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A Hidden Spatial-temporal Markov Random
Field Model for Network-based Analysis of

Time Course Gene Expression Data

Zhi Wei and Hongzhe Li

Abstract

Microarray time course (MTC) gene expression data are commonly collected to
study the dynamic nature of biological processes. One important problem is to
identify genes that show different expression profiles over time and pathways that
are perturbed during a given biological process. While methods are available to
identify the genes with differential expression levels over time, there is a lack of
methods that can incorporate the pathway information in identifying the pathways
being modified/activated during a biological process. In this paper, we develop a
hidden spatial-temporal Markov random field (hstMRF)-based method for iden-
tifying genes and subnetworks that are related to biological diseases, where the
dependency of the differential expression patterns of genes on the networks are
modeled over time and over the network of pathways. Simulation studies indi-
cated that the method is quite effective in identifying genes and modified sub-
networks and has higher sensitivity than the commonly used procedures that do
not use the pathway structure or time dependency information, with similar false
discovery rates. Application to a microarray gene expression study of systemic in-
flammation in humans identified a core set of genes on the KEGG pathways that
show clear differential expression patterns over time. In addition, the method con-
firmed that the TOLL-like signaling pathway plays an important role in immune
response to endotoxins.
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Abstract

Microarray time course (MTC) gene expression data are commonly collected to

study the dynamic nature of biological processes. One important problem is to identify

genes that show different expression profiles over time and pathways that are perturbed

during a given biological process. While methods are available to identify the genes with

differential expression levels over time, there is a lack of methods that can incorporate

the pathway information in identifying the pathways being modified/activated during a

biological process. In this paper, we develop a hidden spatial-temporal Markov random

field (hstMRF)-based method for identifying genes and subnetworks that are related to

biological diseases, where the dependency of the differential expression patterns of genes

on the networks are modeled over time and over the network of pathways. Simulation

studies indicated that the method is quite effective in identifying genes and modified

subnetworks and has higher sensitivity than the commonly used procedures that do not

use the pathway structure or time dependency information, with similar false discovery

rates. Application to a microarray gene expression study of systemic inflammation in

humans identified a core set of genes on the KEGG pathways that show clear differential

expression patterns over time. In addition, the method confirmed that the TOLL-like

signaling pathway plays an important role in immune response to endotoxins.

1 Introduction

Cellular activities are often dynamic and it is therefore critical to study the gene expression

patterns over time in biology. With the advances in high throughput gene expression profiling

technologies, microarray time course (MTC) experiments remain a common tool to capture

the gene expression patterns over time in a genomic scale. This is evidenced by the fact

that such MTC data account for more than one third of gene expression studies in the Gene

Expression Omnibus, a database repository of high throughput gene expression data hosted

by the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/geo/).

One important application of such MTC gene expression experiments is to identify genes
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that are temporally differentially expressed (TDE) between two MTC experiments and the

pathways or networks that are perturbed or activated during a given biological process.

Compared to gene expression studies at one time point, such MTC studies can potentially

identify more genes that are differentially expressed [26, 23, 11].

One important feature of the MTC gene expression data is that the data are expected to

be dependent over time. Efficiently utilizing such dependency can lead to a gain in efficiency

in identifying the TDE genes. Several new statistical methods have been developed for

identifying the TDE genes to account for such dependency. Storey et al. [21] developed

a method using basis function expansion to characterize the time-course gene expression

data and proposed to develop gene-specific summary statistics and the corresponding p

values based on the fitted smooth curves. Yuan and Kendziorski [26] proposed to use a

hidden Markov model to identify TDE genes in order to utilize the dependency of differential

expressions of genes across time points. Tai and Speed [23] developed the empirical Bayes

method treating the observed time-course gene expression data as multivariate vectors. Hong

and Li [11] developed a functional empirical Bayes method using B-splines.

Although these new methods can be used to identify the TDE genes, they often do not

provide direct information on which key molecular mechanisms are involved in the biolog-

ical process or which biological pathways are being activated or modified during a given

biological process. It is therefore important to develop novel statistical methods for identi-

fying these TDE genes in the context of known biological pathways. Information about gene

regulatory dependence has been accumulated from many years of biomedical experiments

and is summarized in the form of pathways and assembled into pathway databases. Some

well-known pathway databases include KEGG[12], Reactome (www.reactome.org), BioCarta

(www.biocarta.com) and BioCyc (www.biocyc.org). Several methods have recently been de-

veloped to incorporate the pathway structures into analysis of microarray gene expression

data. Subramanian et al. [22] developed a gene set enrichment analysis procedure to ac-

count for the group structure of genomic data and to identify pathways that are related to

diseases or biological processes. Rahnenführer et al. [18] demonstrated that the sensitivity
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of detecting relevant pathways can be improved by integrating information about pathway

topology. In Sivachenko et al. [20], a network topology extracted from the literature was

used jointly with microarray data to find significantly affected pathway regulators. Nacu et

al. [15] proposed an interesting permutation-based test for identifying subnetworks from a

known network of genes that are related to phenotypes. Rapaport et al. [19] proposed to

first smooth the gene expression data on the network based on the spectral graph theory and

then to use the smoothed data for classification. However, none of these explicitly models

the MTC expression data.

Wei and Li [25] have recently developed a hidden Markov random field (hMRF) model

for identifying the subnetworks that show differential expression patterns between two con-

ditions, and have demonstrated using both simulations and applications to real data sets

that the procedure is more sensitive in identifying the differentially expressed genes than

those procedures that do not utilize the pathway structure information. In this paper, to

efficiently identify the TDE genes in the MTC experiments, we develop the hMRF model

[25] further into the hidden spatial-temporal MRF (hstMRF) to simultaneously consider the

spatial and temporal dependencies of differential expression states of genes. The key of our

approach is that the information of a known network of pathways is efficiently utilized in the

analysis of MTC expression data in order to identify more biologically interpretable results.

We also present an algorithm that combines the features of the iterative conditional modes

(ICM) algorithm of Besag [6] and the Viterbi algorithm [17].

The rest of the paper is organized as follows. We introduce the hstMRF model in Section

2 and present an efficient algorithm for parameter estimation by the ICM algorithm and

the Viterbi algorithm in Section 3. We present results from simulation studies in Section 4

to demonstrate the application of the hstMRF model, compare with existing methods and

to evaluate the sensitivity of the method to misspecification of the network structure. In

Section 5, for a case study, we apply the hstMRF model to analyze the MTC data of a

systemic inflammation study in humans [7]. We present a brief discussion in Section 6.
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2 Statistical Models and Methods

Consider the MTC gene expression data measured under two different conditions over time

points 0, 1, 2, · · · , T . Let yt be a p × (m + n) matrix of expression values for p genes

with m + n arrays at time t, where the first m columns are the expression data measured

under the first condition over m independent samples and the second n columns are the

expression data measured under the second condition over n independent samples. The full

set of observed expression values is then denoted by

Y = (y0,y1, · · · ,yT ).

With slight abuse of notation, let yg denote one row of this matrix containing data for gene

g over time, ygt denote expression data for gene g at time t over m + n samples, and ygtc

denote the expression level for gene g at time t in sample c. Suppose that we have a network

of known pathways which can be represented as an undirected graph G = (V, E), where V

is the set of nodes that represent genes or proteins coded by genes and E is the set of edges

linking two genes with a regulatory relationship. As an example, Figure 1 shows the Toll-

like receptor signaling pathway in the KEGG database, where the squares are the genes (or

more precisely the gene products) or gene clusters and the directed lines between two genes

indicate some regulatory relationships between them. In this paper, we do not consider the

direction of the edges and only treat this pathway as an undirected graph. Some components

of this pathway are also components of other pathways such as the MAPK and JAK-STAT

signaling pathways. In the current KEGG database, there are a total of 33 such regulatory

pathways that form a regulatory network.

Let p = |V | be the number of genes that this network contains. Note the gene set V is

often a subset of all the genes that are probed on the gene expression arrays. If we want to

include all the genes that are probed on the expression arrays, we can expand the network

graph G to include isolated nodes, which are those genes that are probed on the arrays but

are not part of the known biological network. For two genes g and g′, if there is a known

regulatory relationship, we write g ∼ g′. For a given gene g, let Ng = {g′ : g ∼ g′ ∈ E}
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be the set of genes that have a regulatory relationship with gene g. Our goal is to identify

the genes on the network G that are differentially expressed at each time point during the

time course of a given biological experiment. Let Xgt be the random variable that assigns a

differential expression state (DES) to gene g at time t, taking a value of 1 if the gth gene is

differentially expressed (DE) at time t or a value of 0 if it is equally expressed (EE) at time

t. Let X = (x0, · · · ,xT ) where xt = (X1t, · · · , Xpt)
′. We denote X∗ as the true but unknown

differential expression state and interpret this as a particular realization of the random matrix

X. Our goal is to recover the true but unobservable X∗ from the observed data Y. Using the

Bayes formula, we propose to estimate X∗ that maximize Pr(X|Y) ∝ Pr(Y|X)Pr(X), the

posterior density for the gene expression states X, given the gene expression levels Y where

Pr(Y|X) represents the evidence from the microarray experiments and the prior Pr(X)

represents our prior knowledge on gene regulation as provided by the gene network G. In

the following, we first specify probability models for Pr(X) and Pr(Y|X).

2.1 A Spatial-Temporal MRF Model for the prior Pr(X) on the

network

In order to define our proposed hstMRF model, we first specify the probability model for the

latent differential expression states X, taking into account both temporal dependency over

time and the spatial dependency over the network. Specifically, for the initial time point 0,

we define an auto-logistic model [4, 5] as

Pr(Xg0|Xg′0, g
′ ∈ Ng) =

exp{Xg0F1(Xg0)}
1 + exp{F1(Xg0)} , (1)

where F1(Xg0) = γ0 + β0

∑
g′∈Ng

(2Xg′0 − 1), and γ0 ∈ R and β0 ≥ 0. This model, which is

equivalent to that assumed in [25], assumes that at the initial time point 0, the conditional

differential expression state of a given gene g depends only on the differential expression

states of its neighboring genes Ng.

For the following time points, we model {xt : t = 1, 2, · · · T} by a p-dimensional vector

Markov chain with the following transition probability:
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Pr(xt|xt−1) =

1

ct

exp

{
γ

p∑
g=1

Xgt + β1

∑

g∼g′∈E

(Xgt ⊕Xg′t) + β2

p∑
g=1

(Xgt ⊕Xg(t−1))

}
, (2)

where ct is the normalizing constant, ⊕ is the XNOR operator in the logic circuit, namely, it

outputs 1 if the two inputs are the same, and 0 otherwise, γ ∈ R and β1 ≥ 0 and β2 ≥ 0 are

the parameters that induce spatial and temporal dependencies of the differential expression

states. From this transition probability, we can derive (see Appendix for details of the

derivation), for each gene g, the conditional distribution of Xgt as

Pr(Xgt|x0,x1, · · · ,xt−1, Xg′t, g
′ 6= g) =

exp {XgtF2(Xgt)}
1 + exp {F2(Xgt)} , (3)

where

F2(Xgt) = γ + β1

∑

g′∈Ng

(2Xg′t − 1) + β2(2Xg(t−1) − 1).

Note that this conditional probability depends on the DES of its neighboring genes and

the DES of this gene at the previous data point. Together, the initial distribution (1)

and the conditional probability (3) define the probability distribution with parameter Φ =

(γ0, β0, γ, β1, β2) for the latent differential expression states.

2.2 Gamma-Gamma Model for Observed Gene Expression Data

Y

To finish the specification of the hstMRF model, we also need to define the density function

of the observed data Y given the latent DESs X, h(Y|X). We make the following conditional

independence assumption,

h(Y|X) =
T∏

t=0

p∏
g=1

f(ygt|Xgt), (4)

where f(ygt|Xgt) is the conditional density function of the observed expression values of

m + n samples for gene g at time t given the differential state Xgt. From the biological
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point of view, it is plausible to think that the differential expression states are more likely to

be dependent over time. We therefore assume that the gene expression levels over time are

independent given the differential expression states, which induce dependency of the gene

expression levels over time. The same assumption was also made in Yuan and Kendziorski

(2006) in their HMM formulation.

In order to specify f(ygt|Xgt), we propose to use the Gamma-Gamma (GG) model for

gene expression data introduced in [16, 13]. The same probability model was also used

in [25]. Under such a Gamma-Gamma model, we assume that the observation ygtc is a

sample from a gamma distribution having shape parameter α > 0 and a mean value µg,

thus, with scale parameter λi = α/µi. Following [16] and [13], fixing α, we assume that the

quantity λi = α/µi has a gamma distribution with shape parameter α0 and scale parameter

v. Let Θ = (α, α0, v) be the parameters used to specify these two distributions. Under this

hierarchical model, Kendziorski et al. [13] derived the following conditional density function

for the gene expression data,

f(ygt|Xgt;Θ) =





K1K2(
∏m+n

j=1 ygtj)
α−1

(v+ygt.m)mα+α0 (v+ygt.n)nα+α0
if Xgt = 1

K(
∏m+n

j=1 ygtj)
α−1

(v+ygt.m+ygt.n)(m+n)α+α0
if Xgt = 0,

(5)

where

ygt.m =
m∑

j=1

ygtj, ygt.n =
m+n∑

j=m+1

ygtj,

and

K1 =
vα0Γ(mα + α0)

Γm(α)Γ(α0)
, K2 =

vα0Γ(nα + α0)

Γn(α)Γ(α0)
, K =

vα0Γ((m + n)α + α0)

Γm+n(α)Γ(α0)
.

Together, models (1), (2) and (4) define a hstMRF model for MTC gene expression

data with parameters Φ and Θ. Similar to the HMM approach of [26], the model also

assumes that the expression states of one particular gene over time follow a hidden Markov

chain. While all genes in the HMM approach follow the same HMM model, each gene in the

hstMRF model has its own specific HMM determined by its regulatory neighboring genes.

The hstMRF model reduces to the HMM when all the genes in the networks are independent.
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It is also clear that the hMRF model in [25] is a special case of the hstMRF model, when

there is only one time point.

3 Parameter Estimation Using ICM and Viterbi Algo-

rithms

We propose the following algorithm based on the ICM algorithm of Besag [6] and the Viterbi

algorithm [17] to estimate the Φ parameter in the hidden spatial-temporal MRF model and

the Θ parameter in the Gamma-Gamma model. The algorithm involves the following itera-

tive steps:

1. Obtain an initial estimate X̂ of the true state X∗, using simple two sample t-tests at

each time point.

2. Estimate Φ by the value Φ̂ which maximizes the following pseudolikelihood likelihood

[5] l(X̂;Φ) based on the current X̂,

l(X;Φ) =

p∏
g=1

exp{Xg0F1(Xg0)}
1 + exp{F1(Xg0)} ×

T∏
t=1

p∏
g=1

exp {XgtF2(Xgt)}
1 + exp {F2(Xgt)} .

Maximizing this equation could be processed to obtain the estimate Φ̂ by a standard logistic

regression software routine such as glm in R. The rationale of using the pseudolikelihood

for updating the parameter Φ is that it is difficult to evaluate the full likelihood due to an

unknown normalizing constant in the likelihood function.

3. Estimate Θ by the value Θ̂, which maximizes the conditional likelihood h(Y|X̂;Θ)

(equation (4)).

4. Update X̂ based on the current Φ̂ and Θ̂ using a combination of the ICM algorithm

and the Viterbi algorithm [17]. Suppose that X̂ is the current estimate of the true X∗;

8
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our goal is to update the current DES Xg· ≡ (Xg0, Xg1, · · · , XgT ) of gene g in light of all

available information. Specifically, we update Xg· by maximizing the conditional probability

with respect to Xg·, given the observed data Y and the current DES of all other genes X̂V \g.

This conditional probability can be written as

Pr(Xg·|Y, X̂V \g) ∝ f(Yg|Xg·)Pr(Xg·|X̂V \g).

For a given gene g, the most probable Xg· can be obtained using the Viterbi algorithm with

the transition probability defined as in equation (3). When applied to each gene in turn,

this procedure defines a single cycle of the ICM algorithm.

5. Go to step 2 for a fixed number of cycles or until approximate convergence of X̂.

As noted by Besag [5], since

Pr(X̂|Y) = Pr(X̂g·|Y, X̂V \g)Pr(X̂V \g|Y),

P r(X̂|Y) never decreases at any stage and eventual convergence is assured. In our implemen-

tation, we stop the iterations when the maximum of the relative changes of the parameter

estimates is smaller than a small value ε, which is set to be 0.01 for simulations and 0.002

for the real data analysis. The converged X̂ are then taken to be the estimate of the true

differential expression states. These estimates can then be mapped back to the network to

identify the subnetworks at a given time, which are defined as those connected genes that

show differential expressions between the two experimental conditions. We can then exam-

ine these DES over time to obtain a temporal view of the subnetworks with respect to the

differential expression states.
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4 Simulation Study

4.1 Performance and comparisons with other methods

We conducted simulation studies to evaluate the proposed procedure and to compare the

results with other procedures, including the HMM approach [26], which only takes into

account the time dependency of differential expression states, and the hMRF model [25],

which only takes into account the dependency of the differential expression states on the

network. We simulated data based on the regulatory network of pathways provided by

KEGG. Specifically, 33 human regulatory pathways were obtained from the KEGG database

(December 2006), including only the gene-gene regulatory relations and excluding compound-

gene and compound-compound relations. The remaining gene-gene regulatory data were

represented as an undirected graph where each node represents a gene and two nodes are

connected by an edge if there is a regulatory relation between them. Loops (nodes connected

to themselves) were eliminated. This resulted in a graph with 1668 nodes and 8011 edges.

Our first simulation follows that of [26] where only the dependency of the differential

expression states over time was simulated. Specifically, the GG mixture model is specified at

each time point with parameter Θ = (10, 0.9, 0.5) and transition probabilities of differential

states over time are defined as

Pr(Xgt = DE|Xg(t−1) = DE) = 0.7, P r(Xgt = DE|Xg(t−1) = EE) = 0.1

for t = 1, · · · , 5 while for the first time point

Pr(Xg0 = DE) = 0.1.

There are 6 time points in total and 3 replicates for each condition at each time point. We

simulated 100 such datasets and each set contains 1,668 genes on the KEGG regulatory net-

work. For the hstMRF and the hMRF approaches, we used the KEGG pathway structures

in our analysis. The average sensitivity, specificity and the observed false discovery rate

(FDR) for the proposed hstMRF, HMM and hMRF over the 100 simulated datasets at each

of the 6 time points are shown in the first three columns of Table 1, where the sensitivity

10

Hosted by The Berkeley Electronic Press



is calculated as the average over the 100 replications of the fraction of DE genes correctly

identified by the method; specificity is the average of the EE genes correctly identified; and

the false discovery rate (FDR) is the average of the ratio of the number of false positives to

the number of the genes identified as DE. We observed that the proposed hstMRF model

performs almost identically to the HMM model in sensitivity, specificity and FDR. In ad-

dition, both the hstMRF and the HMM procedure performed much better than the hMRF

model; the increase of sensitivity can be more than 10% depending on the time points. Fur-

ther, the increase in sensitivity does not greatly increase the observed FDR; the difference

among different methods is within 2%.

The second simulation is similar to that in [25], where only the spatial dependency of

the DES was simulated using the hMRF model. For each time point, we randomly chose 9

pathways, initialized the genes in these pathways to be DE and the rest of the genes to be EE,

and then we performed sampling five times iteratively conditional on the current sample of

gene states to achieve the final sample of gene states according to equation (1) with γ0 = −2

and β0 = 2. Again, the GG mixture model with parameter Θ = (10, 0.9, 0.5) is assumed with

three replicates in each condition. The results from different procedures are presented in the

second three columns of Table 1. We observed that the hstMRF model performs similarly to

the hMRF model and both procedures outperform the HMM in sensitivity at all time points

and the increase of sensitivity can be as large as 14% depending on the time points. The

increase in sensitivity does not involve an increase in the FDR. The hstMRF procedure has

either considerably lower FDRs (time points 0, 1, 2 and 5) than HMM or comparable FDRs

(time points 3 and 4).

The last simulation aims to simulate the differential states with both spatial and temporal

dependencies. In particular, for the 33 KEGG pathways, we randomly picked 8 pathways at

the 1st time point (time point 0) to be the DE pathway in which all the genes were initially

set as DE genes. For time points 1 to 5, the DE/EE pathways were simulated according to

11
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the following transition probabilities,

Pr(pathwayit = DE|pathwayi(t−1) = EE) = 0.1,

P r(pathwayit = DE|pathwayi(t−1) = DE) = 0.7.

Then for each simulated dataset, for each time point, we first set all genes in the DE pathways

to be DE and then performed sampling five times based on the current gene states, according

to equation (1) with γ0 = −2 and β0 = 2. The results from different procedures are presented

in the last three columns of Table 1. We observed that the hstMRF model resulted in higher

sensitivity and similar specificity in identifying the DE genes over time, as compared to the

HMM or the hMRF models. The FDR rates are comparable to the HMM procedure with a

slightly higher FDR rate at time point 3, 0.06 versus 0.023 and 0.027 for HMM and hMRF

methods, respectively.

4.2 Sensitivity to misspecification of the network structure

Due to the fact that our current knowledge of biological networks is not complete, in prac-

tice, it is possible that the network structures that we use for network-based analysis are

misspecified. The misspecification can be due to either the true edges of the networks being

missed or the wrong edges being included in the network, or both of these two scenarios. We

performed simulation studies to evaluate how sensitive the results of the hstMRF approach

are to these three types of misspecifications of the network structures. We used the same

datasets of 100 replicates as in the previous section (last 3 columns of Table 1) but used

different misspecified network structures when we fitted the hstMRF model.

For the first scenario, we randomly removed 801 (10%), 2403 (30%) and 4005 (50%)

from the 8011 true edges from the true KEGG networks when we fit the hstMRF model,

respectively. For the second scenario, we randomly added approximately 801, 2403 and 4005

new edges to the KEGG network, respectively. Finally, for the third scenario, we randomly

selected 90%, 70% and 50% of the 8011 true edges and also randomly added approximately

801, 2403 and 4005 new edges to the network, respectively, so that the total number of
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edges remains approximately 8011. The results of the simulations over 100 replications are

summarized in Table 2. First, as expected, since the true number of DE genes is small,

the specificities of the htMRF procedure remain very high and are the same as when the

true network structure is used. Second, we also observe the FDR rates also remain almost

the same as when the true structure is used (see Table 1). However, we observed some

decreases in sensitivities of identifying the true DE genes, especially at time point t0. This

is expected, since results in Table 1 indicate that for the data we simulated, the network

structure provides the most information for the DES at time point t0. For other time points,

temporal dependency contributes most of the information. It is worth pointing out even

when the network structure is largely misspecified as in scenario 3, the results from hstMRF

model are still comparable to those obtained from the HMM approach where the network

structure is not utilized (see column 8 of Table 1). These simulations seem to indicate that

the results of the hstMRF model are not too sensitive to the misspecification of the network

structure unless the structure is greatly misspecified.

5 Application to Systemic Inflammation Gene Expres-

sion Study in Humans

We present results from an analysis of the systemic inflammation time course gene expression

data in human whole blood leukocytes reported in [7]. Using Affymetrix chips, Calvano et

al. profiled the gene expression levels in human leukocytes immediately before (0 h) and

at 2, 4, 6, 9 and 24 h after the intravenous administration of bacterial endotoxin for four

healthy human subjects. Four additional subjects without endotoxin administration were

also profiled under identical conditions and were used as the controls. To perform network-

based analysis of the data, we merged the gene expression data with the 33 KEGG regulatory

pathways and identified 1533 genes on the Hu133A chip that can be found in the 1668-node

KEGG network of 33 pathways. Instead of considering all the genes on the Hu133A chip,

we only focus analysis on these 1533 genes and aim to identify which genes and which

13

http://biostats.bepress.com/upennbiostat/art21



subnetworks of the KEGG network of 33 pathways are perturbed or activated during the

response to endotoxin.

5.1 Results from the hstMRF model

The hstMRF model identified 35, 260, 326, 292, 258 and 127 DE genes at time points 0

h, 2 h, 4 h, 6 h, 9 h and 24 h, respectively. The parameter estimates were γ0 = −3.76,

β0 = 0.00001, γ = −0.71, β1 = 0.013 and β2 = 2.14, indicating stronger time dependency

than network dependency of gene differential expression states. The odds ratio in favor of

being a DE gene is exp(2 × 0.013) = 1.02 if one of its neighbor genes is DE versus EE and

exp(2×0.013×10) = 1.30 if 10 of its neighboring genes are all DE versus all EE, conditional

on the rest of the graph and assuming that all other DES are the same. In contrast, the odds

ratio in favor of being a DE gene is exp(2× 2.14) = 72.24 if this gene is a DE gene versus a

EE at the previous time point assuming that the DES of its neighboring genes remain the

same. A total of 362 unique DE genes were differentially expressed at least once at one of

the six time points. Among these 362 DE genes, 262 of them are linked to at least one other

gene on the KEGG network and 100 are isolated. The 326 DE genes at time point 4 h are

from 31 out of the 33 pathways, indicating that the response to endotoxin administration

in blood leukocytes can be viewed as an integrated cell-wide response. DAVID’s enrichment

analysis [8] showed that the three most significantly enriched pathways at time 4 h are the

Toll-like receptor (TLR) signaling pathway, the Apoptosis pathway and the T cell receptor

signaling pathway with the p-values of 4.2×10−5, 8.1×10−4 and 2.1×10−3, respectively. As

a comparison, at the 2 h time point, TLR pathway was ranked only 6th with a p-value

0.065. Such an increase in the TLR signaling pathway’s significance is consistent with its

well-known critical role in innate immunity [1, 24, 10].

To demonstrate the spatial dependency of the DES of genes on the TLR pathway, Figure

1 presents the structure of the KEGG TLR pathway and the DES of the genes on this path-

way at 4 h after the endotoxin administration, in which the DE genes are labeled in light

shade. On this pathway, invading bacterial factors such as lipopolysaccharides (LPS, endo-
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Figure 1: Structure of the KEGG Toll-like receptor (TLR) signaling pathway and the gene

expression states of the genes at 4 h after the administration of endotoxin, where the EE

genes are dark-shaded and the DE genes are light-shaded. In this pathway, the rectangles

represent gene products, mostly proteins but also including RNAs and the rounded rectangles

indicate other pathways that are related to the TLR pathway. For the edges, a solid arrow

between two proteins means activation while a dashed arrow means indirect effect, and the

“+p” sign on the arrow further specifies that activations are achieved by Phosphorylation. In

addition, a rectangle pointing to a small circle, which points to another rectangle, means gene

expression relationship. For example, the transcription factor STAT1 controls the mRNA

expression of MIG. Finally, the two vertical lines on the left represent the cell membranes that

separate cytoplasm and extracellular components and the vertical dashed line on the right

represents the cell nuclear membrane. More detailed explanations of the KEGG pathways

can be found at http : //www.genome.jp/kegg/document/help pathway.html.
15
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toxin) activate innate immunity as well as stimulate the antigen-specific immune response

and trigger the inflammatory response [24]. The signals stimulated by these factors are

recognized by CD14, which in turn activates TLR4. MD-2 is a secreted protein that binds

to the extracellular domain of TLR4 and is important in its signaling [24, 2]. Our analysis

indicated that these three genes are differentially expressed together with TLR2 receptor.

It is now understood that all TLRs activate a common signaling pathway that culminates

in the activation of nuclear factor κB (NF-κB) as well as the mitogen-activated protein

kinases (MAPKs) extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal

kinase (JNK) [2]. This fact is clearly demonstrated by our analysis results: we observed

that MKK36, NF-κB, p38 and JNK were all differentially expressed. After the signals arrive

at the transcriptional factors AP-1 and NF-κB, they are activated and translocated into

the nucleus. We observed that the down-stream genes of these transcription factors, includ-

ing inflammatory cytokines (IL-1β, RANTES, MIP-1α, MIP-1β), costimulatory molecules

(CD86) were differentially expressed, consistent with the activation of innate immunity after

administration of endotoxin [1, 24, 10].

However, we did not observe differential expression of genes of the IL-1 receptor-associated

kinase (IRAK) family, including the serine-threonine kinases IRAK1 and IRAK4 which are

involved in the phosphorylation and activation of tumor necrosis factor (TNF) receptor-

associated factor 6 (TRAF6), which was also not differentially expressed. Analysis of cells

from mice lacking MyD88 has demonstrated that TLR4 is capable of inducing certain sig-

naling pathways independent of the MyD88 adaptor [24, 2]. It is interesting to note that our

analysis indicated that the Toll/interleukin-1 receptor (TIR) domain-containing adaptor-

inducing IFN-β (TRIF), which functions downstream of TLR4 [2], was differentially ex-

pressed. TRIF is known to be responsible for the induction of interferon (IFN)-α and IFN-β

genes [2], both of which were observed to be differentially expressed. The induction of

IFNα/β genes by TLR4 further leads to activation of a key transcription factor interferon

regulatory factor 3 (IFR3), which in turn led to differential expressions of the chemokines

(IP-10, I-TAC). This suggests that the TRIF pathway may play an important role in response
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to endotoxin.

To further explore the temporal changes in KEGG subnetworks we focused our analysis

on the 262 connecting DE genes. We divided these 262 genes into non-overlapping groups

based on the first time point at which the gene became DE between the two groups, i.e.,

the genes in group 1 are DE on 0 h, those in group 2 were DE on 2 h but not on 0 h, and

those in group 3 were DE on 4 h but not on 0 h or 2 h. Other groups can be similarly

defined. The genes that were DE at 24 h were also DE at least once at the previous time

points. In addition, 9 DE genes were to be consistently over-expressed or under-expressed

in the treatment group across all the time points. The remaining 253 genes include 9, 160,

70, 10 and 4 genes that were observed to first become DE at time points 0 h, 2 h, 4 h , 6 h

and 9 h, respectively. We mapped these genes back to the KEGG gene network and showed

the temporal response of gene expression in Figure 2 on the KEGG subnetwork. A clear

temporal network response can be observed by highlighting the transient and self-limiting

nature of this response. A large number of genes are differentially expressed from time point

2 h and the time point 4 h had the most number of the DE genes, which represents a quick

response of the human immune system to the intrusion of endotoxin [1, 7].

We also observed that a number of transcription factors were differentially expressed dur-

ing time period 4-6 h after endotoxin injection, including both those that activate and those

that inhibit the innate immune response. The activating genes included the signal trans-

ducer and activators of transcription genes (STAT1, STAT3, STAT4, STAT5A, STAT5B) and

the inhibiting genes included the suppressor of cytokine signaling genes (SOCS1, SOCS2,

SOCS3). There was also a delay (4-6 h) in increased mRNA abundance of secreted and

membrane-associated proteins involved in the inflammatory response, including IL1RAP,

IL1R2, IL1A, IL1B and IL1R1. Together, the temporal modulation of these DE genes

controls the innate immune response in human leukocytes that progresses from an acute

proinflammatory phase to unencumbered counter regulation, concluding with almost full

recovery and a normal cellular state [7].
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(a) 0 h (b) 2h (c) 4h

(d) 6 h (e) 9 h (f) 24 h

Figure 2: Temporal changes of gene expression levels in blood leukocytes on subnetworks

of the KEGG pathways, showing a propagating and resolving procedure over time (0 h, 2

h, 4 h, 6 h, 9 h, and 24 h from (a) to (f)). Up-regulated genes in the endotoxin group are

shown in red, down-regulated genes in the endotoxin group are shown in blue and equally

expressed genes are shown in white.
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5.2 Comparison with the results from the HMM

As a comparison, the HMM assuming homogeneous transition probabilities identified 45,

227, 355, 342, 302 and 123 DE genes on the KEGG network at time points 0 h, 2 h, 4 h,

6 h 9 h, and 24 h, respectively. The DE genes identified at the 0 h and the 24 h are very

similar between the two different approaches. Table 3 shows the number of DE and EE genes

identified by the hstMRF and the HMM methods at 2 h, 4 h 6 h and 9 h. While the sets of

DE genes identified by the hstMRF and the HMM methods largely overlap, which is what

we should expect because of the strong temporal effect, there are some differences in DE/EE

genes identified, indicating the KEGG network structure indeed has impact on identifying

the DE genes. At the 2 h after endotoxin administration, the hstMRF model identified 35

DE genes that were missed by the HMM. Figure 3 shows the average expression levels of

these 35 genes at 0 h, 2 h and 4 h, indicating that most of them are differentially expressed

at the 2 h. One reason that the HMM did not identify these genes is that all these genes were

at the EE state at time 0 h and the estimated transition probability from the EE state to DE

state is only 0.06. In contrast, at the time points 4 h, 6 h and 9 h, there were 32, 49 and 43

DE genes identified by the HMM but missed by the hstMRF model, respectively. However,

we observed that the HMM posterior probabilities of being a DE gene for these genes are

relatively small, with a median value of 0.64, 0.64 and 0.67, respectively. In addition, we

also observed that more than 75% of the neighboring genes of these DE genes are EE. The

hstMRF model took into account the differential expression states of the neighboring genes

in estimating the posterior probabilities and inferred these DE genes as the EE genes.

To further demonstrate the differences in genes identified by the HMM and the hstMRF

methods, we performed analysis for data measured at the 0 h, 2 h and 24 h. The parameter

estimates for the hstMRF model were β1 = 0.037 and β2 = 0.37, indicating less stronger

temporal effects than our previous analysis. The hstMRF model identified 57 more DE genes

at the 2 h than the HMM, of which 56 were EE at the 0 h and 24 h. Plots of the average

expression profiles indeed show that all these 56 genes seem to show differential expression

patterns at the 2 h and equally expression patterns at the 0 h and 24 h (see Supplementary
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materials). Under the hstMRF model, the DE neighboring genes increased the posterior

probability of being a DE gene for these 56 genes. On average, these 56 DE genes have 2.4

more DE neighboring genes than what the EE genes have. Finally, it is interesting to note

that 32 out of these 57 genes were identified as DE by the HMM if data from all the time

points were used.

6 Conclusion and Discussion

We have proposed a hidden spatial-temporal MRF model that utilizes the gene regulatory

networks and temporal information simultaneously to identify DE genes in the analysis of

microarray time course gene expression data. Simulation studies show that our methods

outperform those methods capturing only regulatory dependence or capturing only time

dependence in sensitivity, specificity and false discovery rate. We applied our method to

analyze the MTC data of systemic inflammation in humans. The subpathways/subnetworks

we identified at different time points show that the innate immune response in a human

model progresses from an acute proinflammatory phase to unencumbered counter regulation,

concluding with almost full recovery and a normal cellular state, consistent with the known

characteristics of the human innate immune response [1, 24, 7]. Our analysis also confirmed

the critical role of the Toll-like receptor pathway in innate immune response and suggested

that the signaling pathway during the human response to endotoxin might be through the

TRIF pathway [2].

In this paper, we analyzed the systemic inflammation MTC data using KEGG pathways

and aimed to identify the KEGG pathways affected by administration of endotoxin. How-

ever, the proposed methods can be applied to any other networks of pathways. An important

question is to decide which pathways one should use in analyzing the MTC data. This par-

tially depends on the scientific questions to be addressed. If an investigator is only interested

in a particular pathway, the proposed method can be applied to that particular pathway. If

an investigator is interested in fully exploring his/her data and all available pathways, one
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Figure 3: Average gene expression profiles at the 0 h, 2 h and 4 h for the 35 DE genes that

were identified by the hstMRF model but missed by the HMM model. ∆: group receiving

the endotoxin administration; o: control group.21
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should use a large collection of pathways, e.g., the pathways collected by Pathway Commons

(http://www.pathwaycommons.org/pc/) or build the network of pathways using some exist-

ing network construction tools [3]. It should also be noted that our proposed methods can

include all the genes probed on microarray by simply adding isolated nodes to the graphs.

Another related issue is that our knowledge of pathways is not complete and can potentially

include errors or misspecified edges on the networks. Although our simulations demonstrate

that our methods are not too sensitive to the misspecification of the network structures,

the effects of misspecification of the network on the results deserve further research. One

possible solution to this problem is to first check the consistency of the pathway structure

using the data available. For example, if the correlation in gene expression levels between

two neighboring genes is very small, we may want to remove the edge from the pathway

structure. Alternatively, one can build a set of new pathways using various data sources and

compare these pathways with those in the pathway databases in order to identify the most

plausible pathways for use in the proposed hstMRF method. Important future research will

include how to represent and assess the uncertainty of the inference of the true differential

expression states.

The proposed methods can be extended in several ways. First, besides the neighboring

information, the pathways may provide additional biologically relevant information, such as

inhibition and activation effects of genes and which genes are the transcriptional factors. The

proposed methods treat all nodes and edges in the networks equally and use two parameters,

β1 and β2, to characterize the spatial and temporal dependency of the differential states. One

possible extension of the proposed methods is to incorporate the additional information about

the pathways into data analysis. For example, we may attach more weight to transcription

factors because of their immediate impact on mRNA production. Second, it is also possible

to incorporate the promotor sequences and binding motif information of known transcription

factors into the definition of the neighbors in our definition of the MRF models. Finally,

since many networks are given by directed graphs, it is also possible to extend the MRF

model to incorporate the direction of gene regulations.
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In conclusion, microarray time course gene expression data are commonly collected to

investigate the dynamic nature of important biological systems. The proposed methods facil-

itate the identification of the key molecular mechanisms involved and the cellular pathways

being activated/modified during a given biological process. As our knowledge of the biolog-

ical pathways increases, we expect more applications of such methods for identifying genes

and pathways that are related to important biological processes.
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Appendix

We provide details on derivation of the conditional probability (3), which follows [27]. First,

from the definition of the transition probability (2), for any 1 ≤ t ≤ T , we have

Pr(x1, · · · ,xt|x0) =
t∏

t′=1

1

ct′
exp

{
t∑

t′=1

[
γ

p∑
g=1

Xgt′ + β1

∑

g∼g′∈E

(Xgt′ ⊕Xg′t′)

+ β2

p∑
g=1

(Xgt′ ⊕Xg(t′−1))

]}
. (6)

From this, we have

Pr(Xgt|x0,x1, · · · ,xt−1, Xg′t, g
′ 6= g)

=
Pr(x1, · · · ,xt|x0)

Pr(x1, · · · ,xt−1, Xgt = 0, Xg′t|x0) + Pr(x1, · · · ,xt−1, Xgt = 1, Xg′t|x0)

=
exp{A + B(Xgt)}

exp{A + B(0)}+ exp{A + B(1)} ,

where

A =
t∑

t′=1


γ

∑

g′ 6=g

Xg′t′ + β1

∑

g′∼g′′∈E\{g}
(Xg′t′ ⊕Xg′′t′) + β2

∑

g′ 6=g

(Xg′t′ ⊕Xg′(t′−1))


 ,

which consists of the terms in the exponent of (6) that do not include Xgt, where E\{g} is

the set of the edges that do not include those that linked to gene g, and

B(Xgt) = γXgt + β1

∑

g′∈Ng

(Xgt ⊕Xg′t) + β2(Xgt ⊕Xg(t−1)),
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which consists of the terms that include Xgt. From this definition of B(Xgt), we have

B(0) = β1

∑

g′∈Ng

(1−Xg′t) + β2(1−Xg(t−1)),

B(1) = γ + β1

∑

g′∈Ng

Xg′t + β2Xg(t−1).

It is then easy to see that

Pr(Xgt|x0,x1, · · · ,xt−1, Xg′t, g
′ 6= g)

=
exp{A + B(Xgt)}

exp{A + B(0)}+ exp{A + B(1)}
=

exp{B(Xgt)−B(0)}
1 + exp{B(1)−B(0)}

=
exp{Xgt(γ + β1

∑
g′∈Ng

(2Xg′t − 1) + β2(2Xg(t−1) − 1))}
1 + exp{(γ + β1

∑
g′∈Ng

(2Xg′t − 1) + β2(2Xg(t−1) − 1))}

=
exp {XgtF2(Xgt)}
1 + exp {F2(Xgt)} ,

which is the equation (3).
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Table 1: Comparison of performance in term of sensitivity (SEN), specificity (SPE) and

false discovery rate (FDR) of three different procedures based on 100 replications for three

different scenarios. Standard errors range from 0.018 to 0.07 with a median of 0.027 for the

sensitivity, from 0.001 to 0.004 with a median of 0.003 for the specificity and from 0.005 to

0.023 with a median of 0.009 for the FDR (see Supplementary materials for details). hstMRF:

proposed hidden spatial-temporal Markov random field model; HMM: hidden Markov model;

hMRF: hidden Markov random filed model.

Temporal Dependency Spatial Dependency Spatial-temporal Dependency

hstMRF HMM hMRF hstMRF HMM hMRF hstMRF HMM hMRF

t0 0.66 0.67 0.62 0.85 0.71 0.85 0.90 0.72 0.88

S t1 0.71 0.71 0.63 0.76 0.71 0.73 0.79 0.79 0.67

E t2 0.74 0.74 0.63 0.73 0.70 0.76 0.82 0.81 0.80

N t3 0.75 0.75 0.64 0.75 0.71 0.71 0.82 0.77 0.77

t4 0.75 0.75 0.65 0.80 0.69 0.79 0.82 0.80 0.69

t5 0.71 0.71 0.66 0.78 0.72 0.83 0.79 0.76 0.69

t0 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00

S t1 1.00 1.00 1.00 1.00 0.99 1.00 0.97 0.96 1.00

P t2 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.98 1.00

E t3 0.99 0.99 1.00 0.99 0.99 0.99 0.97 0.99 0.99

t4 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99 1.00

t5 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00

t0 0.021 0.025 0.016 0.007 0.026 0.009 0.016 0.027 0.013

F t1 0.027 0.028 0.020 0.012 0.024 0.012 0.089 0.127 0.018

D t2 0.031 0.031 0.018 0.015 0.025 0.019 0.014 0.031 0.009

R t3 0.030 0.030 0.017 0.028 0.026 0.016 0.060 0.023 0.027

t4 0.030 0.028 0.017 0.026 0.028 0.020 0.036 0.039 0.014

t5 0.026 0.025 0.017 0.011 0.025 0.019 0.020 0.028 0.014

28

Hosted by The Berkeley Electronic Press



Table 2: Comparison of performance in terms of sensitivity (SEN), specificity (SPE) and

false discovery rate (FDR) of the hstMRF procedure based on 100 replications when the

network structure is misspecified. Standard errors range from 0.018 to 0.031 with a median

of 0.024 for the sensitivity, from 0.002 to 0.007 with a median of 0.004 for the specificity

and from 0.006 to 0.026 with a median of 0.011 for the FDR (see Supplementary materials

for details). DEL: randomly deleting 10%, 30% and 50% of the true edges of the network;

ADD: randomly adding approximately 801 (10%), 2403 (30%) and 4005 (50%) new edges

to the network; DEL+ADD: randomly choosing 90%, 70% and 50% of the true edges and

randomly adding 10%, 30% and 50% new edges to the network.

10% 30% 50%

DEL ADD DEL+ADD DEL ADD DEL+ADD DEL ADD DEL+ADD

t0 0.89 0.88 0.88 0.88 0.86 0.82 0.86 0.84 0.78

S t1 0.79 0.79 0.79 0.79 0.78 0.78 0.79 0.78 0.78

E t2 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.81 0.80

N t3 0.82 0.82 0.82 0.82 0.82 0.81 0.81 0.82 0.79

t4 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.81

t5 0.79 0.79 0.78 0.79 0.78 0.77 0.78 0.77 0.75

t0 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99

S t1 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.98 0.97

P t2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

E t3 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98

t4 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

t5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

t0 0.016 0.015 0.015 0.017 0.013 0.013 0.017 0.012 0.015

F t1 0.090 0.088 0.088 0.093 0.082 0.084 0.094 0.079 0.090

D t2 0.014 0.014 0.014 0.014 0.014 0.016 0.015 0.015 0.018

R t3 0.060 0.060 0.059 0.059 0.058 0.054 0.056 0.057 0.043

t4 0.037 0.036 0.036 0.037 0.036 0.037 0.038 0.036 0.040

t5 0.020 0.020 0.020 0.021 0.020 0.020 0.022 0.020 0.022
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Table 3: A comparison of the numbers of DE and EE genes identified by hstMRF and HMM

at the 2 h, 4h 6h and 9h of the systemic inflammation gene expression experiments.

hstMRF

2h 4h 6h 9h

EE DE EE DE EE DE EE DE

EE 1271 35 1173 5 1191 0 1231 0

HMM DE 2 225 32 323 49 293 43 259
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