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A Network-constrained Empirical Bayes
Method for Analysis of Genomic Data

Caiyan Li, Zhi Wei, and Hongzhe Li

Abstract

Empirical Bayes methods are widely used in the analysis of microarray gene
expression data in order to identify the differentially expressed genes or genes
that are associated with other general phenotypes. Available methods often as-
sume that genes are independent. However, genes are expected to function in-
teractively and to form molecular modules to affect the phenotypes. In order
to account for regulatory dependency among genes, we propose in this paper a
network-constrained empirical Bayes method for analyzing genomic data in the
framework of general linear models, where the dependency of genes is modeled
by a discrete Markov random field model defined on a pre-defined biological net-
work. This method provides a statistical framework for integrating the known
biological network information into the analysis of genomic data. We present an
iterated conditional mode algorithm for parameter estimation and for estimating
the posterior probabilities using Gibbs sampling. We demonstrate the application
of the proposed methods using simulations and analysis of a human brain aging
microarray gene expression data set.
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ABSTRACT

Empirical Bayes methods are widely used in the analysis of microarray gene expression data

in order to identify the differentially expressed genes or genes that are associated with other

general phenotypes. Available methods often assume that genes are independent. However,

genes are expected to function interactively and to form molecular modules to affect the

phenotypes. In order to account for regulatory dependency among genes, we propose in

this paper a network-constrained empirical Bayes method for analyzing genomic data in

the framework of general linear models, where the dependency of genes is modeled by a

discrete Markov random field model defined on a pre-defined biological network. This method

provides a statistical framework for integrating the known biological network information

into the analysis of genomic data. We present an iterated conditional mode algorithm for

parameter estimation and for estimating the posterior probabilities using Gibbs sampling.

We demonstrate the application of the proposed methods using simulations and analysis of

a human brain aging microarray gene expression data set.

Key words: Markov random field, Gibbs sampling, molecular modules.

1 Introduction

Empirical Bayes-based methods are one of the most popular statistical approaches for analy-

sis of microarray gene expression data in order to account for the parallel nature of the infer-

ence in microarrays and to borrow information from the ensemble of genes that can enhance

the inference about each gene individually. Efron et al. [1] used a non-parametric empirical

Bayes approach for analyzing the factorial microarray gene expression data. Lonnstedt and

Speed [2] took a parametric empirical Bayes approach using a simple mixture of normal

models and a conjugate prior and derived the closed-formed posterior odds of differential

expression for each gene. Smyth [3] developed the hierarchical model of Lonnstedt and

Speed [2] into a practical approach for general microarray experiments in the framework of

general linear models with arbitrary coefficients and contrasts of interests. Smyth [3] also

derived the posterior odds statistic in terms of a moderated t-statistic in which posterior
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residual standard deviations are used in place of ordinary standard deviations. While these

empirical Bayes methods have proved to be very useful for identifying the differentially ex-

pressed genes or genes that are related to certain covariates, they make a key assumption

that genes are independent. However, since many biological processes are involved in acti-

vation of multiple pathways of correlated genes, the genes with regulatory relationships are

expected to be dependent. These dependent genes often interact with each other to form

molecular modules that affect the cellular and clinical phenotypes [4].

The goal of this paper is to develop a network-constrained empirical Bayes linear model

for the analysis of genomic data where we utilize the prior genetic regulatory network infor-

mation to model the regulatory dependency among genes. Information about gene regulatory

dependence has been accumulated from many years of biomedical experiments and is sum-

marized in the form of pathways and networks and assembled into pathway databases. Some

well-known pathway databases include KEGG, BioCarta (www.biocarta.com) and BioCyc

(www.biocyc.org). As an exmaple, Figure 1 shows the KEGG human regulatory network [5],

consisting of 33 interconnected regulatory pathways. There has been great interest in devel-

oping statistical and computational methods that can integrate the prior biological network

information into the analysis of genomic data, especially into the analysis of microarray gene

expression data (see Ideker and Sharan [4] for a review). Representing the known genetic

regulatory network as an undirected graph, Wei and Li [6, 7] and Wei and Pan [8] have

recently developed hidden Markov random field (HMRF)-based models for identifying the

subnetworks that show differential expression patterns between two conditions, and have

demonstrated using both simulations and applications to real data sets that the procedure

is more sensitive in identifying the differentially expressed genes than those procedures that

do not utilize pathway structure information. While the methods of Wei and Li [6, 7] mainly

focus on identifying differentially expressed genes between two conditions, in this paper, we

develop a network-constrained empirical Bayes method for general linear models, which can

handle more general covariates for the analysis of microarray gene expression data.

As a motivating example of our proposed methods, we consider the problem of identifying

age-dependent molecular modules or subnetworks in human brains using the microarray gene

expression data of Lu et al. [9], where they conducted a microarray gene expression study of

2

Hosted by The Berkeley Electronic Press



Figure 1: Undirected graph of the KEGG regulatory network, consisting of 33 interconnected

regulatory pathways. There are a total of 1663 genes (nodes) and 8011 regulatory relation-

ships (edges).

the postmortem human frontal cortex from 30 individuals ranging from 26 to 106 years of

age. To identity the aging-regulated genes, they performed simple linear regression analysis

for each gene with age as a covariate. In our approach, we re-analyze this data set by

combining the KEGG regulatory network information [5] with the gene expression data in

order to identify the molecular modules that are aging-regulated. Here we can treat age as

a continuous covariate for the analysis of gene expression levels.

The rest of the paper is organized as follows. We first present a network-constrained

empirical Bayes method for general linear models and present the iterative conditional mode

(ICM) algorithm [10] for parameter estimation. We then present results from simulation

studies and analysis of the human brain aging gene expression data to evaluate the proposed

method. Finally, we give a brief discussion of the methods and results.

3
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2 Network-constrained Empirical Bayes Methods for

General Linear Models

2.1 Data, graphs and models

Given the phenotype (e.g., age) of n samples, we want to determine how the phenotype

affects the expression levels of genes and which genes or subnetworks of genes are affected.

Let Y = (Y1, ..., Yi, ..., Yp) denote the microarray gene expression profiling data matrix (n×p)

of p genes over n samples, where Yi is the mRNA expression level of gene i for the n samples.

Let X = (x1, ..., xn)T be the phenotype vector of the n samples. We assume the following

simple linear model for gene expression level for the ith gene:

Yi = αi + βiX + ǫi,

var(ǫi) = σ2

i I, i = 1, ..., p, (1)

where βi measures the effect of the covariate on the expression of gene i and ǫi is the

vector of random errors. To further specify our model, we introduce a random vector z =

(z1, ..., zi, ..., zp)
T , representing the gene states, where

zi =







1 if βi 6= 0

0 if βi = 0.

Besides the gene expression data, suppose that we have a network of known pathways

that can be represented as an undirected graph G = (V, E), where V is the set of nodes that

represent genes or proteins coded by genes and E is the set of edges linking two genes with

a regulatory relationship. Let p = |V | be the number of genes that this network contains.

Note the gene set V is often a subset of all the genes that are probed on the gene expression

arrays. If we want to include all the genes that are probed on the expression arrays, we

can expand the network graph G to include isolated nodes, which are those genes that are

probed on the arrays but are not part of the known biological network. For two genes g

and g′, if there is a known regulatory relationship, we write g ∼ g′. For a given gene g, let

Ng = {g′ : g ∼ g′ ∈ E} be the set of genes that have a regulatory relationship with gene g

and dg = |Ng| be the degree for gene g.

4
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The key to our approach is that instead of assuming that z1, · · · , zp are independently,

identically distributed Bernoulli random variables, we assume that they are dependent on

the network, whose dependency can be modeled as a simple discrete Markov random field.

Specifically, following Wei and Li [6], we model the dependency of z = (z1, ..., zi, ..., zp)
T

using a discrete Markov random field model with the following distribution:

p(z; Φ) ∝ exp(γn1 − ηn01), (2)

where Φ = (γ, η), n1 =
∑p

i=1
zi is the number of genes at state 1 and n01 =

∑

i∼j I{zi = zj} is

the number of neighboring genes with different states. The parameters γ and η are arbitrary

and we require η to be non-negative to discourage neighboring genes with different states.

Given the states of all other genes, the conditional probability of gene i with state zi is

pi(zi|z∂i
; Φ) ∝ exp(γzi − ηµi(1 − zi)), (3)

where z∂i
represents the neighbors of gene i and ui(1− zi) denotes the number of neighbors

of gene i having state (1 − zi) [10, 11]. In order to account for different degrees of the

nodes (i.e., different numbers of neighboring genes on the network), we propose to modify

the conditional probability (3) as

pi(zi|z∂i
; Φ) ∝ exp(γzi − ηµi(1 − zi)/di),

where di is the number of neighbors of the ith gene.

We then make the following modeling assumptions:

Assumption 1. Given any particular realization z = (z1, ..., zi, ..., zp)
T , the random vari-

ables Y = (Y1, ..., Yi, ..., Yp) are conditionally independent, i.e., the distribution of random

variable Yi only depends on zi. The conditional density of the observed gene expression Y ,

given z, is simply,

l(Y |z) =

p
∏

i=1

f(Yi|zi),

where f(Yi|zi) will be specified later (see equation 4).

Assumption 2. The true state z∗ is a realization of a discrete MRF with a specified

distribution p(z) defined by equation (2).
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Assumption 3. The distributional assumptions about the data in this paper are given by:

β̂i|βi, σ
2

i ∼ N(βi, viσ
2

i );

σ̂i
2|σ2

i ∼ σ2
i

p − 2
χ2

p−2,

where β̂i, viσ̂i
2 and vi are least-square estimators of βi and its variance based on the linear

models (1).

2.2 Empirical Bayesian model for linear models

Given the large number of gene-wise linear model fits from the same genotype, an empirical

Bayesian approach is commonly used to take advantage of the parallel structure. In this

section, we first briefly review the hierarchical model introduced by Smyth [3] and present

the key probability distributions that are used in the ICM algorithm. Smyth [3] introduced

an inverse-gamma prior distribution to describe the variation of σ2
i across genes with hyper-

parameters s2
0 and d0:

1

σ2
i

∼ 1

d0s2
0

χ2

d0
.

Prior information on the non-zero coefficient βi is assumed equivalent to a prior observation

equal to zero with unscaled variances v0, i.e.,

βi|σ2

i , zi = 1 ∼ N(0, v0σ
2

i ).

Under the above prior information, the posterior mean of σ2
i can be written as

σ̃2

i = E(σ2

i |σ̂2

i ) =
d0s

2
0 + diσ̂

2
i

d0 + di
.

Smyth [3] further defined a moderated t-statistic based on the posterior mean of the variance

estimation by

t̃i =
β̂i

σ̃i
√

vi
.

Smyth [3] showed that the moderated t-statistic and residual sample variance are inde-

pendent, with the following distributions:

σ̂2

i ∼ s2

0Fdi,d0
;

6
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t̃i|zi = 0 ∼ td0+di
;

t̃i|zi = 1 ∼ (1 + v0/vi)
1/2td0+di

,

where F (.) and t(.) are the central F and t distributions.

Based on Assumption 1, we can write the conditional density of the observed gene ex-

pression Y using the sufficient statistics t̃i and σ̂2
i as

l(Y |z; Θ) = Πp
i=1f(Yi|zi; Θ) ∝ Πp

i=1f(σ̂2

i ; Θ)f(t̃i|zi; Θ), (4)

where Θ = (d0, s
2
0, v0) and σ̂2

i is the sample estimate of the residual variance based on the

linear model (1).

2.3 ICM algorithm and Gibbs sampling for parameter estimation

While inferring the true gene state z∗ for all p genes, we carry out the parameter estimation

simultaneously. We propose the following algorithm based on the ICM algorithm by Be-

sag [10] to estimate the parameter Θ in the hierarchical model for the linear regression and

the parameter Φ in the network-constrained empirical Bayes models. The following iterative

steps are involved in the algorithm:

(1). Get the estimation d̂0 and ŝ2
0 of the hyperparameters d0 and s2

0 based on the methods

of Smyth [3].

(2). Obtain an initial estimate ẑ of the true states z∗ based on the moderated t-statistic

t̃.

(3). Estimate v0 by the value v̂0, which maximizes the likelihood l(Y |ẑ; d̂0, ŝ
2
0, v̂0) (see

Equation 4).

(4). Estimate Φ by the value Φ̂, which maximizes the pseudolikelihood pl(ẑ; Φ) based

on the current states ẑ, where

pl(z; Φ) =

p
∑

i=1

pi(zi|z∂i
; Φ)

=

p
∑

i=1

exp(γzi − ηµi(1 − zi))

exp(γ − ηµi(0)) + exp(−ηµi(1))
.
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(5). Carry out a single cycle of ICM based on the current ẑ, Θ̂, and Φ̂ to obtain a new

ẑ. Specifically, for i = 1, ..., p, update zi, which maximizes

P (zi|Y, ẑS/i) ∝ f(t̃i|ẑi; Θ̂)pi(zi|ẑ∂i; Φ̂),

subject to zi = 1 or zi = 0.

(6). Go to step (3) for a fixed number of cycles or until approximate convergence of

all the parameters. In particular, we stop the iterations when the maximum of the relative

changes of the parameter estimates is smaller than a small value ǫ.

(7). Carry out a Gibbs sampling procedure for the gene states z∗ to obtain posterior

probabilities of qi = Pr(zi = 1|Y ; Θ̂, Φ̂), i = 1, ..., p based on the final parameter estimates

of Θ̂ and Φ̂ from step (6).

The resulting posterior probabilities are then used to determine which genes are affected

by the phenotype and those relevant genes can be mapped back to the network to identify

the subnetworks. In addition, we can estimate the false discovery rate (FDR) based on these

posterior probabilities [12].

3 Simulation Studies

To demonstrate the performance of our proposed procedure, we conducted simulation stud-

ies and simulated data based on two real regulatory networks: the KEGG human regulatory

network (see Figure 1) and the yeast transcription network used in Milo et al. [13]. For the

KEGG network, we first obtained the network of 33 human regulatory pathways from the

KEGG database (December 2006 version) and excluded those non-gene-gene interactions,

e.g., compound-gene relations, compound-compound relations. The resulting data are rep-

resented as an undirected graph where each node is a gene and an edge is drawn to connect

two nodes if there is a regulatory relation between them. The KEGG network is represented

as an undirected graph with 1668 nodes and 8011 edges (see Figure 1). The yeast regulatory

network is also represented as an undirected graph with 688 genes and 1079 edges. Note that

the yeast regulatory network is expected to be more reliable than the KEGG network [4].

8
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To simulate the vector of gene states z, we first chose K pathways among the 33 regulatory

pathways and initialized those genes in the K pathways to be relevant genes with zg = 1 and

the rest of the genes to be irrelevant, which gave us the initial z0. Then starting with z0, we

performed sampling five times based on the discrete MRF model (3) with γ = 0, η = 2. In this

simulation study, we chose K = 5, 9 and 17 to obtain different percentages (11.5%,18.9% and

48.7%, respectively) of relevant genes. For a given vector of gene states z, we then simulated

those non-zero coefficients β in the linear models based on the following hierarchical model,

βi|σ2

i , zi = 1 ∼ N(0, v0σ
2

i ),

where σ2
i follows an inverse Gamma distribution:

1

σ2
i

∼ 1

d0s2
0

χ2

d0
.

The tuning parameters were set as d0/(d0 + di) = 0.5 and s0 = 8, v0 = 2, similar to those

used by Smyth [3]. Finally, for a sample size of 10, the gene expression level Y was simulated

from the following linear model,

Yi = Xβi + ǫi,

where X = (4.0, 4.2, 4.5, 4.8, 5.2, 5.3, 5.6, 6.1, 6.6, 7.0)T is fixed and the error terms for the 10

independent samples were simulated from N(0, σ2
i ), where σ2

i s range from 27.87 to 194.20

with a mean of 69.24 (sd=20.33). A similar simulation procedure was used to simulate

data on the yeast regulatory network. We chose K = 2, 4 and 14 transcriptional modules

as initially relevant and iterated to get about 7.88%,11.5% and 47.3% of relevant genes,

respectively.

Simulations were repeated 50 times to assess the sensitivity, specificity and the false

discovery rates (FDRs) of our proposed network-constrained empirical Bayes procedure

(NetEB). We compared our proposed procedure with the results from the ordinary t−statistics,

which does not consider any prior information and the moderated t−statistics, which bor-

rows information across genes based on the empirical Bayesian modeling [3]. Table 1 shows

the simulation results, where the sensitivity is the average over 50 replications of the per-

centage of correctly identified relevant genes; specificity is calculated as the average of the

fraction of irrelevant genes correctly identified; and the FDR is the average of the ratio of the
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Table 1: Comparison of performance for our proposed network-constrained empirical Bayes

method (NetEB), the ordinary t-statistics(tTest) and the empirical Bayes method of Smyth

using the moderated t-statistics (EB). The results are based on the 50 simulations and the

numbers in parentheses are the standard errors based on 50 simulations.

Yeast network KEGG network

Method 7.88% 11.5% 47.3% 11.5% 18.9% 48.7%

Sensitivity

NetEB .417(.056) .468(.041) .583(.018) .420(.033) .500(.021) .719(.024)

EB .376(.051) .408(.037) .569(.014) .408(.020) .470(.014)) .506(.007)

tTest .334(.060) .355(.041) .470(.011) .298(.019) .345(.014)) .393(.007)

Specificity

NetEB 1.000(.0007) .997(.0020) .978(.004) .996(.0007) .993(.0007) .976(.004)

EB .998(.00002) .998(.00002) .980(.003) .997(.00002) .994(.0005) .986(.001)

tTest .998(.00002) .998(.00002) .984(.002) .998(.00001) .996(.0002) .989(.001)

FDR

NetEB .008(.019) .040(.028) .040(.007) .064(.005) .060(.005) .034(.005)

EB .050(.009) .032(.005) .037(.007) .060(.004) .050(.006) .029(.003)

tTest .056(.013) .036(.006) .037(.006) .050(.004) .052(.004) .029(.003)
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number of false discoveries to the number of genes identified as relevant. For the ordinary

t−statistics and moderated t−statistics, we chose the cut-off p-values so that these two pro-

cedures have similar FDRs as our proposed procedure. At the same or similar false discovery

rates, we observed an increase in sensitivity of our proposed network-constrained empirical

Bayes model and that the specificities are in general comparable for the three procedures,

and in some scenarios the gain in sensitivities can be substantial. In addition, both empirical

Bayes methods resulted in much higher sensitivities than the simple t-tests based on linear

regression analysis.

4 Application to Microarray Gene Expression Study

of Human Aging Brain

To demonstrate the proposed methods, we consider the problem of identifying age-dependent

molecular modules based on the gene expression data measured in human brains of individu-

als of different ages published in Lu et al. [9]. In this study, the gene expression levels in the

postmortem human frontal cortex were measured using the Affymetrix arrays for 30 individ-

uals ranging from 26 to 106 years of age. The R RMA procedure [14] was used to normalize

the gene expression data. To identity the aging-regulated genes, Lu et al. [9] performed

simple linear regression analysis for each gene with age as a covariate. We analyzed this

data set by combining the KEGG regulatory network information with the gene expression

data. In particular, we limited our analysis to the genes that can be mapped to the KEGG

regulatory work and focused on the problem of identifying the subnetworks of the KEGG

regulatory network that are perturbed during the human aging process. The final KEGG

network includes 1305 genes.

Using our proposed network-constrained empirical Bayes method, we estimated γ̂ =

−2.15 and η̂ = 0.35 in the Markov random field model, with a positive estimate of the

dependency parameter η indicating some regulatory dependency of the genes on the KEGG

network. In order to get some idea about the variance of η̂, we took 100 bootstrap samples of

the original data set and obtained 100 estimates of η. Among these 100 bootstrap samples,
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the ICM algorithm did not converge in one bootstrap sample. Among the other 99 bootstrap

samples, 28 resulted in an estimate of η being 0, indicating no neighboring dependency. The

mean (sd) of the 71 non-zero estimates of η is 1.73 (1.89). These results indicate that the

regulatory dependency of genes that are related to aging is real, although it is not too strong.

After the convergence of the ICM algorithm, we ran Gibbs sampling 20,000 times to

estimate the posterior probabilities of genes on the KEGG network being associated with

aging. We identified 61, 46 and 31 genes related to aging using cutoff values of 0.80, 0.90

and 0.95 of the posterior probability, with estimated false discovery rates of 0.063, 0.033

and 0.016, respectively. Using a cutoff of 0.80 of the posterior probability, 39 of the 61

genes identified are connected on the KEGG network with a total of 31 edges (see Figure

2 for these subnetworks). The posterior probabilities of these 39 genes and their respective

ranks among the 1305 genes are presented in Table 2. It is interesting to note that fibrob-

last growth factors (FGF1, FGF2, FGF12, FGF13) and their receptor (FGFR3) appeared

in several of these subnetworks. It has been demonstrated that fibroblast growth factors

are associated with many developmental processes including neural induction [15] and are

involved in multiple functions including cell proliferation, differentiation, survival and ag-

ing [16]. It is also interesting to observe that mitogen-activated protein kinase (MAPK)

(MAPK1 and MAPK9) and the specific MAPK kinase (MAP2K) also appeared in several

subnetworks. The MAPKs play important roles in induction of apoptosis. Other interesting

genes include RAS protein-specific guanine nucleotide-releasing factor 1 (RASGRF1), the

functionality of which is highly significant in various contexts of the central nervous sys-

tem. In the hippocampus, Rasgrf2 has been shown to interact with the NR2A subunits of

NMDARs, triggering Ras-ERK activation and induction of long-term potentiation, a form

of neuronal plasticity that contributes to memory storage in the brain [17]. Hayesmoore et

al. [18] observed an effect of age on expression of MAPT with a relative decrease in MAPT

expression with increased age. Finally, the insulin receptor gene (INSR) is also identified.

INSR binds insulin (INS) and regulates energy metabolism. Evidence from model organ-

isms, including results from fruit flies [19] and roundworms [20], relates INSR homologues

to aging, most likely as part of the GH1/IGF1 axis. These results indicate that our method

can indeed recover some biologically interesting molecular modules or KEGG subnetworks

12
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that are related to brain aging in human.

As a comparison, we also present in Table 2 the ordinary t-statistics and the moderated

t-statistics as in Limma and the ranks based on these two statistics for the same 39 genes in

Figure 2. While these rankings largely agree among these three statistics, some differences

are still observed. This is expected since our estimate of the dependency parameter η̂ = 0.39

is small.

Figure 2: Subnetworks identified by the proposed network-constrained empirical Bayes method

for the human brain aging gene expression data of Lu et al. (2004). These subnetworks

include 39 of the 61 aging-associated genes with posterior probability of greater than 0.80

estimated by the proposed method.

5 Conclusion and Discussion

With the increase in availability of human regulatory networks and protein interaction net-

works, the focus of bioinformatics research has shifted from understanding networks en-

coded by model species to understanding the pathways and networks underlying human

diseases [4]. In order to incorporate the prior biological network information into the anal-
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Table 2: Posterior probabilities based on the proposed method (Prob), moderated t-statistics
based on Limma (M-tTest), ordinary t-statistics (tTest) and ranks (out of 1503 genes) based
on these three statistics (Prob-R, M-tTest-R and tTest-R) for the 39 genes presented in
Figure 2.

GeneName Prob M-tTest tTest Prob-R M-tTest-R tTest-R
PAK1 1.00 -6.92 -6.65 1 1 1
FGF12 0.9999 -6.57 -6.32 2 2 4
PRKCB1 0.9998 -6.35 -6.37 3 4 3
GRIN2A 0.9997 -6.49 -6.29 4 3 5
PRKCZ 0.9995 -5.87 -5.84 5 6 7
ITPKA 0.999 -5.96 -5.70 6 5 8
RASGRF1 0.998 -5.58 -5.35 8 8 9
FGF13 0.998 -5.43 -5.18 9 10 12
CALM1 0.998 -5.54 -6.44 10 9 2
MAPT 0.996 -5.18 -5.05 11 12 14
CACNB2 0.995 -5.11 -5.31 14 14 11
GRIN2D 0.99 -4.87 -5.16 16 16 13
MAPK9 0.98 -4.66 -4.51 18 18 22
GNG12 0.98 4.63 4.48 19 19 24
FGF1 0.98 4.54 4.34 22 23 27
MAP2K1 0.97 -4.44 -4.49 25 25 23
CCK 0.97 -4.35 -4.38 26 26 26
HSPA8 0.96 -4.25 -4.22 27 29 31
CSF2 0.96 4.27 4.68 28 28 20
PRKCG 0.96 -4.28 -4.18 29 27 33
RND1 0.95 -4.20 -4.11 30 32 36
ITGB1 0.95 4.18 4.33 32 33 28
PPP2R1A 0.95 -4.14 -4.22 35 35 30
CCKBR 0.95 -4.13 -4.12 37 37 35
FGFR3 0.93 4.00 3.85 39 40 48
PLXNB1 0.92 3.97 3.89 41 44 46
CALM3 0.91 -3.95 -3.80 43 45 52
ITPKB 0.91 3.98 3.81 44 43 51
CAMK4 0.91 -3.80 -3.68 46 49 56
FGF2 0.90 3.90 3.88 47 46 47
MAPK1 0.88 -3.86 -3.71 49 48 55
PFN2 0.86 -3.75 -3.92 50 50 42
DUSP3 0.85 -3.70 -3.80 51 54 53
FRAP1 0.85 -3.74 -3.90 52 52 45
CAV1 0.84 3.68 3.62 54 55 58
INSR 0.83 3.71 3.82 55 53 50
ACTB 0.83 -3.66 -3.90 56 57 43
RYR1 0.82 3.66 3.53 57 56 63
IQGAP1 0.81 3.61 3.49 59 59 67

14

Hosted by The Berkeley Electronic Press



ysis of gene expression data related to human diseases, we have presented in this paper a

network-constrained empirical Bayes method for analysis of genomic data. Different from

the commonly used empirical Bayes methods for analysis of microarray gene expression data

that assume independence among the genes (e.g., Limma), our proposed method imposes

dependency among the latent indicator variables using a simple discrete Markov random

field model defined on a known regulatory network. We demonstrated the application of the

proposed methods in the analysis of human brain aging microarray gene expression data and

identified several aging related molecular modules, some with solid biological supports.

We analyzed the aging data set using the KEGG regulatory pathways. However, it should

be noted that the proposed methods can be applied to other relevant pathways such as human

protein-protein interaction networks [4]. Since our current knowledge of the genetic pathways

of humans is still very limited, our proposed method depends on the validity of the regulatory

networks used. One limitation of the proposed method is that the gene dependency provided

by these prior networks may not be reflected at the gene expression levels. If this is the case,

we should expect that the estimate of the dependency parameter η in the MRF model to

be small, then the network information will not contribute too much and the results should

be similar to the standard empirical Bayes analysis. It would be interesting to test the

ideas in this paper on other types of biological networks such as protein-protein interaction

networks. Finally, since most of the KEGG pathways are signaling pathways with a path

of interactions through protein-protein or protein-DNA interaction networks, the KEGG

network is often directed with a direction of information flow and a regulatory influence

(activating or repressing). It would be interesting to develop methods that can account for

these directions.
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