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Vertex Clustering in Random Graphs via
Reversible Jump Markov Chain Monte Carlo

Stefano Monni and Hongzhe Li

Abstract

Networks are a natural and effective tool to study relational data, in which ob-
servations are collected on pairs of units. The units are represented by nodes and
their relations by edges. In biology, for example, proteins and their interactions,
and, in social science, people and inter-personal relations may be the nodes and
the edges of the network. In this paper we address the question of clustering ver-
tices in networks, as a way to uncover homogeneity patterns in data that enjoy a
network representation. We use a mixture model for random graphs and propose
a reversible jump Markov chain Monte Carlo algorithm to infer its parameters.
Applications of the algorithm to one simulated data set and three real data sets,
which describe friendships among members of a University karate club, social
interactions of dolphins, and gap junctions in the C. Elegans, are given.
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Abstract

Networks are a natural and effective tool to study relational data, in which ob-

servations are collected on pairs of units. The units are represented by nodes and

their relations by edges. In biology, for example, proteins and their interactions,

and, in social science, people and inter-personal relations may be the nodes and

the edges of the network. In this paper we address the question of clustering

vertices in networks, as a way to uncover homogeneity patterns in data that en-

joy a network representation. We use a mixture model for random graphs and

propose a reversible jump Markov chain Monte Carlo algorithm to infer its pa-

rameters. Applications of the algorithm to one simulated data set and three real

data sets, which describe friendships among members of a University karate club,

social interactions of dolphins, and gap junctions in the C. Elegans, are given.

Key Words: Networks; Graphs; Modules; Clustering; Reversible Jump Markov Chain

Monte Carlo; Wang Landau

1 Introduction

For many years graphs have been an important tool to study complex interacting systems

appearing in different branches of sciences, from social sciences to biology, see e.g. the

review (Albert and Barabási, 2002). A graph is a pair of two sets (V , E): elements

of V are called vertices or nodes, and elements of E ⊆ V × V are pairs of vertices,

called edges. In the following, we consider only simple undirected graphs: namely,

each element e ∈ E corresponds to one and only one unordered pair (i, j) of distinct

points of V . A matrix X, called the adjacency matrix, can be used to describe the

graph. Its order is the cardinality of the set V , the number of vertices, and its ij entry

is non-zero (Xij = 1) when the pair (i, j) is an edge. With the above assumptions,

the adjacency matrix is binary-valued, symmetric, and its elements along the diagonal

are zeros. When one represents the data set of a system with a graph, one associates
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the elements of the system with vertices, and their relations with edges. The data set

is however a sample from an unknown distribution, which is ultimately what one is

interested in. Accordingly, the graph too should be considered just as a sample from

some graph distribution, which would describe the data distribution. Stochastic graph

models thus appear to be the natural framework to carry out data analysis where a

graphical representation is needed. Eördos and Rényi (1959) introduced the concept of

random graph; in what is now called the Eördos-Rényi (ER) model, each pair of vertices

has the same probability of being an edge: P (Xij = 1) = p (Gilbert, 1959). The ER

model has very often been used as a null model of randomness: the deviation from

randomness of a real data network is established by comparing some of its topological

properties with those of the ER network. This approach, i.e. using the ER network or

any other random network with specified properties as a null model, is very common in

the study of real data sets and has lead to the development of important concepts, such

as that of scale-free network (Barabási and Albert, 1999). Measures used to evaluate

the deviation from a null model include the degree distribution, the characteristic path

length, and the clustering coefficient (Watts and Strogatz, 1998). One definition of

the latter (Watts and Strogatz, 1998) is the ratio of the neighbors of a vertex to the

maximum possible number of neighbors, averaged over all vertices in the network. The

clustering coefficient underpins one concept of cluster as a group of vertices that are

connected to each other more than they are connected to vertices outside the cluster.

Many papers have studied the problem of identifying clusters, which in fact can provide

deep insights into how the system represented by the network functions. The term

module in biological applications or community in the social sciences is also employed,

although there are various definitions of what a module or a community is, which differ

in the underlying measure used. We refer the interested reader to (Danon et al., 2005)

for a comparison of some algorithms for community detection and some pointers to the

literature.

This paper too deals with the important question of clustering vertices, in the

general sense of uncovering some homogeneity in the heterogeneity of the population of
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vertices. To this end, finite mixture distributions (Titterington et al., 1985) appear to

be the right framework. Recently, Daudin et al. (2006) proposed a finite mixture model

for random graphs. To estimate the model parameters, they used an EM algorithm,

which is approximate in its E-step: the joint distribution of the random variables that

describe each the group to which a vertex belongs, is approximated by the product of

the conditional distribution of each variable given the rest, and the latter are fixed to

their conditional expectations. While the approximation is entirely justifiable because

of the complexity of the distributions in the model, it raises some questions about the

convergence of the algorithm or the dependence of its solutions on the starting points

of the iterations. Moreover, they resorted to a heuristic criterion to choose the number

of clusters. Another recent paper (Newman and Leicht, 2007) considers too a finite

mixture model, and it employs an EM algorithm to determine the model parameters,

under the assumption that the number of groups is known. A further study that deals

with the problem of clustering in networks is by Handcock et al. (2007). They propose

a model for networks, called latent position cluster model, where each node is assigned a

latent position in a Euclidean space, which is drawn from a finite mixture of multi-variate

normals. The probability for a pair of nodes to be an edge is assumed to be a function of

the Euclidean distance of the nodes and is modeled by a logistic regression. Two methods

are presented to determine the latent position and the cluster membership of the nodes:

one is a two-stage maximum-likelihood estimation, whose second stage is implemented

using the EM algorithm; the other is a standard Markov chain, which is shown to be the

best performer of the two methods, as one should expect. The parameters are estimated

for some models, i.e. for some choice of numbers of mixture components, and the best

of them is selected via approximated Bayes factors.

Here, we consider a finite mixture model for random graphs and propose an algo-

rithm based on the reversible jump Markov chain Monte Carlo (RJMCMC) method of

Green (1995) and on the sampler of Wang and Landau (WL) (2001), as described in

the context of RJMCMC by Atchadé and Liu (2004). This algorithm has two main

advantages. First, the number of components is inferred and not assumed to be known
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in advance, which is an improvement over previous methods of clustering in networks,

for it is seldom the case that one has this information. Moreover, if one is interested in

uncovering, rather than validating, some structures in the data, assumptions may not

be beneficial. We also do away with additional criteria of model selection, which are

generally approximate and thus the not minor problem of assessing their validity is a

further complication to be addressed. Second, if the likelihood function is multi-modal,

an EM estimate can correspond to one of the many local maxima (see for example (Wu,

1983)), and multiple starting points of the iterations are required to test the optimal-

ity of the convergence point. One can argue that Markov chains too can get trapped

near local modes when the posterior is multi-modal. While this is true, there are many

techniques one can use to monitor the performance of the chains; and, even more im-

portantly, many improvements over standard Monte Carlo methods are now available

that allow the sampler to explore the configuration space thoroughly. The Wang-Landau

algorithm, which we have implemented, is one such method.

The paper is organized as follows. In Section 2 we review the model. In Section 3 we

describe the inference algorithm. In Section 4 we analyze four data sets: one simulated

data set, two social data sets, which serve as test-beds for the algorithm, and a biological

data set, and report the results. Section 5 concludes and summarizes the paper.

2 Description of the Model

Let X = (Xij) be the N × N symmetric adjacency matrix representing an N -vertex

network and encoding many of its topological properties. The parameters of the mixture

model for random graphs proposed in (Daudin et al., 2006) are the number of groups,

Q; the vector (α|Q) = (α1, . . . , αQ), with αq being the probability that a given vertex

belongs to group q, q = 1, . . . , Q; and the probabilities πql that there is an edge between

vertices belonging to groups q and l, which can be arranged in a Q × Q matrix called
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the connectivity matrix. Introducing the occupation variables

Ziq = I(i ∈ q),

where I is the indicator function, i = 1, . . . N , and q = 1, . . . Q, one can write

αq = P (Ziq = 1),

which implies that the probability that a vertex belongs to a given group does not

depend on the vertex itself. Since a vertex must belong to one and only one group, the

probabilities α are constrained to sum to one:
∑

q αq = 1. The connectivity matrix,

whose elements can be written as

πql = P (Xij = 1|Ziq · Zjl = 1), q, l = 1, · · ·Q,

is symmetric so that one need only consider its Q(Q+ 1)/2 distinct elements. The edges

Xij are stochastic variables which are conditionally independent, given the groups to

which their vertices belong:

Xij|Ziq · Zjl = 1 ∼ Bernoulli(πql). (1)

The model is best described by the joint distribution of all variables:

P (Q,α, Z,π, X) = P (Q)P (α|Q)P (π|Q)P (Z|α, Q)P (X|π, Z,Q), (2)

where some simplifying assumptions have been made:

P (π|Q,α, Z) = P (π|Q),

and

P (X,Z|Q,α,π) = P (Z|Q,α) · P (X|Q,π, Z).

Under this model, the complete data likelihood is

LQ = P (Z|Q,α) · P (X|Q,π, Z) (3)

=
N∏

i=1

Q∏
q=1

αZiq
q

∏
1≤i<j≤N

Q∏
l,q=1

(
π

Xij

ql · (1− πql)
1−Xij

)Ziq ·Zjl

.
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We use a Markov chain Monte Carlo method to explore the posterior probability

of the parameters under model (2). In particular, we are interested in learning about

the occupation variables Ziq and the number of groups Q. The use of RJMCMC is most

appropriate in this setting, because the parameters depend on the number of groups,

which is itself a parameter to be determined. In the next section we give the details of

our proposed algorithm.

3 The Method

We want to generate the posterior probabilities under our model in a Bayesian frame-

work. We thus need to specify the prior distributions. The minimum number of groups

is 1 and the maximum is N, the number of vertices, but we have no reason to favor

one number of groups over another. We thus consider a uniform prior distribution:

P (Q) = 1/N. We use a Dirichlet prior distribution for (α1, . . . , αQ):

P (α|Q) = P (α1, . . . , αQ|a,Q) =
Γ(Q · a)

Γ(a)Q

Q∏
i=1

αa−1
i δ(

∑
i

αi = 1). (4)

The probabilities π are a priori independent for different pairs of groups. We use for

each of its Q · (Q+ 1)/2 distinct elements the same Beta prior distribution, so that

P (π|Q) =
∏

1≤l≤q≤Q

P (πql) =
∏

1≤l≤q≤Q

Γ(2b)

Γ(b)2
πb−1

ql (1− πql)
b−1. (5)

The Monte Carlo method used in this paper consists of three steps that are iter-

ated until the probability density generated reaches equilibration: two RJMCMC moves

(splitting/merging and birth/death) and a Gibbs update. The Gibbs mechanism updates

the parameters by drawing them from their full conditional distributions. Therefore,

(α1, . . . , αQ)|(Q,π(k−1), Z(k−1), X) ∼ Dirichlet(a+ n1, . . . , a+ nQ),

where nq =
∑N

i=1 Z
(k−1)
iq is the number of vertices in the group q, and the super-scripts

(k− 1) and (k) indicate the values of the parameters before and after the Gibbs update;

πqq|(Q,π, Z(k−1), X,α(k)) ∼ Beta

(
b+

∑
i<j

XijZiqZjq, b+
∑
i<j

(1−Xij)ZiqZjq

)
,

6

Hosted by The Berkeley Electronic Press



and, for q 6= l,

πql|(Q,π, Z(k−1), X,α(k)) ∼ Beta

(
b+

∑
i,j

XijZiqZjl, b+
∑
i,j

(1−Xij)ZiqZjl

)
.

The last update of the Gibbs part of the algorithm consists in re-allocating the vertices

to the groups one at a time. The vertex i is placed in the cluster q with probability

P
(
Ziq = 1|(Z \ Ziq)

(k,k−1), Q,π(k),α(k)
)
∝ α(k)

q

Q∏
l=1

π
(k)
ql

Cil

(1− π(k)
ql )ñl−Cil , (6)

where
∑

j XijZ
(k,k−1)
jl = Cil,

∑
j 6=i Z

(k,k−1)
jl = ñl, and (Z \ Ziq)

(k,k−1) indicates the occu-

pation variables of all points except for i, some of which have already been re-allocated

by the Gibbs sampler.

The Gibbs update is preceded in each iteration by one RJMCMC move, either

Q → Q + 1 (splitting one group into two groups) or Q → Q − 1 (merging two groups

into one group) with probabilities RQ→Q+1 and RQ→Q−1 = 1 − RQ→Q+1, respectively;

and by a birth (Q→ Q+ 1) or a death (Q→ Q−1) of an empty group, chosen with the

same probabilities. We describe these moves in the context of RJMCMC in the following

section.

3.1 A Sketch of RJMCMC

The basic idea of RJMCMC is to consider a process, in which changes of dimension

occur, as a Markov chain whose moves can take place among configurations of different

dimensions. One requires the transitions to satisfy the detailed balance condition and

each move is jointly considered with its reverse move. The dimension parameter in

our case is the number of groups and thus a move that changes the dimension is a

move that increases or decreases the number of groups. We only consider jumps that

change the dimension by one. To fix notation, let us label the generic model with Q

components by its parameters, that is by the pair (Q, θQ) where the vector θQ indicates

the Q components (α1, . . . αQ) and the Q ·(Q+1)/2 distinct elements of the connectivity
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matrix π. When there is no possibility of misinterpretation, we suppress θ. Following

the general formalism of (Green, 1995), the move

(Q, θQ)→ (Q+ 1, θQ+1),

is accepted with probability F (AQ→Q+1), where F (z) = min{1, z} is the Metropolis

function and

AQ→Q+1 =
LQ+1

LQ

P (π|Q+ 1)P (α|Q+ 1)

P (π|Q)P (α|Q)

P (Q+ 1)

P (Q)

RQ+1→Q

RQ→Q+1

JacQ→Q+1

Φ(v)
. (7)

In the above formula (7), v is a random vector which has the same dimension as the vec-

tor θQ+1− θQ; Φ(v) is the density of v; JacQ→Q+1 is the Jacobian of the diffeomorphism

that maps (θQ,v) to θQ+1. The probabilities RQ→Q±1 are chosen to be RQ→Q±1 = 1/2

for 2 ≤ Q ≤ N − 1 and RN→N−1 = 1 = R1→2, since we allow at most N groups. The

advantage of this formulation is that the reverse move is accepted with probability

pQ+1→Q = F (1/AQ→Q+1).

We now define the pairs merging/splitting and birth/death of an empty component

for our problem and compute their acceptance probabilities.

Splitting and Merging

Let us assume we are in a configuration with Q groups. We define the splitting, which

increases the number of groups by one, Q → Q + 1, as follows. We randomly choose a

non-empty group, q, we split it into two groups, and reassign its vertices to either one or

the other, independently with probability 1/2. All other Q− 1 groups are not involved

in the move. If I\q is the set of indices of the latter groups, i.e. up to permutation

{q} ∪ I\q = {1, 2, . . . , Q}, the parameters α change as follows

(α|Q) → (α̃|Q+ 1),

(αI\q
, αq) → (αI\q

, αq · p, αq · (1− p)), (8)

8
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where we choose to draw p from a Beta distribution Beta(c, c), whose parameter c is

fixed for all splitting moves in the Markov chain. Of the (Q + 1) · (Q + 2)/2 distinct

elements of the connectivity matrix in the new configuration, only those involving the

two new groups need to be redefined. Let us label the two new groups q1 and q2, and

define the transformation

(π|Q)→ (π̃|Q+ 1) (9)

as follows

π̃i q1 =
πiq − pi

1− pi

, i ∈ I\q,

π̃i q2 = pi i ∈ I\q,

π̃q2 q2 = pQ+1,

π̃q1q1 = pq,

π̃q1 q2 =
πqq − (pq + pQ+1 − pQ+1 · pq)

(1− pq)(1− pQ+1)
,

π̃kl = πkl, k, l ∈ I\q, k < l,

where the Q + 1 numbers (p1, . . . , pQ+1) are drawn from the following distributions: pi

from the uniform distribution U [0, πiq], for i = 1, . . . , q, . . . , Q, and pQ+1 from U [0, (πqq−

pq)/(1− pq)], to ensure π̃ ∈ [0, 1]. For the reverse move Q+ 1→ Q, we randomly choose

two groups, q and l, one of which at least non-empty, and merge them into a group l̃.

The parameters in the new configuration are

(α|Q+ 1) = (αl, αq, αI\(q,l)
)→ (α̃|Q) = (α̃l̃, αI\(q,l)

),

where α̃l̃ = αl + αq, and

π̃il̃ = πil + πiq − πil · πiq, i ∈ I\(q,l),

π̃l̃l̃ = πll + πqq + πlq + πll · πqq · πlq − πll · πqq − πqq · πlq − πll · πlq.

The occupation number of the new group l̃ is

N∑
i=1

Zil̃ = ñl̃ = nl + nq.

9
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With the above definitions, formula (7) becomes

AQ→Q+1(θQ, θQ+1) =
LQ+1

LQ

P (π|Q+ 1)P (α|Q+ 1)

P (π|Q)P (α|Q)
· ν ·

(10)

αq ·
Q+1∏
i=1

1

1− pi

· (πqq − pq)
∏Q

i=1 πiq

Γ(2c)
Γ(c)2

pc−1(1− p)c−1 · (1− pq)
,

where

ν =
2nq · 3 · 2Q+1 · (Q−Q0)

Q(Q+ 1)− ((Q+ 1)0 − 1) · (Q+ 1)0

RQ+1→Q

RQ→Q+1

,

and Q0 is the number of empty groups in the configuration with Q groups.

Birth and Death of an Empty Component

The death and birth of an empty component are generally implemented in RJMCMC

algorithms to improve mixing. The birth of an empty component increases the number

of groups by one: Q→ Q+ 1. The parameters are modified in the following way:

(α1, . . . , αq, . . . , αQ) → ((1− λ) · α1, . . . , (1− λ) · αQ, λ), (11)

(α|Q) → (α̃|Q+ 1),

where λ is drawn from a Beta distribution Beta(d,Q · d). The additional Q+ 1 numbers

pi, i = 1, . . . , Q + 1, that are needed to describe the edge probabilities among the new

group and the others, are drawn from the Beta distribution Beta(b, b). For the reverse

move (death), Q + 1 → Q, one randomly selects one of the Q0 + 1 empty components

and eliminates it. The parameters πql, for l = 1, · · · , Q + 1, are suppressed, as is αq,

where q is the label of the empty component. The α of all other components are rescaled

to sum to one:

(α1, . . . , αq, . . . , αQ+1)→ (α1/(1− αq), . . . , α̂q, . . . , αQ+1/(1− αq)),

where the caret indicates that the corresponding value is missing. For the birth/death

just described, formula (7) becomes

AQ→Q+1(θQ, θQ+1) = (1− λ)N 1

Q0 + 1

RQ+1→Q

RQ→Q+1

· ν, (12)

10
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where

ν =
Γ((Q+ 1) · a)Γ(Q · d)Γ(d)

Γ((Q+ 1) · d)Γ(Q · a)Γ(a)
λa−d(1− λ)Q(a−d).

3.2 Improving Acceptance and Rejection Rates

It is hard to engineer reversible jump Markov chains that enjoy high acceptance and

rejection rates. To improve the efficiency of the sampler, we modify the acceptance

and rejection probabilities, that is equation (7), in the way described by Atchadé and

Liu (2004), who generalized the Wang-Landau algorithm (Wang and Landau, 2001) to

general state space. In order to visit all possible configurations, the groups most often

visited by the sampler are penalized. To each configuration i, i = 1, . . . N, a weight φ(i)

is assigned that is updated after each splitting/merging move in the following way

φk(i) = φk−1(i) · (1 + γk · I(i = Q)),

where Q is the number of groups of the configuration the sampler is visiting and k labels

the iteration step. Rescaling the acceptance probabilities of a splitting move

p(Q→ Q+ 1) = F

(
AQ→Q+1 ·

φk(Q)

φk(Q+ 1)

)
,

and of a merging move

p(Q+ 1→ Q) = F

(
1

AQ→Q+1

· φk(Q+ 1)

φk(Q)

)
,

where AQ→Q+1 is given by (7), has the effect of favoring transitions toward states that

are less visited. The subtle part of the algorithm is the update of γn. Each time all

possible groups have been visited approximately the same number of times, as indicated

by the flatness of frequency histograms, γ is updated according to the following schedule:

γi+1 + 1 = f(γi + 1) = (γi + 1)1/2,

where γi is the value at the i-th update and γi+1 is the updated value. The square root

function can in fact be substituted by any function f that lets γ decrease monotonically

to zero. The values of γ can be used to check convergence, as it is enough to ensure

11
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that γn is close to zero, i.e. smaller than a chosen very small value. We use γ0 =

exp(1), φ0(i) = 1 for all i, and, as a criterion of flatness for the frequency histogram,

that the minimum frequency should be at least one fourth of the average frequency.

Since, in general, only a small fraction of the groups are non-empty, in checking the

flatness of the histograms, we evaluate the average and the minimum in the interval

[max(1, (Q − Q0)min − ε),min(N, (Q − Q0)max + ε)], rather than in the interval [1, N ],

where (Q−Q0)min and (Q−Q0)max are the minimum and maximum number of occupied

groups, each computed anew every time the histogram is flat. Notice that flatness is

monitored over an interval of length greater than ε, so that a choice of ε = N/3, which is

not too drastic, makes the convergence quicker especially when the possible maximum

number of groups N is large.

4 Applications

We present here the results of the application of the method to four networks. Specifi-

cally, we ran two versions of the algorithm: one with and the other without the Wang-

Landau extension, to which we refer as RJMCMC and RJMCMCWL respectively. The

results obtained are compatible. By sweeping through all possible values of Q, RJM-

CMCWL is more appealing in situations where the probability density has many local

modes and thus the likelihood of not visiting a sufficiently large part of the configuration

space is considerable. However, it is computationally more expensive.

To represent the identified clusters, we construct a co-membership network, whose

vertices are the vertices of the original network, and whose edges are labeled with weights

that measure the co-membership frequency of pairs of vertices in the samples; that is,

the weight of edge (i, j) counts the proportion of samples in which vertex i and vertex

j are in the same component. We notice that these quantities, pair-wise posterior prob-

abilities that two vertices are in the same component, are invariant under permutation

of the labels of the mixture components. If instead we were explicitly interested in the

component parameters, we would have to undo the label switching in the MCMC out-
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put (Jasra et al., 2005), by relabeling the output so as to make the marginal posterior

distributions of the parameters of interest unimodal, at least to a certain extent.

We actually fix a threshold value τ , so that an edge of the co-membership network

is drawn if and only if its weight is greater than or equal to τ.

For brevity, the analysis of the sensitivity of the results to the choice of prior dis-

tributions is reported in some detail only for the simulated network and one of the real

networks, although we used different hyper-parameters in all data sets. We also consid-

ered different initial conditions: random assignments of vertices and initial number of

groups.

4.1 A Simulation Study

We simulated a network with Q = 5 groups and N = 60 vertices. Each vertex was

independently assigned to one of the groups using a multinomial distribution with prob-

abilities α sampled from a Dirichlet distribution. The clusters thus obtained are written

in Table 1. Formula (1), with πql samples from a Beta distribution, was used to decide

whether a pair of vertices should be joined by an edge; the resulting network, which has

497 edges, is displayed in Figure 1. Table 2 shows the inferred probabilities P (Q−Q0)

of the number of non-empty groups for some choices of hyper-parameters. There is some

sensitivity to the values of the prior distributions: when b is very different from 1, the

algorithm tends to merge different groups, with the more connected groups coalescing

first; when a is very different from 1, the one-vertex group (the third in Table 1) merges

with the fifth. Figure 2 shows the co-membership network for almost uniform prior

distributions, using a threshold τ = 0.7. The solution is stable over a reasonable interval

∆τ ; namely an identical network is found at τ = 0.5, and at τ = 0.8 the point 37 stands

isolate. In Figure 3, we report the histograms for both P (Q) and P (Q − Q0) obtained

using RJMCMCWL for one of the combinations of hyper-parameters with which we

experimented. The histogram for P (Q) is quite flat, as one should expect, and the dis-

tribution of the number of occupied groups is compatible with and a bit more spread-out
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than that obtained by RJMCMC with the same hyper-parameters (see Table 2).

4.2 Analysis of Real Networks

The first real network we analyze is known as the (unweighted) karate club network

(Zachary, 1977). It describes the social interactions of members of a karate club, who

after some internal dispute broke up into two groups, depicted with two different colors

in Figure 4. The results obtained using the RJMCMC algorithm show some dependence

on the values of the hyper-parameters. Table 3 summarizes the inferred P (Q) and Table

4 shows the inferred P (Q−Q0) for some choices of hyper-parameters. For uniform prior

distributions, i.e. a = b = c = d = 1, the inferred occupation variables Ziq are repre-

sented in Figure 5. Notice that in a co-membership network the expected solution that

groups the vertices 1−8, 11−14, 17, 18, 20, 22 and the vertices 9, 10, 15, 16, 19, 21, 23−34

corresponds to two connected components, each being a clique, viz. any two points being

connected by a vertex. One can see that our result is quite accurate and compatible

with the solution. Vertices representing people who belong to different groups after the

dispute are never clustered together by the algorithm, as expected. Even better, the

algorithm is able to identify some interesting sub-structures: e.g. vertex 33 and vertex

34 form their own cluster owing to their very similar edge structure in the original social

network (Figure 4); vertex 1 is singled out because it is linked to all vertices but one

belonging to the same group to which it belongs after the dispute. Varying the values

of the hyper-parameters c and d does not change this result. However, for large values

of b, for a < 1, and b < 1 the algorithm tends to classify all points as belonging to one

group or to coalesce the two main groups of Figure 5. RJMCMCWL has a sensitivity

to the choice of prior distributions similar to that of RJMCMC, for it is the same Gibbs

mechanism that assigns vertices to groups at each sweep in both versions of the algo-

rithm. Table 5 shows the inferred probability P (Q−Q0), which is generally a bit more

spread-out and with slightly higher median than the corresponding probability distribu-

tion obtained with RJMCMC (Table 4). The inferred probabilities P (Q), which are not

reported here, are, on the contrary, quite flat, as they should be. Runs were stopped
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when γ ≈ 0.001 at least, a value which required a number of iterations that depended

on the prior distribution chosen. In particular, for a = b = c = d = 1.1, 12 million

iterations were necessary to reach γ = 0.0009. With this choice of hyper-parameters, the

proportion of combined merging/splitting moves accepted was of 40 per cent and that

of death/birth of 50 per cent. The predicted modules are shown in Figure 6.

We now turn to a network that describes the social interactions of a school of

62 dolphins (Lusseau et al., 2003; Lusseau, 2003), which was downloaded from the

web-site http://www-personal.umich.edu/∼ mejn/netdata. The network vertices repre-

sent the dolphins and the 159 edges represent their companionship. The problem of

identifying communities in this network was studied in (Lusseau and Newman, 2004)

using the betweenness-based algorithm of Girvan and Newman (GN) (2002). Figure

7 shows the results of the analysis carried out using the RJMCMC algorithm and

the RJMCMCWL algorithm, respectively, with the same values of hyper-parameters

(a, b, c, d) = (1, 10, 1, 1). The two colors depict the two communities identified by the

GN algorithm. The RJMCMC identifies the same two communities as the GN algo-

rithm except for two vertices. One of these vertices, number 40 in Figure 7, which

represents dolphin SN89, has degree two in the dolphin companionship network and its

two neighbors belong to the two big clusters in Figure 7(b). Furthermore, if we use the

lower threshold τ = 0.5, the co-membership network (not reported here) has only one

connected component with SN89 bridging between two clearly defined sub-components

which are otherwise cliques: namely, if we removed the vertex SN89, the co-membership

network at τ = 0.5 would be the same as that at τ = 0.8, which is Figure 7(b). It

thus seems that SN89 can be assigned to neither of the two large communities. This

is a nice feature of the algorithm. We are not fixing the number of clusters and thus

the vertices are not forced to belong to one of the clusters. A vertex can be its own

cluster, either because it has a special status, as the application of the algorithm to the

Zachary’s network seems to suggest or because there may be more than one community

to which it can belong, i.e. it is unclassified, as this application seems to hint at. The

fact that τ is a probability can help the interpretation of the results. The RJMCMCWL
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solution is more fragmented, which is tantamount to the fact that the posterior prob-

abilities P (Q − Q0) are more spread. The GN algorithm identifies 3 sub-communities

in the largest community (with white nodes in Fig. 7). Three of the groups identified

by RJMCMCWL (the triangle, the 6-vertex module and the linear 4-vertex module) are

each made up with vertices belonging to one of these sub-communities. Uniform prior

distributions fragment the modules a bit more. We do not know the true clusters in this

network, so it may well be that our algorithm identifies some sub-communities that the

GN algorithm is unable to discover.

Finally, we apply the algorithm to the network of gap junctions in the C. Elegans.

The junctions are the edges of the network and the neurons are the nodes. The specific

network we use is that considered in (Chen et al., 2006) and (Varadan et al., 2006), which

can be found at the web-site http://www.ee.columbia.edu/anastas/ismsb2006. We limit

our analysis to the largest connected component of the (280-vertex) complete network,

which has 248 nodes and 511 edges, after the elimination of 3 loops. Using almost

uniform prior distributions, a = b = c = d = 1.1, and a threshold τ = 0.8, the co-

membership network contains 7 components with more than 5 nodes. We are aware

of no papers where the identification of modules in this network has been studied and

to which we can compare the results found here. However, following (Varadan et al.,

2006), we can use some information on gene expression profiles on the neurons to help

us understand whether the modules found by the algorithm may be plausible. Table

6 summarizes the genes that are expressed in more than 50 percent of the neurons in

the four largest modules and the module sizes. The two smallest modules are very

homogeneous in the sense that there are a few genes that are expressed in almost the

totality of the neurons. Of course, what the algorithm is programmed to detect are

clusters of vertices in the network of gap junctions, which a priori has nothing to do

with the genetics of the C. Elegans. However, it is believed (Varadan et al., 2006) that

some genes may have an effect on the creation of gap junctions between neurons. It may

just be a coincidence rather than an indirect confirmation of the validity of the algorithm,

but we find it interesting that the smallest modules have a genetic homogeneity.
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5 Conclusions

In this paper we have considered the important problem of clustering vertices in net-

works. We have used mixture distributions to model the heterogeneity of the vertices.

We have proposed a reversible jump Markov chain Monte Carlo algorithm to infer the

model parameters including the number of clusters, which is an improvement over the

algorithms used in the very few papers where finite mixtures have been employed in

graphs (Daudin et al., 2006; Newman and Leicht, 2007), where the number of clusters

is fixed or at best determined in an indirect way. Even the Bayesian method proposed

in (Handcock et al., 2007) in the very different theoretical framework of latent structure

models resorts to a Bayesian information criterion approximation to select the number

of clusters. Moreover, we have implemented the Wang-Landau algorithm to improve

sampling over standard Markov chains.

We have tested the algorithm on 3 real-data sets: one social data set, where the

module structure is known; a second data set, where a similar investigation was carried

out using a different algorithm; and a third biological data set. We have also analyzed

a simulated network. The results are encouraging.

The method and the model have some limitations. We highlight two of them. In

its present formulation, the model can only be used for undirected network. However, a

modification of the model that allows for directed networks appears to be feasible. The

second limitation is that the algorithm is computationally intensive, especially in the

re-weighted version, namely where a variant of the WL algorithm is considered. In this

latter case, the algorithm becomes impracticable for very large networks. There might

exist better definitions of the splitting/merging moves that could improve the compu-

tational performance of the algorithm even in the absence of re-weighting. Integrating

the parameters α and π out in the acceptance probabilities will speed up the algorithm

and it would seem quite natural to do so, especially if one limits one’s analysis to infer

the occupation variables Ziq only, as we have done.
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Figure 1: The simulated network.

Cluster Nodes

1 8, 27, 29, 32, 38, 40, 46, 51, 55, 60

2 2, 5, 7, 9, 14, 15, 18, 19, 25, 26, 30, 35, 37, 45, 47, 49, 54, 56, 58

3 12

4 1, 4, 11, 20, 21, 23, 24, 28, 34, 36, 39, 41, 43, 44, 48, 53, 57, 59

5 3 6, 10, 13, 16, 17, 22, 31, 33, 42, 50, 52

Table 1: Cluster structure of the simulated network.
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Figure 2: Network representation for the inferred modules in the simulated network.

The results are obtained with the RJMCMC algorithm using the hyper-parameters

(a, b, c, d) = (1.1, 1.1, 1.1, 1.1). A link between two vertices indicates that the vertices

are in the same component in at least 70 percent of the samples. The vertex in black is

misclassified by the algorithm.
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Figure 3: Histograms for the inferred probabilities P (Q − Q0) (left) and P (Q) (right)

obtained with the RJMCMCWL algorithm using the hyper-parameters (a, b, c, d) =

(1.1, 10, 1.1, 1.1).
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Figure 4: Zachary’s karate club network.

23

http://biostats.bepress.com/upennbiostat/art22



(a) τ = 0.5

(b) τ = 0.8

Figure 5: Network representation for the inferred modules in Zachary’s karate club

network. The results are obtained with the RJMCMC algorithm and hyper-parameters

(a, b, c, d) = (1, 1, 1, 1). A link between two vertices indicates that the vertices are in the

same component in at least (a) 50 percent and (b) 80 percent of the samples.
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(a) τ = 0.5

(b) τ = 0.8

Figure 6: Network representation for the inferred modules in the Zachary’s karate club

social network. The results are obtained with the RJMCMCWL algorithm using the

hyper-parameters (a, b, c, d) = (1.1, 1.1, 1.1, 1.1). A link between two vertices indicates

that the vertices are in the same component in at least (a) 50 percent and (b) 80 percent

of the samples.
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(a) RJMCMCWL τ = 0.8

(b) RJMCMC τ = 0.8

Figure 7: Network representation for the inferred modules in the dolphin social network.

The results are obtained with (a) the RJMCMCWL algorithm and (b) the RJMCMC

using the same hyper-parameters (a, b, c, d) = (1, 10, 1, 1). A link between vertices indi-

cates that the vertices are in the same component in at least 80 percent of the samples.

The two colors identify the clusters obtained by the Girvan-Newman algorithm.
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Hyper-parameters Number of non-empty groups Q−Q0

of the prior distributions

(a, b, c, d) 1 2 3 4 5 6

(1.1, 1.1, 1.1, 1.1) 0 0 0 0.08 0.86 0.06

(10, 1.1, 1.1, 1.1, 1.1) 0 0 0 0.66 0.29 0.05

(0.1, 1.1, 1.1, 1.1) 0 0 0 0.14 0.82 0.04

(0.001, 1.1, 1.1, 1.1) 0 0 0 0.89 0.11 0

(1.1, 1.1, 10, 10) 0 0 0 0.04 0.92 0.04

(1.1, 1.1, 0.001, 0.001) 0 0 0 0.09 0.84 0.07

(1.1, 10, 1.1, 1.1, 1.1) 0 0 0 0.88 0.12 0

(1.1, 0.1, 1.1, 1.1) 0.55 0.42 0.03 0 0 0

(1.1, 0.001, 1.1, 1.1) 0.99 0.01 0 0 0 0

Table 2: Inferred posterior probabilities P (Q−Q0) for the simulated network. Results

obtained using RJMCMC. a is the Dirichlet hyper-parameter of the component weights,

α; b is the Beta hyper-parameter of the probabilities of edges between components,

π, and is also the parameter of the Beta distribution from which the probabilities of

edges with a vertex in the group created by a birth move are sampled; c and d are the

parameters of the Beta distributions from which random variables are drawn for the

reallocation of α in the splitting and birth moves respectively.
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Hyper-parameters Number of groups Q

of the prior distributions

(a, b, c, d) 1 2 3 4 5 6 7 8

(1.2, 10, 1.2, 1.2) 0 0.735 0.215 0.043 0.007 0 0 0

(1.2, 0.001, 1.2, 1.2) 0.98 0.02 0 0 0 0 0 0

(1.2, 1.2, 10, 1.2) 0 0.001 0.004 0.277 0.522 0.170 0.026 0

(1.2, 1.2, 1.2, 10) 0 0.002 0.003 0.249 0.560 0.164 0.021 0.001

(10, 1.2, 1.2, 1.2) 0 0 0.008 0.590 0.367 0.033 0.002 0

(0.001, 1.2, 1.2, 1.2) 0 0.345 0.432 0.158 0.055 0.008 0.002 0

(1.2, 1.2, 10, 10) 0 0 0.005 0.255 0.548 0.145 0.044 0.003

(1.2, 1.2, 0.001, 0.001) 0 0.003 0.005 0.283 0.543 0.144 0.020 0.002

(1, 1, 1, 1) 0 0 0 0.167 0.548 0.259 0.023 0.003

Table 3: Inferred posterior probabilities P (Q) in Zachary’s karate club network. These

results were obtained using RJMCMC. a is the Dirichlet hyper-parameter of the com-

ponent weights, α; b is the Beta hyper-parameter of the probabilities of edges between

components, π, and is also the parameter of the Beta distribution from which the prob-

abilities of edges with a vertex in the group created by a birth move are sampled; c and

d are the parameters of the Beta distributions from which random variables are drawn

for the reallocation of α in the splitting and birth moves respectively.
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Hyper-parameters Number of non-empty groups Q−Q0

of the prior distributions

(a, b, c, d) 1 2 3 4 5 6 7 8

(1.2, 10, 1.2, 1.2) 0 0.802 0.190 0.008 0 0 0 0

(1.2, 0.001, 1.2, 1.2) 1 0 0 0 0 0 0 0

(1.2, 1.2, 10, 1.2) 0 0.001 0.004 0.324 0.600 0.071 0 0

(1.2, 1.2, 1.2, 10) 0 0.001 0.003 0.309 0.614 0.072 0.001 0

(10, 1.2, 1.2, 1.2) 0 0 0.007 0.592 0.373 0.025 0.003 0

(0.001, 1.2, 1.2, 1.2) 0 0.985 0.007 0.008 0 0 0 0

(1.2, 1.2, 10, 10) 0 0 0.008 0.308 0.608 0.072 0.004 0

(1.2, 1.2, 0.001, 0.001) 0 0.003 0.005 0.340 0.580 0.069 0.003 0

(1, 1, 1, 1) 0 0 0 0.219 0.655 0.119 0.007 0

Table 4: Inferred posterior probabilities P (Q − Q0) in Zachary’s karate club network.

Results obtained using RJMCMC. a is the Dirichlet hyper-parameter of the component

weights, α; b is the Beta hyper-parameter of the probabilities of edges between compo-

nents, π, and is also the parameter of the Beta distribution from which the probabilities

of edges with a vertex in the group created by a birth move are sampled; c and d are

the parameters of the Beta distributions from which random variables are drawn for the

reallocation of α in the splitting and birth moves respectively.
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Hyper-parameters Number of non-empty groups Q−Q0

of the prior distributions

(a, b, c, d) 1 2 3 4 5 6

(10, 1.1, 1.1, 1.1) 0.019 0.021 0.027 0.029 0.021 0.035

(0.001, 1.1, 1.1, 1.1) 0.038 0.631 0.061 0.205 0.065 0

(1.1, 1.1, 1.1, 1.1) 0.035 0.038 0.030 0.023 0.044 0.120

(1.1, 10, 1.1, 1.1) 0.038 0.057 0.126 0.256 0.352 0.153

7 8 9 10 11 12 13

(10, 1.1, 1.1, 1.1) 0.093 0.232 0.277 0.169 0.059 0.016 0.002

(0.001, 1.1, 1.1, 1.1) 0 0 0 0 0 0 0

(1.1, 1.1, 1.1, 1.1) 0.240 0.270 0.173 0.027 0 0 0

(1.1, 10, 1.1, 1.1) 0.018 0 0 0 0 0 0

Table 5: Inferred posterior probabilities P (Q − Q0) in Zachary’s karate club network.

Results of runs made with RJMCMCWL. a is the Dirichlet hyper-parameter of the com-

ponent weights, α; b is the Beta hyper-parameter of the probabilities of edges between

components, π, and is also the parameter of the Beta distribution from which the prob-

abilities of edges with a vertex in the group created by a birth move are sampled; c and

d are the parameters of the Beta distributions from which random variables are drawn

for the reallocation of α in the splitting and birth moves respectively.
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66-Neuron Module 82-Neuron Module 24-Neuron Module 18-Neuron Module

F25B5.2 (42) F25B5.2 (69) unc-17 (24) unc-17 (16)

flt-1 (56) flt-1 (80) cha-1 (24) cha-1 (16)

cam-1 (35) unc-32 (21) unc-32 (16)

C33A11.4 (21) C33A11.4 (16)

unc-58 (21) unc-58 (16)

flt-1 (21) flt-1 (18)

unc-40 (21) unc-40 (16)

unc-73 (21) unc-73 (16)

egl-21 (21) egl-21 (16)

mig-1 (21) mig-1 (16)

ace-1 (21) ace-1 (16)

mdl-1 (21) mdl-1 (16)

unc-1 (21) unc-1 (16)

unc-18 (21) unc-18 (16)

nlp-21 (21) nlp-21 (16)

unc-3 (21) unc-3 (16)

unc-8 (14) unc-8 (16)

unc-2 (13) unc-2 (16)

tba-1 (13) tba-1 (16)

trp-1 (13) trp-1 (16)

unc-5 (13) dbl-1 (17)

mec-12 (13) tba-2 (16)

unc-53 (13) acr-5 (16)

unc-4 (16) ceh-12 (10)

syg-1 (13)

Table 6: Genes expressed in the neurons composing the 4 largest modules. The numbers

following the gene name indicates the number of neurons where the gene is expressed in

each module. Only genes expressed in more than half the neurons in each component

are listed.
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