to other models and setting to detect a nonlinear trend. Although we focused

on an extended Cox model, our method can be extended to other models such as an additive hazards

models.

A reviewer raised an interesting question of deriving a method to differentiate three hypotheses:

the null, constant or truly time-varying effect of treatment. Two step procedures will be needed to

accomplish this, as standard hypothesis testing is designed to distinguish two hypotheses only. For

example, one can first apply the test of Lin et al. (2006), which differentiate “null or constant effect”

vs. time-varying effect. If the null was not rejected in the first step, then apply the log-rank test to

further differentiate null vs. constant effect. Alternatively, one can first apply the proposed test

statistics, which differentiates null vs. “constant or time-varying effect.” If the null was rejected,

then apply the test of Lin et al. (2006) to further differentiate constant vs. time-varying effect.
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APPENDIX

A. Asymptotic distributions of test statistics

The two proposed test statistics (T1 and T2), as well as the log-rank (TLR) and modified PH (TmPH)

test statistics, are all asymptotically equivalent to quadratic forms of S(β̂, 0, 0). In the following,

we describe asymptotic distributions of such quadratic forms, as well as approximation methods

to calculate p values. We follow similar arguments.

We consider a general quadratic form Q = STUS, where S := S(β̂, 0, 0) is a vector of length

r and U is a positive semi-definite matrix of size r × r. Since each element of S is a realization

of the score function, S has mean 0 and its variance-variance matrix is the Fisher information V .

One can rewrite Q = STUS = (V −1/2S)T (V 1/2UV 1/2)(V −1/2S), where V −1/2S are standardized

S with identity matrix as its covariance matrix. Using quadratic form theory and the central limit

theorem, one obtains the following result.

Proposition. Asymptotically, the distribution of the quadratic form Q = STUS is approximately a

weighted average of χ2
1, more specifically,

Q→
∑
k

λkχ
2
1,

where λk’s are eigenvalues of the matrix UV . The mean and variance of the limiting distribution

are tr(UV ) and tr(UV UV ), respectively.

In practice, it is often the case that the first few eigenvalues capture the most variations and

the remaining ones are negligible. To calculate p values, one can use further approximation cχ2
v,

i.e., a scaled χ2 distribution with degree of freedom v. By matching the mean and variance of

the two distributions, one can obtain the choice of parameters c = tr(UV UV )/tr(UV ) and v =
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{tr(UV )}2/tr(UV UV ). In simulations, we found that both approximations work reasonably well

in finite samples.

B. Connection with weighted log-rank tests via spectral decomposition

In this section, we will apply the spectral decomposition to understand the connection between the

proposed tests and the weighted log-rank test. Consider the general quadratic form Q = STUS,

where U is a non-negative semi-definite matrix. One has spectral decomposition U =
∑

k λkPkP
T
k ,

where λk’s and Pk’s are eigenvalues and eigenvectors of U , respectively. Using such decomposi-

tion, the quadratic form can be written as

Q = STUS =
∑
k

λk S
TPkP

T
k S =

∑
k

λk(P
T
k S)T (P T

k S). (A.1)

Note that the kth term is equivalent to the weighted log-rank statistic with weight Pk. Thus, the

test statistic Q is equivalent to a linear combination of several weighted log-rank statistics, with

weights determined by the eigenvectors of the matrix U . The relative importance of each weighted

log-rank statistics in the linear combination is determined by the eigenvalues λk’s.

If the matrix U has rank 1 and thus only one eigenvector P1, the test statistic Q is actually

weighted log-rank test with weight P1 (unweighted log-rank test if and only if U ∝ 11T , or

equivalently, P1 ∝ 1). If rank(U) > 1, the quadratic form Q is equivalent to a linear combination

of several weighted log-rank statistics, different from any weighted log-rank tests. The resulting

test statistics incorporate information from deviation from the null in several different directions,

and thus are expected to be omnibus when the shape of true hazard ratio function is unknown. In

Lin et al. (2006), they chose U = Σ, which was derived from the differential operator, and their test

statistic would summarize information from possible non-proportionality. For the proposed tests

T1 and T2, we choose the matrix U to be a linear combination of 11T and Σ, and thus our test

statistics combine information from both the magnitude and shape of the hazard ratio function.

C. A sketch of proof of the properties of T2

We provide a sketch of proof to show that 1TS(β̂, 0, 0) and W (β̂)S(β̂, 0, 0) are approximately

uncorrelated under the null. Therefore, T2 is expected to combine information from 1TS(β̂, 0, 0)
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and S(β̂, 0, 0) effectively. Because the profile likelihood is an approximately least favorable sub-

model of the Cox model (Murphy and van der Vaart, 2000), we treat the partial likelihood as a

legitimate likelihood from a parametric model without a nuisance parameter. Denote the partial

likelihood as `(β, θ0, θ). Note that the projection of a random vector X onto a random vector Y is

Z = {cov(X, Y )/var(Y )}Y . We consider X = S(β0, 0, 0) and Y = 1TS(β0, 0, 0) where β0 is a

true parameter. Then the projection of X onto Y is given by

Z =
cov(S(β0, 0, 0),1TS(β0, 0, 0))

var(1TS(β0, 0, 0))
1TS(β0, 0, 0)

=
E{S(β0, 0, 0)S(β0, 0, 0)T})1

1Tvar{S(β0, 0, 0)}1
1TS(β0, 0, 0),

Since

ES(β0, 0, 0)⊗2 = E
[
{(∂/∂θ)`(β0, 0, 0)}⊗2] = −E

[
(∂2/∂θ∂θT )`(β0, 0, 0)

]
= −EṠ(β0, 0, 0),

we obtain

Z =
E{Ṡ(β0, 0, 0)}

1TE{Ṡ(β0, 0, 0)}1
11TS(β0, 0, 0).

Since E{Ṡ(β0, 0, 0)} and β0 are unknown, we replace these by a empirical version, n−1Ṡ(β̂, 0, 0),

and an estimate, β̂, to obtain

Z̃ =
Ṡ(β̂, 0, 0)

1T Ṡ(β̂, 0, 0)1
11TS(β̂, 0, 0) = (W (θ̂)− I)S(β̂, 0, 0).

Thus, we expect 1TS(β̂, 0, 0) and W (θ̂)S(β̂, 0, 0) are approximately uncorrelated.
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Figure 1. Kaplan-Meier curves for two treatment arms and their transformation by log negative
log.
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Figure 2. Functional shapes of hazard ratio θ(t) that were used in simulations. We considered
nine hazard functions, including linear (L), quadratic (Q), exponential (E1, E2), inverse-logistic
(Expit), logarithm (Log1, Log2), step (S) and cosine (C) functions. Their specific functional forms
are specified in Table 1.
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θ(t)
n

T
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T
m
P
H

T
2
stg
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1
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S
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G
1
0
S
,5

G
2
0
S
,1
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2
0
S
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T
1

T
2

T
3

T
4

H
0 :

0
100

0.058
0.049

0.059
0.056

0.051
0.057

0.061
0.056

0.052
0.055

0.059
500

0.042
0.063

0.060
0.056

0.058
0.059

0.053
0.054

0.062
0.059

0.060

H
0
,P
H

:
log

1.5
100

0.363
0.042

0.292
0.369

0.258
0.418

0.271
0.329

0.323
0.278

0.298
500
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0.053

0.933
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0.932
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Q
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p
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C
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