
University of Pennsylvania
UPenn Biostatistics Working Papers

Year  Paper 

U-Statistics-based Tests for Multiple Genes in
Genetic Association Studies

Zhi Wei∗ Mingyao Li PhD†

Timothy Rebbeck‡ Hongzhe Li∗∗

∗University of Pennsylvania, zhiwei@mail.med.upenn.edu
†University of Pennsylvania School of Medicine, mingyao@mail.med.upenn.edu
‡University of Pennsylvania, rebbeck@mail.med.upenn.edu
∗∗University of Pennsylvania, hongzhe@mail.med.upenn.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/upennbiostat/art25

Copyright c©2008 by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61321825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


U-Statistics-based Tests for Multiple Genes in
Genetic Association Studies

Zhi Wei, Mingyao Li PhD, Timothy Rebbeck, and Hongzhe Li

Abstract

Abstract: As our understanding of biological pathways and the genes that reg-
ulate these pathways increases, consideration of these biological pathways has
become an increasingly important part of genetic and molecular epidemiology.
Pathway-based genetic association studies often involve genotyping of variants in
genes acting in certain biological pathways. Such pathway-based genetic asso-
ciation studies can potentially capture the highly heterogeneous nature of many
complex traits, with multiple causative loci and multiple alleles at some of the
causative loci. In this paper, we develop two nonparametric test statistics that
consider simultaneously the effects of multiple markers. Our approach, which is
based on data-adaptive U-statistics, can handle both qualitative data such as case-
control data and quantitative continuous phenotype data. Simulations demonstrate
that our proposed methods are more powerful than standard methods, especially
when there are multiple risk loci each with small genetic effects. When the num-
ber of disease-predisposing genes is small, the data-adaptive weighting of the U-
statistics over all the markers produces similar power to commonly used single
marker tests. We further illustrate the potential merits of our proposed tests in the
analysis of a data set from a pathway-based candidate gene association study of
breast cancer and hormone metabolism pathways. Finally, potential applications
of the proposed tests to genome-wide association studies are also discussed.
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Abstract

As our understanding of biological pathways and the genes that regulate these pathways in-

creases, consideration of these biological pathways has become an increasingly important part

of genetic and molecular epidemiology. Pathway-based genetic association studies often involve

genotyping of variants in genes acting in certain biological pathways. Such pathway-based ge-

netic association studies can potentially capture the highly heterogeneous nature of many com-

plex traits, with multiple causative loci and multiple alleles at some of the causative loci. In

this paper, we develop two nonparametric test statistics that consider simultaneously the effects

of multiple markers. Our approach, which is based on data-adaptive U-statistics, can handle

both qualitative data such as case-control data and quantitative continuous phenotype data.

Simulations demonstrate that our proposed methods are more powerful than standard methods,

especially when there are multiple risk loci each with small genetic effects. When the number

of disease-predisposing genes is small, the data-adaptive weighting of the U-statistics over all

the markers produces similar power to commonly used single marker tests. We further illustrate

the potential merits of our proposed tests in the analysis of a data set from a pathway-based

candidate gene association study of breast cancer and hormone metabolism pathways. Finally,

potential applications of the proposed tests to genome-wide association studies are also discussed.

Key Words: Genetic heterogeneity, Global tests, Genetic pathways, Breast cancer.

1 Introduction

Since most complex diseases are due to the disruption of normal biological processes, pathways or

networks, the genetic basis of many common genetic traits is expected to be highly heterogeneous,

with multiple causative loci and multiple alleles at some of the causative loci, each with small

and weak marginal effects (Zondervan and Cardon, 2004; Schaid et al., 2005). For example, if the
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pathway activity levels determine the phenotype of interest, it is expected that different mutations

in different genes within this pathway can lead to similar phenotypes. Instead of evaluating single

candidate genes, pathway-based genetic association studies consider entire pathways comparing a

dozen or more genes or multiple pathways that link up or compete in complex genetic networks.

However, such genetic heterogeneity can lead to loss of power to detect genetic associations

(Slager et al., 2000; Schaid et al., 2005) when single marker-based analysis is used due to weak

marginal effect and the issues of adjusting for multiple testing. An alternative approach is based

on haplotype association tests; however, since genes within a given pathway are often from

different chromosomes, haplotype analysis of functional variants does not make biological sense.

In addition, tests based on haplotypes often have large degrees of freedom, resulting in loss of

power. As an alternative to haplotype analysis, new multilocus association tests have also been

developed for tagSNPs within a region of interest (Kwee et al., 2008).

Genetic heterogeneity among genes within pathways suggests that one may want to develop

tests for joint testing between multiple genes or SNPs with complex phenotypes and to draw

an overall conclusion as to whether the set of SNPs is related to the disease risk. One can

use linear/logistic regression to simultaneously test the main effects (and possibly interactions)

of multiple SNPs. Although this approach can be more powerful than testing each marker

separately (Longmate, 2001), it still suffers from weak power because of the large number of

degrees of freedom. Schaid et al. (2005) proposed a nonparametric test of association of multiple

SNPs and disease status using U-statistics (Hoeffding, 1948) and presented several interesting

choices of kernel functions. Their approach first measures a score over all markers for pairs of

subjects and then compares the averages of these scores between cases and controls. The power

of the proposed tests depends on the choice of the kernel used in the U-statistics. When there are

both protective and disease-predisposing genes in the gene set, use of the wrong kernel can result

in a loss in power, especially for the allele-match kernel. This is due to the fact that comparing

average similarities between cases and controls is influenced by how much the allele frequencies
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depart from equality within a group and thereby potentially eliminating a signal when summing

these allele-match kernels across markers (Schaid et al., 2005). The linear dosage kernel, which

is defined as the sum of the number of the minor allele for a pair of genotypes, suffers the same

potential loss of power when the minor alleles across multiple markers are both protective and

disease predisposing, as indicated by their simulations (Schaid et al., 2005).

In this paper, we propose an alternative U-statistics-based nonparametric test of the associ-

ation between multiple SNPs and qualitative traits using data-adaptive U-statistics. Following

Sen (2006), we consider defining our test statistics based on both the within-group and between-

group U-statistics, instead of simply considering the contrast between case and control genotype

U-statistics scores. Also different from Schaid et al. (2005), our proposed test can be applied to

qualitative traits of more than two categories and is more robust in power to misspecification of

the genetic models. We also propose a nonparametric test of association between multiple SNPs

and quantitative traits by extending the idea of Wei and Johnson (1985). We propose to weight

the U-statistics across different markers using the negative of the logarithm of the single marker

p-values, which makes the final test statistics data-adaptive. Such weighting increases the test

power, especially when there are only one or two disease-associated markers in the marker set.

Both tests are based on U-statistics that do not require a particular parametric model of depen-

dence imposed on the SNPs or model to relate the genotypes to the phenotypes and therefore

are robust to misspecfication of the underlying genetic models.

The rest of the paper is organized as follows: in the Statistical Methods section, we de-

scribe the U-statistics-based tests for both qualitative and quantitative traits. To illustrate the

properties of our methods, we perform simulations. We also apply our methods to a study of

candidate genes for breast cancer risk and age of onset of breast cancer, to illustrate their utility

and interpretation. Finally, we give a brief discussion of the methods.

3
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2 Statistical Methods

2.1 U-statistics-based test of association for qualitative traits

We first introduce notation. Suppose that we have K SNPs from genes in a given pathway or

from genes with similar molecular functions, each with two alleles 0 and 1, where without loss of

generality, we assume that allele 1 is the minor allele. At each SNP, there are three genotypes,

coded as G = {00, 10, 11}. We consider a qualitative trait, taking C different possible categorical

values. For example, for case-control studies, there are two trait groups with C = 2. Let nc be the

number of individuals in the cth phenotype group. Let Xci = (Xci1, · · · , XciK) be the observation

vector over the K SNPs for the ith individual in the cth group, for i = 1, · · · , nc, where Xcik is the

genotype of the ith individual in the cth group at the kth SNP that takes one of the three possible

genotype values in G. The probability law of Xci is denoted by πc = {πc(g) : g ∈ G×G · · ·×G},

where πc(g) is the probability of observing genotype g in phenotype group c. We are interested

in testing the null hypothesis of homogeneity of the πc, c = 1, 2, · · · , C.

Since the space of the alternative hypotheses is very large, the standard multi-way contin-

gency table analysis to test for global association suffers loss of power. Instead, following Sen

(2006), we consider defining a test statistic based on the U-statistics (Hoeffding, 1948). We

first define a symmetric kernel between a pair (i, j) of observations Xi = {Xi1, · · · , XiK} and

Xj = {Xj1, · · · , XjK} as

φ(Xi, Xj) =
K∑
k

wkI(Xik 6= Xjk), (1)

where wk is a SNP-specific weight. This kernel function can be regarded as a weighted Hamming

distance between individuals i and j over the K SNPs. Note that the definition of this kernel

does not depend on particular specifications of the high- or low-risk alleles. The weight can be

defined based on prior knowledge of the importance of the K SNPs. Alternatively, we can take

a data-adaptive weight as wk = − log(Pk) where Pk is the p-value based on a univariate test for

the kth SNP. Using this weight, the SNPs with smaller p-values are given larger weights.

4

Hosted by The Berkeley Electronic Press



Instead of simply considering the difference of the kernel (1) between cases and controls as

in Schaid et al. (2005), we propose to derive a test statistic following Sen (2006) by considering

both the within-group and the between-group U-statistics. Specifically, for phenotype group c,

we define the within-group U-statistic as

Ucc =

 nc

2


−1 ∑

1≤i<j≤nc

φ(Xci, Xcj)

=
K∑

k=1

wk{
∑
g∈G

nckg(nc − nckg)

nc(nc − 1)
}, (2)

where nckg is the number of individuals in the cth group for which at the kth SNP the observed

genotype label is g. Note that if the within-group genotypes are all the same, then Ucc = 0.

Similarly, for phenotype group c and c′, we define the between-group U-statistic as

Ucc′ = (ncnc′)−1

nc∑
i=1

nc′∑
j=1

φ(Xci, Xc′j)

=
K∑

k=1

wk{
∑
g∈G

nckg(nc′ − nc′kg)

ncnc′
}. (3)

From this equation, we note that a larger difference in genotype distribution between the cth

and the c′th group corresponds to a larger value of Ucc′ .

Let n = n1 + n2 + · · · + nC be the total number of individuals across all the C phenotype

groups and let U0 be the pooled group U-statistic corresponding to the same kernel φ, which can

be written as

U0 =

 n

2


−1 ∑

1≤i<j≤n

φ(Xi, Xj)

=
C∑

c=1

nc

n
Ucc +

∑
1≤c6=c′≤C

ncnc′

n(n− 1)
{2Ucc′ − Ucc − Uc′c′}

= W +B, (4)

which can then be decomposed into within-group component W and between-group component

B, where Ucc and Ucc′ are defined as in equations (2) and (3). Under the null hypothesis, B has

5
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zero expectations and it is positive under the alternative. We define the following statistic for

testing the association between K genotypes and a discrete phenotype,

Td = B/W,

which is the ratio of the between-group contribution versus the within-group contribution to the

pooled U-statistic. For data-adaptive weights wk = − log(Pk), which depends on the data, the

asymptotic distribution of Td is unclear. We therefore determine the critical region of the test

statistic Td by permutations. Specifically, we permute the discrete trait labels M times, and

for each permutation m, we calculate the test statistic T
(m)
d and obtain the permutation-based

p-value as
∑

b I(T
(m)
d > Td)/M .

2.2 Nonparametric tests for quantitative traits

In this section, we consider constructing a test for testing the association between a group of

SNPs and a quantitative trait phenotype Y based on the U-statistics. Let Yi be the observed

trait value for the ith individual for i = 1, · · · , n. Let Xi = (Xi1, · · · , XiK) be the observation

genotype vector over the K SNPs for the ith individual for i = 1, · · · , n, where Xik is the

genotype of the ith individual at the kth SNP that takes one of the three possible genotype

values G = {00, 10, 11}, where we assume that allele 1 is the minor allele. The hypothesis that

we wish to test is H0 : F (Y |X) = H(Y ), where F (Y |X) is the conditional distribution function

of Y given X, and H(Y ) is the marginal distribution function of Y .

To define the U-statistics, for marker k, we define the set Sgk = {i : Xik = g, i = 1, · · · , n} the

individuals with genotype g at the kth marker for g ∈ G and k = 1, · · · , K and let mgk = |Sgk|

be the number of such individuals. Consider a kernel function between two trait values Yi and

Yj as

φ(Yi, Yj) = Yj − Yi. (5)

6
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We define the following U -statistics for SNP k,

Uk1 =

√
m10k +m11k

m10km11k

∑
i,j

{φ(Yi, Yj)− θk0}, i ∈ S10k, j ∈ S11k,

Uk2 =

√
m00k +m11k

m00km11k

∑
i,j

{φ(Yi, Yj)− θk1}, i ∈ S00k, j ∈ S11k,

Uk3 =

√
m00k +m10k

m00km10k

∑
i,j

{φ(Yi, Yj)− θk2}, i ∈ S00k, j ∈ S10k,

which compare the quantitative trait values between every two genotype groups at the SNP k,

where θk0 = E(φ(Yi, Yj) for i ∈ S10k, j ∈ S11k and θk1 and θk2 are similarly defined. Under the

null hypothesis, θkj = 0 for j = 0, 1, 2 and let Ukj = Ukj0, j = 1, 2, 3. In order to combine these

three U-statistics, we assume that the quantitative trait value is a monotone function of the

number of the minor allele at the trait-associated SNPs and further define

Uk = Uk1 + Uk2 + Uk3,

Uk0 = Uk10 + Uk20 + Uk30.

To define a statistic over K SNPs, we consider the multivariate U-statistic (U1, · · · , UK)
′
, which

has limiting normal distribution with zero mean, and limiting covariance matrix Σ = ((σkl)). It

is easy to show that Σ can be consistently estimated by Σ̂ (see Appendix). In order to draw an

overall conclusion on association between the K SNPs and the quantitative trait, we consider a

linear combination of the statistics Uk0 defined as the test statistic

V =
K∑

k=1

wkUk0,

where wk is a data-adaptive weight. We consider the data-adaptive weight wk = − log(Pk)sign(rk)

where Pk is the p-value based on a univariate test for the kth SNP, and rk = corr(Y, gk) is the

correlation between the observed trait values Y = {Y1, · · · , Yn} and the genotypes gk at the kth

SNP coded by counting the numbers of minor alleles. The rationale of using the sign of the

correlation in the weight is to account for the fact that the minor alleles across all of the K SNPs

can either increase or decrease the trait phenotype. We then define a statistic for testing the
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association between K genotype and a continuous trait as

Tc = V (w′Σ̂w)−1/2. (6)

Using the data-adaptive weight vector, the asymptotic distribution of the test statistic Tc is no

longer the standard normal distribution. Its significance level is again estimated using permuta-

tions by randomly permuting the continuous trait values across all the individuals.

Finally, if we can make an assumption on the mode of inheritance as dominant or recessive, we

can similarly define a U-statistics-based test statistic based on comparing two genotype groups,

{00} vs. {10,11} for the dominant model or {00, 10} vs. {11} for the recessive model.

3 Simulation Studies

We performed simulations to evaluate the power of the proposed U-statistics-based tests and

to compare with some of the standard methods. Since significance levels of the proposed test

statistics are determined by permutations of the phenotypes, the type 1 errors of these tests

are automatically controlled and we therefore did not report the results of the type 1 error

evaluations.

3.1 Simulation studies for qualitative traits

For the first simulation study, we generated the data set as described in Schaid et al. (2005).

In this simulation, the genotypes for 10 independent markers were simulated. Of these 10, the

number of markers associated with disease ranged from 1 to 10. The frequency of each high-risk

allele, for all markers, was set to 0.15. Hardy-Weinberg proportions were used to generate the

genotypes for the controls, and the genotypes for cases were generated by assuming that the

high-risk allele had a multiplicative effect on the odds ratio. The effect per allele was set at

an odds ratio of 1.5. The total sample size was set to 500 individuals, of which half were cases

8
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and half were controls. All simulations were based on 500 replicates. For each replicate, 50,000

permutations were used to estimate the p-values.

The top panel of Figure 1 shows the power of the four different tests, including the unweighted

U-statistics-based test, weighted U-statistics-based test, the maximum of univariate χ2-test with

Bonferroni correction for multiple testing, and the test proposed by Schaid (2005) using “linear-

dosage” kernel. Each evaluation considered three different α-levels of 0.05, 0.01 and 0.005, and

different number of disease genes ranging from 1 to 10. These figures illustrate that, as the

number of high-risk SNPs increases, there is a gain in power of the proposed U-statistic-based

tests, and the gain is greater when the number of true disease-related SNPs increases. When

there are only one or two disease SNPs, the unweighted U-statistic-based test performs similarly

in power when compared with the single marker analysis, but the weighted test provides slightly

higher power than the single-SNP test. As expected, when the number of disease SNPs is high,

the weighted test is less powerful than the unweighted test. We also observed that the proposed

tests have almost the same power as Schaid’s test.

For the second simulation study, we fixed the disease prevalence at 5%. Briefly, we generated

genotypes for 10 independent markers, with the number of markers associated with the disease

loci ranging from 1 to 10. All markers had minor allele frequency 0.3 and the genotypes were

generated following Hardy-Weinberg proportions in the general population. The minor alleles

were designated as the high-risk alleles. We assigned penetrance as Pr[affected|genotype] =

1/[1 + exp(−β0 −
∑D

i=1 βigi)], where gi ∈ {0, 1, 2} is the number of risk alleles at disease locus i

and D ∈ {1, . . . , 10} is the number of disease loci. This is equivalent to assuming multiplicative

effects across disease loci on the odds scale. The parameters βi were chosen so that the locus-

specific sibling recurrence risk ratio λs = 1.02, corresponding to genotype relative risks of 1.34

and 1.79 for having one and two copies of the risk alleles, respectively. The intercept β0 was

chosen so that the population disease prevalence was 5%. The second panel of Figure 1 shows

the power of the three different tests for three different α-levels and a different number of disease

9
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genes ranging from 1 to 10. Similar patterns were observed as in previous simulations.

For the last set of simulations, we considered the model where the minor alleles correspond

to both disease-predisposing and protective loci among the SNPs considered. The simulation

set-up was the same as the second simulation study except that for markers 2, 4, 6, 8 and 10,

the corresponding βs were negative so that the minor alleles were protective. Similar patterns

were observed as in previous simulations for the proposed U-statistics-based tests. However, the

bottom panel of Figure 1 shows that Schaid’s test using a “linear-dosage” kernel can have very

low power under these conditions when there are both disease-predisposing and protective minor

alleles. This is expected, since in Schaid’s U-statitics, the scores derived from both disease-

predisposing and protective minor alleles can potentially cancel each other out and hence can

eliminate any potential signal for the association.

3.2 Simulation studies for quantitative traits

To evaluate the performance of the proposed U-statistics-based test for quantitative traits, we

simulated the trait values based on the following model,

Y =
10∑

k=1

βkXk + ε, (7)

where Xk = 0, 1, 2 for the three genotypes at the kth disease gene, and ε is error term following

N(0, 1). We considered the scenarios when there are 1-10 disease genes. For each disease gene,

we chose the minor allele frequency and the regression coefficient to explain 1% of the total trait

variance when considered individually. Specifically, for minor allele frequencies of 0.1, 0.3 and 0.5,

the corresponding βs are 0.24, 0.16 and 0.14, respectively. For each model, 500 individuals were

simulated for each replicate and a total of 500 replicates were performed. For each simulation,

50,000 permutations were used to estimate the p-values.

Figure 2 shows the power of the three different tests for α-levels of 0.05, 0.01 and 0.005. The

U-statistics of the top three panels were derived by assuming a dominant model for each of the
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markers. Clearly, we observed substantial increases in power comparing the single marker tests

with Bonferroni corrections, especially when the number of disease markers was large.

In addition, we observed a very small loss of power when there were only one or two disease

markers. We also observed that when the minor allele frequency is 0.1, the number of individuals

in the 11 genotype group is small and the resulting U-statistic test based on three genotype groups

is not as powerful as the test based on two genotype groups by assuming dominant models (results

not shown). However, when the minor allele frequency is not too small, the U-statistics tests

using three genotype groups can lead to a gain in power (see the fourth row of Figure 2).

3.3 Simulation based on LD

We also evaluated whether the proposed tests can gain power in the analysis of SNP data that are

in LD with the disease variants. To simulate such data, we used the algorithm of Durrant et al.

(2004). We downloaded the phased genotype data for 60 CEU (CEPH samples with ancestry from

northern and western Europe) founder subjects from HapMap release #21 (www.hapmap.org).

As the reference data, we picked the haplotypes of 11 SNPs on chromosome 6, SNP 6 (MAF =

0.25) was assigned as the disease locus, and the minor allele was designated as the risk allele

with locus-specific sibling recurrence risk ratio λs = 1.02 and 1.05. The disease locus displayed

moderate to strong LD with the other SNPs in the CEU samples, with r2 values ranging from

0.47 to 0.83. We simulated m cases and m controls (m = 500, 1000). For each individual, we

first generated genotypes at the pre-determined disease locus and assigned one allele to each of

the two haplotypes carried by that individual. The remaining genotypes of each haplotype were

generated as followings: let d denote the disease locus. For each haplotype, given the allele at d,

the algorithm starts by picking, at random, a five-SNP haplotype from the 120 CEU haplotypes

at markers [d− 2, d + 2] that has the same allele at d. The algorithm then gradually grows the

haplotype as follows: for markers on the right side of the disease locus, it generates an allele at

locus d+i given the haplotype at [d+i−4, d+i−1] for i ≥ 3; the conditional probabilities for the

11
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alleles at locus d+ i given the haplotype at [d+ i−4, d+ i−1] are determined based on the CEU

phased data. Similarly, for markers on the left side of the disease locus, the algorithm generates

an allele at locus d−i given the haplotype at [d−i+1, d−i+4] for i ≥ 3. By generating haplotypes

this way, the simulated haplotypes are not exact copies of those in the original HapMap samples.

Instead, the 120 CEU founder haplotypes are used to generate plausible haplotypes that may be

representative of a wider population. The disease locus genotypes were removed prior to data

analysis. For each simulation, 50,000 permutations were used to estimate the p-values.

Figure 3 shows the power of the three tests for various α-levels (x-axis). Again showing that

both weighted and unweighted U-statistics-based tests resulted in better power in detecting the

associations between the SNP markers of the diseases than a single SNP test with Bonferroni

corrections, although the increase is not substantial. However, it is important to note that the

Schaid’s test using a linear kernel gives very low power when directions of the LDs between the

SNPs and the true disease variant are different. This agrees with our previous simulations when

there are both predisposing and protective minor alleles.

4 Application to Real Data Sets

In this section, we present applications of the proposed methods for analysis of an association

between the genes in the hormone metabolism pathway and the risk of breast cancer and breast

cancer age of diagnosis.

4.1 Application to breast cancer case-control data set

It has long been recognized that female hormones, whether endogenous or exogenous, can be risk

factors for female cancers (Davis and Sieber, 1997). In order to explore the cause of susceptibil-

ity to these hormone-associated cancers, we undertook a population-based association study of

genetic variants in candidate steroid hormone metabolism genes and cancer risk. The Women’s
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Hosted by The Berkeley Electronic Press



Insights and Shared Experiences (WISE) study used incident breast cancer cases and frequency-

matched controls selected from the community using random digit dialing (RDD). Additional

details of our study design can be found in Strom et al. (2006), Rebbeck et al. (2006) and Bunin

et al. (2006). Genomic DNA was obtained from each participant. Eleven variants in nine genes

were selected for study based on their role in the downstream metabolism of steroid hormones

(Table 1 and Figure 4), where the binary codings of the SNP genotypes were determined by

the functionality of the SNPs. For genes PGR, SULT1A1 and SULT1E1, two different codings

(dominant on A allele and dominant on G allele) are considered. For gene UGT1A1, alleles *1

or *33 are low-risk alleles and allele *24 or *34 are high-risk alleles. Details of the genotype

analyses can be found in Rebbeck et al. (2006). Table 1 presents the p-value for each SNP

based on the univariate logistic regression, indicating that the two polymorphisms in CYP1B1,

the SNP in CYP3A4 and one polymorphism in SULT1A1 are associated with the risk of breast

cancer. After Bonferroni correction for multiple testing, CYP3A4 A729G and SULT1A1 A667G

remain significant at the 0.01 level. Both of these associations are biologically plausible: these

genotypes are associated with altered estrogen and catecholestrogen metabolism, and would be

predicted to alter breast cancer risk (Raftogianis et al., 1999; Amirimani et al., 2003).

In order to demonstrate our proposed tests, we applied various statistical methods for testing

the overall association between the 11 variants in the metabolism pathway and breast cancer

risk. Table 2 shows the p-values based on various procedures. The maximum χ2 analysis with

permutations or the minimum p-value with Bonferroni correlations for multiple testing all indi-

cate that there are SNPs in the metabolism pathway that are significantly associated with the

risk of developing breast cancer. The proposed U-statistics tests with and without weighting

based on 100,000 permutations also indicate that overall the genes in the hormone metabolism

pathway are significantly associated with breast cancer risk. Compared to single-marker analysis

with Bonferroni corrections for multiple testing, our proposed tests provide a more significant

assessment for such an association, as reflected by smaller overall p-values.
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4.2 Application to breast cancer age of diagnosis data set

We next examined whether the genetic variants in hormone metabolism pathway are associated

with age of breast cancer diagnosis among the cases in the WISE data set. The last column of

Table 1 shows the p-value from simple linear regression analysis for each SNP, indicating that

CYP1A2 is associated with early onset among the breast cancer patients (p=0.018). However,

the result is not statistically significant after the Bonferroni adjustment for multiple testing.

Table 2 presents the results based on the proposed U-statistics. The overall p-value is 0.016

using the unweighted test and 0.022 using the weighted test when the A-dominant codings are

used for SNPs in PGR, SULT1A1 and SULT1E1. This indicates that the hormone metabolism

pathway is related to age of breast cancer diagnosis, further demonstrating the benefit of the

proposed global test for association. Finally, if A-dominant codings are used for the four poly-

morphisms, the results are not significant.

5 Discussion

Since many complex phenotypes are expected to be controlled by many genes each with small

effects, single-marker tests of association can suffer a great loss of power due to genetic hetero-

geneity and multiple testing. A large body of biological knowledge suggests that genes often

work as networks of pathways instead of acting alone to affect phenotype and disease risk. Since

these pathways often have complex interactions and feedback loops, it would not be surpris-

ing to find that multiple genes within a biological pathway are associated with these complex

phenotypes. This makes pathway-based genetic association analysis an attractive approach for

identifying genes related to complex phenotypes. In this paper, we have proposed data-adaptive

U-statistics-based tests for testing the association between multiple markers in a pathway and

a phenotype. Our approach is quite general and does not require any parametric assumptions

on the trait values or genetic models. This approach is particularly useful for pathway-based
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candidate gene association studies, where SNPs in a candidate gene can be tested simultaneously

for association with the phenotype using knowledge of biological functions. Our simulation re-

sults demonstrate that our approach performs similarly to the U-statistic test defined by Schaid

et al., (2005) and can be more powerful than standard single- marker-based methods under

some conditions. However, our test statistic has better power than Schaid’s test when there are

both high-risk and protective minor alleles of the SNPs among the SNP set. Application to the

WISE breast cancer data sets illustrates the potential merits of our statistics over the standard

single-SNP analysis.

In this paper, we studied only the kernel function φ(., .) defined using the Hamming distance

(see equation (1)) for the qualitative phenotype, and the kernel defined by trait value difference

for the quantitative phenotype. These kernels are chosen without making strong assumptions

on genetic models and trait distribution and tend to be more robust in power as compared to

for example the linear kernel used by Schaid et al. (2005). However, other kernel functions can

be considered in the definition of the U-statistics. For example, for the quantitative phenotype,

rank-based kernel defined by φ(x, y) = 1 if y > x and 0 otherwise, can be used. For the

qualitative phenotype, Schaid et al. (2005) presented several interesting kernels that can be

applied in combination with our definitions of the U-statistics. However, some of these kernels

are sensitive to model assumption, which can lead to lower power if the assumption is not met.

The proposed methods also have potential applications in genome-wide association studies

(GWAS). GWAS often involve genotyping of hundreds of thousands of SNPs. For example, the

Illumina 550K array can be used to type approximately 550,000 SNP markers on each individual.

To account for allelic heterogeneity, one may want to perform joint tests of all the SNPs in both

intragenic and regulatory regions of a given gene using the proposed test statistics. This gene-

based association analysis makes more biological sense since genes, not the SNPs, are the true

functional unit of biology (Neale and Sham, 2003). Additionally, one can also consider using

pathway databases to perform pathway-based analysis for GWAS. An interesting direction for
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future research is to develop methods for analysis of data from GWAS, where the SNP data have

natural hierarchical structures, i.e., genes belong to pathways, and SNPs belong to genes. When

there are many pathways under consideration, our proposed tests can be applied to each of the

pathways and the false discovery rate (Benjamini and Hochberg, 1995; Efron, 2004) procedure can

be used for correcting for multiple pathways. Alternatively, a recently developed non-parametric

pathway-based regression (Wei and Li, 2006) can be used for selecting the relevant pathways.

Detailed comparisons of these different approaches deserve further investigation.

In summary, we have proposed two U-statistics-based tests that provide a simultaneous test

of association of multiple genetic markers with complex phenotypes. The tests can be applied

to pathway-based association analysis and have potential applications in gene-based genetic

association analysis in genome-wide genetic association studies.
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Appendix

We provide some details on estimating the covariance matrix under the null hypothesis that

the markers are not associated with the phenotype for the proposed test statistic Tc defined in

equation (6). For SNP k and l, we have

Cov(Uk, Ul) = E((Uk0 + Uk1 + Uk2)(Ul0 + Ul1 + Ul2)) =
∑

p=0,1,2;q=0,1,2

E(UkpUlq).

We provide some details on estimating E(Uk1Ul1). Other terms can be estimated similarly. When

p = 1, q = 1, we have

E(UkpUlq) = E(Uk1Ul1)

=

√
m10k +m11k

√
m10l +m11l

m10km11km10lm11l

E{(
∑
i,j

φ(Yi, Yj)− θk)(
∑
i′,j′

φ(Yi′ , Yj′)− θl)}

= mE{
∑
i,j

∑
i′,j′

(φ(Yi, Yj)− θk)(φ(Yi′ , Yj′)− θl)}

where i ∈ S10k, j ∈ S11k, i
′ ∈ S10l, j

′ ∈ S11l and

m =

√
m10k +m11k

√
m10l +m11l

m10km11km10lm11l

.

For the quadruplet (i, j, i′, j′), we have

ME{
∑
i,j

∑
i′,j′

(φ(Yi, Yj)− θk)(φ(Yi′ , Yj′)− θl)} = 0 if |{i, j} ∩ {i′, j′}| = 0

mE{
∑
i,j

∑
i′,j′

(φ(Yi, Yj)− θk)(φ(Yi′ , Yj′)− θl)} → 0 if |{i, j} ∩ {i′, j′}| = 2, N →∞,
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where N is the total sample size. Therefore,

E(Uk1Ul1) = E{
∑

i

∑
j,j′∈E1

(φ(Yi, Yj)− θk)(φ(Yi, Yj′)− θl)},

+ E{
∑

i

∑
j,j′∈E2

(φ(Yi, Yj)− θk)(φ(Yj′ , Yi)− θl)},

+ E{
∑

i

∑
j,j′∈E3

(φ(Yj, Yi)− θk)(φ(Yi, Yj′)− θl)},

+ E{
∑

i

∑
j,j′∈E4

(φ(Yj, Yi)− θk)(φ(Yj′ , Yi)− θl)},

where

E1 = {(i, j, j′) : i ∈ S10k ∩ S10l, j ∈ S11k, j
′ ∈ S11l, j 6= j′},

E2 = {(i, j, j′) : i ∈ S10k ∩ S11l, j ∈ S11k, j
′ ∈ S10l, j 6= j′},

E3 = {(i, j, j′) : i ∈ S11k ∩ S10l, j ∈ S10k, j
′ ∈ S11l, j 6= j′},

E4 = {(i, j, j′) : i ∈ S11k ∩ S11l, j ∈ S10k, j
′ ∈ S10l, j 6= j′}.

These expectations can be estimated by their empirical means to obtain the estimate of the

covariance matrix Σ̂, which is used in our definition of the test statistic Tc defined in equation

(6).
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Table 1: Steroid hormone metabolism pathways with 11 candidate genes for breast cancer in

WISE study. Genetic variants studied at these 11 genes are shown in the second column, where

the binary codings of the SNP genotypes were determined by the functionality of the SNPs. The

numbers are the p-values based on the univariate logistic regression for case-control data (column

BCA) and linear regression analysis for age of diagnosis data for each variant. For genes PGR,

SULT1A1 and SULT1E1, two different codings (A-dominant: dominant on A allele, G-dominant:

dominant on G allele) are considered. For gene UGT1A1, allele *1 or *33 is a low-risk allele and

allele *24 or *34 is a high-risk allele, and the number of high-risk alleles is used in the regression

analysis.

Gene Polymorphsm Genotype Coding BCA Age of diagnosis

COMT G1947A 1=T/T 0=C/T 0=C/C 0.27 0.15

CYP1A1 A6750G 0=A/A 1=A/G 1=G/G 0.20 0.65

CYP1A2 C734A 0=C/C 1=C/A 1=A/A 0.62 0.018

CYP1B1 G1294C (C4326G) 0=G/G 1=G/C 1=C/C 0.013 0.73

CYP1B1 A1358G (A3290G) 0=A/A 1=A/G 1=G/G 0.0040 0.12

CYP3A4 A729G 0=A/A 1=A/G 1=G/G 4.90× 10−4 0.086

PGR G331A 0=GG 1=AG 1=AA 0.59 0.17

1=GG 1=AG 0=AA 0.19 0.50

SULT1A1 G638A 1=AA 1=AG 0=GG 0.12 0.60

0=AA 1=AG 1=GG 0.28 0.51

SULT1A1 A667G 0=AA 1=AG 1=GG 8.34×10−6 0.041

1=AA 1=AG 0=GG 0.0072 0.33

SULT1E1 G-64A 0=G/G 1=A/A 1=A/G 0.71 0.51

UGT1A1 TAn *1 or *33 (low) 0.71 0.088

*24 or *34 (high)
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Table 2: p-values from three different procedures for testing the association between the 11

SNPs on the hormone metabolism pathway and breast cancer risk or age of onset of breast

cancer for the WISE data set. For genes PGR, SULT1A1 and SULT1E1, two different codings

(A-dominant: dominant on A allele, G-dominant: dominant on G allele) are considered. U-stat:

proposed U-statistics test with wk = 1; weighted U-stat: proposed U-statistics-based test with

wk = − log(Pk) where Pk is the p-value from single-marker test for the kth marker; min P -value:

minimum p-value over all 11 single-marker p-values with Bonferonni adjustment for multiple

comparisons.

breast cancer risk age of onset

Test A-dominant G-dominant A-dominant G-dominant

U-stat 0.00016 0.00 0.016 0.66

weighted U-stat 0.00063 0.00001 0.022 0.44

min P -value∗ 0.0054 0.000091 0.20 0.20

∗: with Bonferonni adjusment.
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Figure 1: Comparison of power for different alpha-levels (0.05, 0.01, and 0.005) when the 250

case-control pairs were simulated to have a marginal risk ratio of 1.5 (top panel), to have a fixed

disease prevalence of 5% (middle panel) or to have both high-risk and protective markers (bottom

panel).
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Figure 2: Comparison of power for different alpha-levels (0.05, 0.01, and 0.005) and for a minor

allele frequency of 0.1, 0.3 and 0.5 (top, middle and bottom two panels) when each disease gene

can marginally explain 1% of the trait variance. AF: allele frequency.
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Figure 3: Comparison of power for different α-levels (x-axis) and sample size of 500 and 1000

when only one disease gene is simulated. The tests are based on the 10 SNP markers that are in

LD with the disease variant, which is removed from the analysis.
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Steroid Hormone Metabolism Pathways with Candidate Genes  
Genetic Variants Studied at these Genes are Shown in Parentheses.  E1=Estrone, E2=Estradiol 

 
 
 
  Progesterone 16α-, 2β-, 6β-Hydroxyprogesterone 

CYP3A4 
(*1B)

Binding to 
Progesterone Receptor  

(PGR; 331G>A)  
 
  17-OH-Progesterone    E1/E2 Sulfate 
    E1/E2 Glucuronate 
 
  Androstenedione 
 
 
  Testosterone  
 
 Estriol   
    
 
                            4-OH E1/E2 Sulfate 
                                                                                                       
 16α-OH E1/E2                                                                 E1/E2                                         4-OH- E1/E2 

CYP1A1 (*2C) 
CYP1A2 (*1F) 
CYP1B1 (*3, *4) 
CYP3A4 (*1B) 

    SULT1E1 (-64G>A) 
  SULT1A1 (*2, *3) 
UGT1A1 (TAn) 

                                                                                               
 
              4-OH E1/E2 Glucuronate 
                   
 2-OH E1/E2 Sulfate             
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Figure 4: Steroid hormone metabolism pathways with candidate genes for breast cancer in the

WISE study. Genetic variants studied at these genes are shown in parentheses.
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