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Abstract. Many studies yield data with multiple sources of correlation. For
example, in a study of repeated measurements collected on each eye of spouses,
three sources of correlation may be present, due to the fact that measurements
within the same family will be more similar if they are measured on the same
eye (left versus right), within the same person (husband versus wife), or at the
same measurement occasion. This article reviews an algorithm for analysis of
data with two or more sources of correlation (Shults, Whitt, Kumanyika, 2004)
that can be implemented using quasi-least squares, an approach in the frame-
work of generalized estimating equations. It then describes and demonstrates
implementation of this algorithm with xtmultcorr procedures in Stata and the
qls functions in Matlab. The Stata and Matlab procedures are available on the
website for the Longitudinal Analysis for Diverse Populations project:

http://www.cceb.upenn.edu/ sratclif/QLSproject.html.

Keywords: Cholesky decomposition; correlated data; generalized estimat-
ing equations; multi-level data; multivariate data; quasi-least squares

1 Introduction

We consider the usual set-up for generalized estimating equations (GEE, Liang
and Zeger, 1986), for which measurements are collected on multiple subjects, or
clusters. Measurements from different clusters are assumed to be independent,
but measurements from within the same cluster are assumed to be correlated.
The typical GEE analysis involves one source of correlation, where a source
of correlation is defined as a factor that impacts the similarity (and therefore
the correlation) of measurements. For example, in a longitudinal study that
measures the weight of unrelated subjects, the timing of measurements will
represent the one source of correlation because measurements within a subject
that are collected more closely together in time should be more similar (and
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therefore more highly correlated) than if they are measured farther apart in
time, e.g. weights at baseline and two months post-baseline should be more
highly correlated than weights collected at baseline and 12 months post-baseline.

This article considers data with multiple sources of correlation, which are
sometimes referred to as multi-level data or multivariate longitudinal data. For
example, suppose the longitudinal study described above was modified to mea-
sure weights on siblings over time. In this situation, we might expect an addi-
tional source of correlation in the data, due to anticipated similarity between
siblings. Or, consider a study in which grip strength is measured on both hands
of elderly twins at baseline and at one month post baseline. This study might
be expected to yield data with three sources of correlation, because we antici-
pate that two measurements within a sibling pair will be more similar if they
are measured on the same twin (older versus younger), on the same hand (left
versus right), or at the same measurement occasion (baseline or one month post
baseline). Many other examples of multi-level correlated data are described in
Goldstein (1995).

The usual goal of a GEE analysis is to explore the relationship between
the expected value of the outcome variable and covariates measured on each
of the subjects, while adjusting for the correlation within the measurements on
each cluster. Although the regression parameter is often the primary parameter
of interest, the estimated correlations can often yield interesting information.
For example, if the intra-hand correlations of grip strength in the intervention
to improve strength in elderly subjects are negative, this might suggest that
subjects are focusing their efforts on one hand to the detriment of the other.
Or, if the intra-twin correlations of birth weight are negative in an intervention
to improve birth weight in twins born to high risk mothers, this might suggest
that improvement in birth weight for one twin is occurring at the expense of
the other.

Although many studies yield data with multiple sources of correlation, GEE
is typically implemented for data with one source of correlation, with relatively
simple correlation structures used to describe the pattern of association amongst
the repeated measurements on each subject (or cluster). In this manuscript we
review an algorithm for analysis of data with multiple sources of correlation
(Shults et al., 2004) in the framework of GEE. We then demonstrate implemen-
tation of this algorithm with the the user-written xtmultcorr and qls programs
in Stata and Matlab, respectively.

We note that the majority of our descriptions in this manuscript are for data
with three sources of correlation; however, all results can easily be generalized
for data with two or more than three sources of correlation.

2 Methods

2.1 Notation

The usual notation for a typical GEE analysis (Shults, Ratcliffe, Leonard, 2006)
with one source of correlation is readily modified for data with multiple sources.
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For example, consider a study in which repeated measurements are collected
on independent subjects at baseline, and then at three and six months post-
baseline. In this study we might anticipate that there is one source of corre-
lation, due to the timing of measurements; ¥;; and x;j might then represent
the measurement of the outcome variable and vector of associated covariates
that are collected on subject ¢ at time j. Note that this notation for data with
one source of correlation involves two subscripts, ¢ that denotes the subject (or
cluster) and j that denotes the value of the first (and only) source of correlation.
To extend our notation to a study with three sources of correlation, we simply
expand the number of subscripts to four, so that y;;, ;,;, and x;jl jajs TEPTESENLS
the value of the outcome variable and associated p x 1 vector of covariates that
are collected on subject (or cluster) ¢ when the values of the first, second, and
third source of correlation are ji, jo and js, respectively.

Next, it will be helpful to refer to Y;[a,b,c] as the vector of outcomes of
measurements ¥;;, ;,;. ol subject ¢ that has been sorted first according to j,, and
then jp, and then j.. Our approach for analysis of multi-level data is appropriate
for data that are balanced overall, so that j. = 1,2,...,n. in Y;[a,b, ¢ for all
i and (a,b,c) in the class of all permutations of (1,2,3). For example, in a
longitudinal study of visual acuity measured on both eyes of spouses at baseline
and six months post-baseline, the study will be balanced overall if there are no
missing observations; in this case, we might let spouse, eye, and time represent
the first, second, and third sources of correlation, with j; = 1, 2 (1 for wife, 2
for husband), jo = 1, 2 (1 for left eye, 2 for right eye), and j3 = 1, 2, 3 (number
of measurement occasion) within husband/wife cluster i.

Our manuscript provides programs in Stata and Matlab for data that are
balanced overall. We note that our programs check for balance and return an
error message if the data are not balanced. We also note that extensions to
our programs are underway for data that are not balanced overall, but that are
balanced within clusters.

Note that GEE is usually applied for analyses that involve a relatively large
number of small clusters (or subjects), with 30 often used as an informal lower
bound for the number of clusters that are required to yield valid results. In
multi-level analyses the cluster sizes can be larger than in the typical analysis,
that might involve 3 or 4 measurements per cluster. For example, in the study
of visual acuity described above, if the data are totally balanced, the cluster
sizes will be ny X ng Xxng = 2 x2x 3 = 12. We suspect that the correlations may
play a more prominent role in multi-level studies because they typically yield
data with larger cluster sizes, and hence provide more information with which
to estimate the pattern of association in the data.

2.2 Specification of a working correlation structure for analysis
of multi-level data in the framework of GEE

GEE analyses specify a generalized linear model to describe the relationship
between the outcome and covariates measured on each subject: The expected
value and variance of measurement ;;, j,j, on subject (or cluster) ¢ are assumed
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to equal E(Yij,jajs) = 9 (€5}, ,558) = Wijijajs a0 Var(Yij,jogs) = dh(uijyjajs ),
respectively, where ¢ is a known or unknown scale parameter. We also let U;(53)
represent the w; x 1 vector of expected values u;;, j,;, on subject i, where w; =
np X ng X ng.

The intra-cluster correlation of measurements is then accounted for in the
analysis by specifying a patterned correlation matrix R; to describe the pat-
tern of association of measurements within cluster ¢, for ¢ = 1,2,...,m. Some
popular structures for data with one source of correlation include the following:

1. The Equicorrelated (Exchangeable): This assumes equality of corre-
lations within each cluster, so that R;[j, k] = «. For n x n structure R;,
R; will be positive definite for o in (—1/(n —1),1).

2. The first-order autoregressive AR(1): This assumes correlations will
be smaller for measurements that are farther apart in terms of measure-
ment occasion, so that R;[j, k] = o/~ for a in (—1,1).

3. The tri-diagonal correlation structure: This structure has ones
on the diagonal and « on the off-diagonal, so that R;[j, k] = a for [j—k| =1
and is zero otherwise. If R; is n x n, it will be positive definite for « in

(=1/cm,1/cm), where ¢, = 2sin (%

(=1/2,1/2) for large n and contains (—1/2,1/2) for all n.

). This interval is approximately

We will use the structures just described to construct a biologically plausible
correlation structure for data with multiple sources of correlation: (As noted
earlier, we will describe all results for data with three sources of correlation, but
the results can be readily generalized for two or > 3 sources.)

To construct a biologically plausible structure for data with multiple sources
of correlation:

1. First, within each cluster (or subject) identify one source of correlation as
the first source, another source as the second, and another as the third.

2. For each source of correlation, choose the correlation structure that would
be appropriate if the source under consideration was the only source of
correlation in the data. Let R, be the correlation structure for source a;
a=1,2,3.

3. When done, construct the correlation structure for the vector of mea-
surements Y;[1,2,3] as the Kronecker product of R;, R, and Rj, i.e.
Corr(Y;[1,2,3]) = R1 @ R2 @ R3. The covariance matrix of Y;[1,2,3]
is then given by Cov(Y;[1,2,3]) = ¢A3/2R1 R R Q R3A;*?, where A; =
diag(h(ui111)s - - - A(Winynong )); it is also easily shown that Corr(Y;[a, b, c])
= gbA;/QRa RR X R.A;'?, where (a, b, c) is any permutation of (1,2, 3).

For example, consider the study of visual acuity described above for data
that are balanced overall. To specify a correlation structure for the first source
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of correlation (spouse), we imagine that the only source of correlation is due to
spouse, e.g. we have a study in which only one measurement was collected on
one eye of each spouse; in this situation a reasonable structure for R; is 2 x 2

structure
o 1 a1
Ry = ( Lo ) |

Similarly, a reasonable structure for the second source of correlation (eye) is

given by
. 1 (65
(1)

For the third source of correlation, we might specify an AR(1) correlation
structure:

1 Q3 0[32

Rg = (6 %3 1 Q3
0532 Qs 1

The correlation structure for Y;[1,2,3] is then constructed as Ri(a;) &
Ry(a2) @ Rs(as).

This Kronecker product structure has been discussed and implemented by
several authors, including Galecki (1994) and Naik and Rao (2001), Roy and
Khattree (2005) and Lu and Zimmerman (2005) developed tests for this struc-
ture for multivariate repeated measures data that are normally distributed. It
is a popular structure for analysis of multi-level correlated data because it forces
the correlation between measurements to be smaller when they have more dis-
agreement with respect to the sources of correlation in the data, which is often
biologically plausible.

For example, if Corr(Y;[1,2,3]) = R1 @Q R2 @ Rs, then using the definition
of Kronecker product, Corr(Yij, j,js», Yikikaks ) = R1[J1, k1] X Ra[j2, k2| X Rs[js, k3].
If we apply this to our visual acuity example, then we see that the correlation
between measurements collected on the same spouse and same eye (left versus
right) at visits one and two is ag. However, if the measurements are collected
on the same spouse, but on different eyes, at visits one and two, then the
correlation is ap X 3. Finally, if the measurements within families were collected
on different spouses and different eyes at visits one and two, then the correlation
would be a; X as x az. Therefore, if the parameters are all positive, we see
that the correlation between measurements will be smaller as their degree of
disagreement with respect to the sources of correlation in the data decreases.

Shults and Morrow (2002) and Chaganty and Naik (2002) implemented the
Kronecker product structure for data with two sources of correlation. Shults,
Whitt, and Kumanyika (2004) proposed a general algorithm that allows for
data with 2 or more sources of correlation; this is the approach we use in this
manuscript.
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2.3 Overview of algorithm for implementation of the Kro-
necker Product Structure

The xtmultcorr and qls procedures implement the Kronecker product correlation
structure using quasi-least squares (Chaganty and Shults, 1999), an approach in
the framework of GEE that allows for easier implementation of some correlation
structures, including the Kronecker product structure.

To summarize briefly, QLS is a two-stage approach that in stage one alter-
nates between updating the estimate of the regression parameter 3 by solving
the GEE estimating equation for 3 (Liang and Zeger, 1986) and updating the
estimate of the correlation parameter o by solving the QLS stage one estimating
equation for . (The QLS stage one estimate of o (Chaganty, 1997) has the
drawback of being inconsistent, even when the working correlation structure is
correctly specified.) After convergence in stage one, the (consistent) stage two
estimate of « is obtained solving the QLS stage two estimating equation for «.
The final QLS estimate of § is then obtained by again solving the GEE estimat-
ing equation for [ evaluated at the stage two estimate of . For more details
of the QLS approach and its implementation for data with one source of corre-
lation in Stata, see Shults et al. (2006) and Sun et al. (2006). For information
on implementation of QLS in Matlab, see Ratcliffe and Shults (2006).

Programs for the stage one and stage two QLS estimating equations for «
for a particular correlation structure require subject id, the variable indicating
timing of measurements, and the vector of Pearson residuals as arguments. The
Pearson residuals, defined for data with one source of correlation, are defined
for subject i as Z;(8) = (i1, 2i2, ..., Zin,) ! for zi; = (ys; — wij)/h(ui;). The
covariance matrix of the vector of Pearson residuals, for data with one source
of correlation, is easily shown to be equal to ¢R;, so that the covariance matrix
for the vector of Pearson residuals that is obtained by stacking the vectors for
all subjects, Z = (Z11, Zal, ..., Zy))1, is given by I(m x m) Q) R;, the kronecker
product of an m x m identity matrix and R;.

The stage one QLS algorithm for implementation of the Kronecker product
correlation structure that is appropriate for data with > 2 sources of corre-
lation is based on the observation that if we pre-multiply the vector of Pear-
son residuals Z;[a, b, | by the kronecker product of the square root of the in-
verse of R, and the square root of the inverse of R, and an n. X n. iden-
tity matrix, then we obtain the usual correlation structure for data with one

source of correlation. In particular, Corr (R;l/Q X Rb_l/2 X Rc_l/Q) Zila, b, ]

- (R;“Q R R, *® I(n. x nc)> ¢ (Ro @ Ry @ R.) (R;”2 R R, ?® I(n. x nc))

= ¢I(ngny X ngny) Q R.. To update the correlation parameters in stage one,
we were therefore able to utilize an approach that alternated between sorting,
pre-multiplying, and using programs written earlier for data with one source of
correlation, applied to the vector of pre-multiplied Pearson residuals.

To obtain estimates in stage two, Shults et al. (2004) proved that each
correlation parameter can be updated separately, e.g. the stage two estimate of
as is only a function of the stage one estimate of this parameter.
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2.3.1 Algorithm for Estimation of the Correlation and Regression Parame-
ters for Data with Multiple Sources of Correlation

The xtqgls and glsr procedures implements the following algorithm for estimation
of B and of a; (j = 1,2,3): (Please see Shults et al. (2004) for more details and
justification of this approach.)

1. Let a; = O represent initial estimates of o, for j =1,2,3. Let old; = a;
for 7 =1,2,3.

2. Obtain a starting value for Jéj by assuming «; = 0 and then obtaining a
solution to the GEE estimating equation for 8 at a; = 0 for j = 1, 2,
and 3. (Note that this is equivalent to using linear regression, logistic
regression, or Poisson regression to obtain a starting value for 8, for an
outcome variable that is continuous, binary, or that represents counts,
respectively.)

3. For (a,b,¢) = (1,2,3), (3,1,2), and (2,3,1), do the following: Sort on 4,
Jas Jv, and then j. and create a new id variable id[a, b, c] that takes values
1,2,... and that takes a different value for each distinct value of (, jq, jp)-
These new identification variables will be used when updating the o; in
stage one of QLS.

4. Alternate between the following steps till convergence in the estimates of

03:

(a) Obtain updated values of the Pearson residuals z;;, ;,;, at the current
estimate of 3.

(b) Update the estimate of the correlation parameters by alternating
between the following steps until A; ~ 0 for j = 1,2, 3:

i. Implement the stage one updating step (given below) for (a, b, ¢)
= (1,2,3):
ii. Implement the stage one updating step for (a,b,c) = (3,1, 2).
iii. Implement the stage one updating step for (a,b,c) = (2,3,1).

Stage one updating step: First, sort the data with respect to
i, then j,, jp, and j.. Next, pre-multiply the vectors of Pearson
residuals Z;[a, b, ] within each subject ¢ by R, '? X R;l/Q R I(nex
n.); call the vector of pre-multiplied residuals Z}[a, b, c]. Solve
the QLS stage one estimating equation for ., under the as-
sumption that the working correlation structure is R.(ca.). (Note
that the programs to solve this equation will require the follow-
ing as arguments: Z[a,b, ¢] (pre-multiplied Pearson residuals),
id[a,b, c] (identification variable), and j. (representing the tim-
ings for each cluster indicated by different values of id]a, b, c]).
After obtaining an updated estimate of a., update the estimate

Hosted by The Berkeley Electronic Press



of R, Y ?(ar.) and then obtain A, the difference between the up-
dated estimate of a. and the previous estimate old.. Next, let
old. equal the updated estimate of a.

(c¢) Construct the estimated working correlation structure W(ay, da, &3) =
Ri(41) @ Ra(da) @ Rs(és) that corresponds to the updated esti-
mates of o; (j =1, 2, 3).

(d) Update the estimate of 8 by solving the GEE estimating equation
(for B) with a correlation structure that is treated as fixed and equal
to W(dl, (3[2, 653)

5. After convergence in stage one of QLS, update the estimate of a; (j =
1, 2, 3) by solving the stage two estimating equation for each parameter.
Note that for each parameter this only involves specification of the working
structure and the vector of timings for each cluster.

6. Construct the estimated working correlation structure W (éq,as,d3) =
R1(41) @ Ra(d2) @ Rs(és) that corresponds to the stage two estimates
of o (j=1,2,3).

7. Update the estimate of 8 by solving the GEE estimating equation (for
B) with a correlation structure that is treated as fixed and equal to
W(d176‘27d3)'

The xtmultcorr Stata procedures implement the xtgee procedure to solve
the GEE estimating equation for 8 in steps 4(d) and 7 of the algorithm. This
exploits the fact that the xtgee procedure allows for solution of the GEE estimat-
ing equation at a current estimate of the correlation structure that is treated as
fixed and known. An important consequence is that all the usual post regression
commands in Stata are available after implementation of xtqls.

The Matlab programs implement an approach for updating the estimate of
( that is based on the inverse of the Cholesky decomposition of the working
correlation structure; this approach is described in Shults (1996) and Shults
and Chaganty (1998).

3 The xtmultcorr commands in Stata 9.0
3.1 Syntax

The xtmultcorr commands have the following syntax which is similar to the
syntax for the xtgee procedure, expect that the command requires specification
of additional variables for each source of correlation and options to indicate the
correlation structure that will be implemented for each source of correlation
For data with 2 sources of correlation, the xtmultcorr2 procedure is used.

xtmultcorr2 depvar [indepvars| , options

http://biostats.bepress.com/upennbiostat/art15



where depvar is the dependent variable; indepvars are the covariates; and
options are the required options that are described below, in the following sec-
tion.

For data with 3 or 4 sources of correlation, the xtmultcorrd and xtmult-
corrd procedures are used, respectively. The syntax will be the same as for
xtmultcorr2, but the options will differ, as described in the following section.

3.2 Description

The xtmultcorr2, xtmultcorr3, and xtmultcorr4 commands provide QLS esti-
mates of the regression and correlation parameters for data with 2, 3, and 4
sources of correlation, respectively. This is done by implementation of a Kro-
necker product correlation structure of 2, 3, or 4 correlation structures (for 2,3,
or 4 sources of correlation, respectively), each of which would be appropriate for
data with one source of correlation. The correlation structures can be chosen
from among the equicorrelated, AR(1), Markov, and tri-diagonal correlation
structures.

3.3 Options

The options for xtmultcorr2 (all required) are as follows:

—_

. i(var1) where varl is the ID variable for subjects, or clusters

2. 11(var2) where var2 is the variable that indicates the value of source one
of correlation

3. 12(var3) where var3 is the variable that indicates the value of source two
of correlation

4. c1(corrl) where corrl is the correlation structure for source one of corre-
lation

5. ¢2(corr2) where corr2 is the correlation structure for source two of cor-
relation. The following correlation structures can be implemented in the
xtmultcorr programs:

(a) AR1 (AR(1))
(b) sta 1 (tridiagonal)

(¢) exc (equicorrelated)

6. f(family) where family is the distribution of depvar. The following families
can be implemented in the xtmultcorr programs:

(a) gau (Gaussian)
(b) bin (Bernoulli/binomial)
(c) poi (Poisson)
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7. vee(vcetype) where vcetype indicates the type of covariance structure for
estimation of 3. The following covariance structures can be implemented

in the xtmultcorr programs:
(a) model (model based covariance structure)
(b) robust (sandwich type robust sandwich covariance matrix)
(c) jack (obtains jack-knife standard errors)
(d) boot (obtains boot-strapped standard errors)

The options for xtmultcorr3 (all required) are as follows:

—_

. i(var1) where varl is the ID variable for subjects, or clusters

2. 11(var2) where var2 is the variable that indicates the value of source one
of correlation

3. 12(var3) where var3 is the variable that indicates the value of source two
of correlation

4. 13(var4) where var4 is the variable that indicates the value of source three
of correlation

5. cl(corrl) where corrl is the correlation structure for source one of corre-
lation

6. c2(corr2) where corr2 is the correlation structure for source two of corre-
lation.

7. ¢3(corr3) where corr3 is the correlation structure for source three of cor-
relation.

8. f(family) where family is the distribution of depvar.

9. vce(vcetype) where vcetype indicates the type of covariance structure for
estimation of 3.

The options for xtmultcorr4d (all required) are as follows:

—

. i(var1) where varl is the ID variable for subjects, or clusters

2. 11(war2) where var2 is the variable that indicates the value of source one
of correlation

3. 12(var3) where var3 is the variable that indicates the value of source two
of correlation

4. 13(var4) where var4 is the variable that indicates the value of source three

of correlation

10
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5. 14(vard) where vars is the variable that indicates the value of source four
of correlation

6. cl(corrl) where corr! is the correlation structure for source one of corre-
lation

7. ¢2(corr2) where corr2 is the correlation structure for source two of corre-
lation.

8. ¢3(corr3) where corr3 is the correlation structure for source three of cor-
relation.

9. c4(corr4) where corr/ is the correlation structure for source four of corre-
lation.

10. f(family) where family is the distribution of depvar.

11. vee(vcetype) where vcetype indicates the type of covariance structure for
estimation of 3.

3.4 Relationship to the xtgee procedure

The xtmultcorr procedure implements the xtgee procedure and has important
similarities to the xtgee procedure that are the same as the similarities between
xtqls and xtgee; please see section 3.4 of Shults, Ratcliffe, Leonard (2006) for
more details.

3.5 Saved Results

The saved results for the xtmultcorr programs are the same as those for the xtgee
procedure in Stata. For example, typing xtcorr after implementing xtmultcorr2
in an analysis will display the estimated correlation matrix.

4 Examples in Stata

Here we demonstrate implementation of the xtmultcorr commands in Stata.

4.1 Data and variables
We will use the data set

example_multlevel.dta

that is available on http://www.cceb.upenn.edu/~sratclif/QLSproject.html. This
is a data set that is based on Table 3.7 (p. 65) of Davis (2002). The data are
from a study (Weissfeld and Kshirsagar, 1992) in which three methods of suc-
tioning an endotracheal tube were applied in random order to 25 patients in
an intensive care unit. The outcome variable was oxygen saturation, that was
measured on each patient at baseline, first suctioning pass, second suctioning
pass, third suctioning pass, and five minutes after suctioning.
Let’s open the data set in Stata and describe the variables:

11
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. use example_multlevel, clear

. de Contains data from example_multlevel.dta

obs:
vars:
size:

time
type
02
family
high

375
6

30 Nov 2006 09:06

19,500 (98.1% of memory free)

storage display value
type format

double %10.
double %10.
double %10.
double %10.
double %10.
double %10.

subject id

measurement occasion
method of suctioning
oxygen saturation
artificial family variable
1 if 02>96; 0 otherwise

Sorted by: i

d type time

Let’s next check the number of subjects:

. summ id
Variable

. qui tab id
. di _result(

2) 25

There are 25 subjects.
Next, let’s tabulate time and type of measurement:

. tab type

method of
suctioning

—_— ¢t — — — 4 — —

13.68 7.603405 1 26

Percent Cum
33.33 33.33
33.33 66.67
33.33 100.00

100.00
12
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. tab time

measurement |
occasion | Freq Percent Cum
____________ e
1| 75 20.00 20.00
2 | 75 20.00 40.00
3 | 75 20.00 60.00
4 | 75 20.00 80.00
5 | 75 20.00 100.00
____________ e

Total | 375 100.00

It appears that type and time are balanced overall, although this will be
checked in our programs. Next, let’s summarize family:

. summ family

Variable Obs Mean Std. Dev. Min Max

375 6.76 3.619023 1 13

The variable family is an artificial grouping (not in the original data set)
that was created to demonstrate analysis of data with 3 sources of correlation.
There are 12 families of size two and one family (that contains the subject with
id = 26) of size one.

For the examples we consider here, we will regress oxygen saturation score
(02) on time. We consider a simple regression model for the mean because our
goal is to demonstrate our xtmultcorr programs. We will demonstrate imple-
mentation of the robust sandwich-based covariance matrix and also of the model
based covariance matrix. In addition, we will consider a binary outcome, high,
that takes value one if 09 > 96 and takes value zero otherwise.

4.2 Adjustment for two sources of correlation

First, we will account for two sources of correlation. In this analysis the mea-
surements will be clustered by subject and type and time will be identified as
the first and second source of correlation. (However, note that the ordering of
type and time could have been reversed.) We specify the equicorrelated struc-
ture for source one (type) and the AR(1) structure for source two (time). We
also specify the model based covariance matrix for estimation of the covariance
matrix of 3:

. xtmultcorr2 o2 time, i(id) 1l1(type) 12(time) cl(exc) c2(AR 1)
f(gau) vce(model)
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Estimated correlation associated with level one:

symmetric __000003[3,3]

cl c2 c3
rl 1
r2 .14911158 1
r3 .14911158 .14911158 1

Estimated correlation associated with level two:

symmetric __000004[5,5]

cl c2 c3 cd4 cb
rl 1
r2 .68092105 1
r3 .46365348 .68092105 1
r4 .31571141 .46365348 .68092105 1
r5 .21497455 .31571141 .46365348 .68092105 1

Iteration 1: tolerance = .01781086 Iteration 2: tolerance = 0

GEE population-averaged model Number of obs = 375
Group and time vars: id __00001T Number of groups = 25
Link: identity 0Obs per group: min = 15
Family: Gaussian avg = 15.
Correlation: fixed (specified) max = 15.
Wald chi2(1) = 0.57
Scale parameter: 7.566478 Prob > chi2 = 0.4493
02 | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
_____________ +_______________________________________________________________
time | .0856649 .1132207 0.76 0.449 -.1362436 .3075734
_cons | 95.66081 .4356795  219.57 0.000 94.80689 96.51473

4.3 Adjustment for Three Sources of Correlation

In this analysis we will take the artificial family groupings into account, so
that the measurements will be clustered according to family. Our data are not
balanced with respect to family because we have 25 families of size two and one
family (for id = 26) of size one. Because our programs assume the data are
balanced overall, we will first drop subject with id = 26, in order to have 24
equally sized families:

. drop if id==26
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Next, let’s demonstrate analysis of the binary outcome, with a robust sand-
wich based covariance matrix for estimation of the covariance matrix of the
regression parameter:

. xtmultcorr3 high time, i(family) 11(id) 12(type) 13(time) cl(exc)
c2(exc) c3(AR 1) f(bin 1) vce(robust)

Data are not balanced within subjects with respect to sources of
correlation.

The variable id must take value 1,2, ..., ny for each subject i, after sorting
on type and time. We therefore need to create a new identification variable that
can be used in the xtmultcorr3d program:

. sort family id
.qui by family id: gen id2=1 if _n==1
.qui by family: replace id2 = sum(id2)

. xtmultcorr3 high time, i(family) 11(id2) 12(type) 13(time) cl(exc)
c2(exc) c3(AR 1) f(bin 1) vce(robust)

Estimated correlation associated with level one:

symmetric __000003[2,2]

cl c2
rl 1
r2 .04860953 1

Estimated correlation associated with level two:

symmetric __000004[3,3]

cl c2 c3
rl 1
r2 .1518791 1
r3 .1518791 .1518791 1

Estimated correlation associated with level three:

symmetric __000005[5,5]

cl c2 c3 c4 cb
rl 1
r2 .64306572 1
r3 .41353352 .64306572 1
r4d .26592923 .41353352 .64306572 1
r5 .17100997 .26592923 .41353352 .64306572 1
15
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Iteration 1: tolerance = .00844386
Iteration 2: tolerance = .00004461
Iteration 3: tolerance = 7.387e-09

GEE population-averaged model
Group and time vars: family __00001U

Link: logit Obs per group:
Family: binomial
Correlation: fixed (specified)
Wald-chi2(1)
Scale parameter: 1 Prob > chi2

(Std. Err. adjusted for

Semi-robust

Number of obs
Number of groups =

= 360
12
min = 30
avg = 30
max = 30
= 0.31
= 0.5759

clustering on family )

|

high | Coef.  Std. Err. z P>|z]| [95% Conf. Interval]
_____________ +_______________________________________________________________

time | .0308239 .0551098 0.56 0.576 -.0771892 .1388371

_cons | -.3893841 .3379246 -1.15 0.249 -1.051704 .2729359

As we might expect (based on the fact that the family grouping was artificial)
the estimated correlation associated with family was very small, with &; =
.04860953.
We also note that because the xtmultcorr programs make use of the xtgee
program in Stata, all the usual post-regression estimation commands are avail-
able after analysis. For example, if we use the xtcorr command in Stata we
can print the estimated correlation matrix that is the Kronecker product of the
estimated working structures for each source of correlation. Below, the first 5
lines of the correlation matrix are displayed:
. Xtcorr
Estimated within-family correlation matrix R:
cl: cl: cl: cl: cl: c2: c2: c2:
cl c2 c3 c4 cb5 cl c2 c3

rl:rl1 1.0000
ri:r2 0.6431 1.0000
ri:r3 0.4135 0.6431 1.0000
ri:r4 0.2659 0.4135 0.6431 1.0000
rl:xr5 0.1710 0.2659 0.4135 0.6431 1.0000
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5 Using Matlab

The above analyses can also be performed in Matlab using the gls functions.
Here we present a brief outline of the commands and results. Further informa-
tion can be obtained using the help function, and in the user guide available
online.

5.1 Syntax

The gls function has the following syntax:
[bhat,alpha,results] = gls(id,y,t,X,Family,CorrStruct,varnames,tol,maxit)

where id is the unique subject/cluster identification variable, y is the depen-
dent variable, t is the variable(s) indicating the sources of correlation, and X are
the covariates. The remaining parameters are optional and are used to specify
the assumed distribution of the data (Family, default=Gaussian), assumed cor-
relation structure for each source of correlation (CorrStruct, default=AR(1)),
variable names for X used in result displays (varnames), and convergence toler-
ance (tol) and maximum number of iterations (maxit) used in the gls algorithm.
When multiple sources of correlation need to be accounted for, then the qls2 (for
2 sources of correlation) and qls3 (3 sources) functions should be used. These
functions have the same syntax as the qls function, except t and CorrStruct
have multiple inputs.

The gls functions return three result variables; bhat contains the estimated
covariate parameters, alpha contains the estimated correlation parameters, and
results contains the final results displayed (estimates, standard errors, p-values,
95% confidence intervals) using both the model based and sandwich type robust
covariance matrices.

5.2 Example for Two Sources of Correlation

Here we present the same results that were presented in the previous section,
but in Matlab. We will use the

example_multlevel

data set.

>> load example_multlevel;

>> whos

Name Size Bytes Class

X 375x2 6000 double array
family 375x1 3000 double array
high 375x1 3000 double array
id 375x1 3000 double array
02 375x1 3000 double array
time 375x1 3000 double array
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type 375x1 3000 double array
varnames 1x2 144 cell array

Grand total is 3014 elements using 24144 bytes
>>

To account for the two sources of correlation (type and time), we use the

qls2 function.

>> [betah,alphah,results] = qls2(id,o2, [type time],X,’n’,{’3’,’1’},varnames);

Normal distribution family assumed

Initial estimate of beta=[0.0666667 95.6533]
AR(1) Correlation structure assumed for Level 2
Equicorrelated structure assumed for Level 1

Stage 1 estimate of alphal = 0.072642
Stage 1 estimate of alpha2 = 0.39318
Stage 1 estimate of beta = [0.0780062 95.6481]

Stage 2 estimate of alphal = 0.14899
Stage 2 estimate of alpha2 = 0.68107
Stage 2 estimate of beta = [0.0856684 95.6608]

Estimated correlation associated with level one:
1.0000 0.1490 0.1490
0.1490 1.0000 0.1490
0.1490 0.1490 1.0000

Estimated correlation associated with level two:
1.0000 0.6811 0.4639 0.3159 0.2152
0.6811 1.0000 0.6811 0.4639 0.3159
0.4639 0.6811 1.0000 0.6811 0.4639
0.3159 0.4639 0.6811 1.0000 0.6811
0.2152 0.3159 0.4639 0.6811 1.0000

QLS estimate of scale parameter = 7.5627

Estimates based on ROBUST covariance matrix
) b b ) ) ) )

’Variable’ ’Beta’ ’Std.Error’ ’z value’ ’p-value’
’time’ [ 0.0857] [ 0.0348] [ 2.4644] [ 0.0137]
>constant’ [95.6608] [ 0.3636] [263.1137] [ 0]

Estimates based on MODEL based covariance matrix
) b EAp) ) ) ) )
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[ 0.0175] [ 0.1538]
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’Variable’ ’Beta’ ’Std.Error’ ’z value’ ’p-value’ ’low lim’ ’up lim’

’time’ [ 0.0857] [ 0.1132] [ 0.7570] [ 0.4490] [-0.1361] [ 0.3075]
’constant’ [95.6608] [ 0.4355] [219.6483] [ 0] [94.8072] [96.5144]
>>

5.3 Example for Three Sources of Correlation

First we need to drop subject with id = 26, and create the id2 variable to ensure
balanced data.

>> id = id(1:360,1);

>> type = type(1:360,1);

>> time time(1:360,1);

>> 02 = 02(1:360,1);

>> family = family(1:360,1);

>> high = high(1:360,1);

>> X = [time ones(360,1)];

>> id2 = kron(ones(12,1), [ones(15,1); 2*ones(15,1)]);

Next, we can analyze the binary outcome high, with family as the clustering
variable and subject, type and time as our three sources of correlation:

>>[betah,alphah,results]=qls3(family,high, [id2 type time],X,’b’,{’3’,’3’,°1°},varnames);
Bernoulli distribution family assumed

Initial estimate of beta = [0.039611 -0.3873]

AR(1) Correlation structure assumed for Level 3

Equicorrelated structure assumed for Level 1

Equicorrelated structure assumed for Level 2

Stage 1 estimate of alphal = 0.024319

Stage 1 estimate of alpha2 = 0.074032

Stage 1 estimate of alpha3 = 0.36418

Stage 1 estimate of beta = [0.034523 -0.38469]
Stage 2 estimate of alphal = 0.048609

Stage 2 estimate of alpha2 = 0.15188

Stage 2 estimate of alpha3 = 0.64307

Stage 2 estimate of beta = [0.030824 -0.38938]

Estimated correlation associated with level one:
1.0000 0.0486
0.0486 1.0000

Estimated correlation associated with level two:
1.0000 0.1519 0.1519
0.1519 1.0000 0.1519
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0.1519 0.1519 1.0000

Estimated correlation associated with level three:

1.0000 0.6431 0.4135 0.2659 0.1710
0.6431 1.0000 0.6431 0.4135 0.2659
0.4135 0.6431 1.0000 0.6431 0.4135
0.2659 0.4135 0.6431 1.0000 0.6431
0.1710 0.2659 0.4135 0.6431 1.0000

QLS estimate of scale parameter =1

Estimates based on ROBUST covariance matrix

1) ) ) ) 1) )95%0]:)
’Variable’ ’Beta’ ’Std.Error’ ’z value’ ’p-value’ ’low lim’
’time’ [ 0.0308] [ 0.0527] [ 0.5849] [ 0.5586] [-0.0725]
’constant’ [-0.3894] [ 0.3231] [-1.2053] [ 0.2281] [-1.0226]
Estimates based on MODEL based covariance matrix

1) ) 1) ) 1) 795%CI)
’Variable’ ’Beta’ ’Std.Error’ ’z value’ ’p-value’ ’low lim’
’time’ [ 0.0308] [ 0.0895] [ 0.3445] [ 0.7304] [-0.1445]
’constant’ [-0.3894] [ 0.3383] [-1.1510] [ 0.2497] [-1.0524]

>>

6 Discussion

In this paper we have implemented quasi-least squares for analysis of data with
multiple sources of correlation with the user-written xtmultcorr procedures in
Stata and the qls procedures in Matlab.

It is important to note that our programs assume that the data are balanced
overall, and they check that this condition is satisfied. However, we are currently
working on extensions that will be appropriate for data that are not balanced
overall, but that are balanced within subjects (e.g. if two measurements are
collected on both eyes of variable sized families).
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