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Adapting Data Adaptive Methods for Small,
but High Dimensional Omic Data:

Applications to GWAS/EWAS and More

Sara Kherad Pajouh, Alan E. Hubbard, and Martyn T. Smith

Abstract

Exploratory analysis of high dimensional “omics” data has received much at-
tention since the explosion of high-throughput technology allows simultaneous
screening of tens of thousands of characteristics (genomics, metabolomics, pro-
teomics, adducts, etc., etc.). Part of this trend has been an increase in the di-
mension of exposure data in studies of environmental exposure and associated
biomarkers. Though some of the general approaches, such as GWAS, are trans-
ferable, what has received less focus is 1) how to derive estimation of indepen-
dent associations in the context of many competing causes, without resorting to a
misspecified model, and 2) how to derive accurate small-sample inference when
data adaptive techniques are used in this context. This paper focuses on semi-
parametric variable importance analysis of high dimensional data sets of modest
sample size (e.g., gene expression, mRNA, etc). Though the methodology we
propose is generally applicable to similar situations, we present the method in the
context of a study of miRNA expression for an environmental exposure. Specifi-
cally, the analysis is faced with not just a large number of comparisons, but also
trying to tease out of association of the expression of miRNA with an exposure
apart from confounds such as age, race, smoking conditions, BMI, etc. Our goal
is to propose a method that is reasonably robust in small samples, but does not
rely on misspecified (arbitrary) parametric assumptions, and thus will be based
on data-adaptive methods. The methodology proposed is we believe a powerful
combination of existing semi-parametric statistical methods and theory, as well
as a simple framework for use of commonly used empirical Bayes approaches to
aid in small sample inference. Specifically, We propose using targeted maximum
likelihood estimation (TMLE) for estimating variable importance measures along



with a general adaptation of the commonly used Limma approach, which relies on
specification of the so-called influence curve of the proposed estimator. The result
is a machine-based approach that can estimate independent associations in high
dimensional data, but protects against the unreliability of small-sample inference
that can result when using data adaptive estimation in relatively small samples.



1 Introduction

New methods are needed for evaluating both a rich variety of potential environmen-

tal exposures, along with the growing number of methods for producing biomarkers

- so called more robust methods of Exposome or Environment Wide Association

Studies (EWAS; Rappaport and Smith (2010) and Rappaport (2012) ). There has

been an effort to incorporate the types of methodologies used in similar data struc-

tures, for instance, Genome Wide Association Studies (GWAS; Manolio (2010)).

For instance, Patel et al. (2010) has used fairly standard methods of parametric

models with adjustments for multiple testing to rank potential environmental con-

tributors to type 2 diabetes. However, as emphasized by Rappaport and Smith

(2010), to thoroughly study the many facets of the exposome simultaneously, takes

a complicated high dimensional situation and increases the dimensionality (more

things to measure and associate with potential downstream effects of exposure). In

this context, we will need data adaptive tools, that can be developed to target spe-

cific parameters related to the scientific questions posed by studying the exposome,

avoiding bias automatically introduced by the use of parametric models. In this

paper, we expand on an idea originally presented for an EWAS study of childhood

exposures and later development, proposing a new combination of automated semi-

parametric estimation and inferential methods to assess the relative ”importance”

of potential biomarkers in high dimensional, but relatively small data sets. The

methodology can be adapted to almost any situation, in this case we discussed es-

timating variable importance in the context of a binary variable of interest (in our

case exposure to a potential environmental toxin) and potentially many confound-

ing variables. We present the method by analyzing miRNA expression array across

subjects of different measured characteristics, but it obviously has the potential for

use in for a very general data structure involving finding the impacts of specific

factors among a large suite of candidates. However, one of the obvious dangers of

data adaptive methods used in combination with very high dimensional data with

relatively small samples sizes is the potential for spurious false positive findings, a

potential epidemic which is occurring in the general field of high dimensional biology

(e.g., see Ioannidis (2005)). However, we present a methodology that can at least

avoid errors of analysis assuming a misspecified parametric model, and in a field
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of study where the dimension, and thus potential for false positives, will also grow

without the use of more rigorous methods. Thus, we propose a semi-parametric

(data-adaptive) method, that still can provide trustworthy robust inference, as well

as the flexibility to target parameters that directly address the scientific question of

interest.

Parametric or non-parametric (for simple comparisons across groups) methods

have been widely studied in the literature by applying standard statistical tests per-

haps with robust inference. When the estimation of the association of biomarkers

involve adjustment of potential confounders, researchers have typically parametric

regression models (e.g. Wang et al. (2012) and references therein). Though co-

efficients of linear model, multiple regression, or some other parametric methods

have been considered natural candidates to measure the relationships of interest,

these methods suffer from arbitrary assumptions (biased statistical models) of the

data generating, since one typically knows very little in these circumstances about

true probability distribution. In fact, though typically ignored, assuming an un-

derlying model to make inference for the parameter may be misleading, claiming a

certainty that does not exist. When the model is unknown, the dimension of the

problem large, and the sample size small (often the case in studies of biomarkers),

then data adaptive methods are warranted (nonparametric methods are impossible,

and parametric methods unjustified). Such data adaptive methods, e.g., machine

learning, avoids misspecification of the statistical model (since they are very large),

but, at first blush, do not directly provide simple summary measures of the variable

importance.

The methods of this paper are inspired by the goal of determining which mea-

sures (e.g., biomarkers) have the greatest independent association with some trait

of interest, such as exposure to a potential toxin. In a simple motivating data set,

we use differentially expressed miRNA’s between two groups of exposed and non-

exposed workers, by considering the all confounders of exposure in the model. As

done in (Young et al. (2012)) the parameter of interest used is the average treatment

(or exposure) effect (Holland (1986)) inspired by the causal inference literature, but

can also be defined as a statistical parameter: the difference between conditional

expectations of the outcome given different levels of treatment effect and covariates

for each subject, averaged across all subjects (Bembom et al. (2008)). The particu-
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lar estimator emphasized is a substitution estimator based on Targeted Maximum

Likelihood Estimation (TMLE; Van der Laan and Rose (2011)).

Because the goal is to yield an algorithm that can be applied in automated

fashion to find the relative importance of competing biomarkers in an unspecified

statistical model, we concentrate on inferential methods for the TMLE estimates

that are robust for small sample sizes, even when aggressive data adapted tools are

used. As discussed below, one of the great advantages of TMLE is that the esti-

mators can be so-called asymptotically linear (and thus normally distributed) with

easy calculated standard errors ( based on the influence curve). While these SE’s are

computationally inexpensive to derive, they can be unstable in small sample sizes.

Thus, we introduce a general method of combining the empirical Bayesian method,

(Smyth, 2005a), with influenced curve based inference, to derive more robust gen-

eral methodology in finite sample sizes. The result is a computationally efficient,

automated method for deriving the joint inference in a very large (semi parametric)

statistical model of many related exposome measures.

In section 2, we introduce our propose methodology, by first motivating our

methodology via a omic study of occupational exposure. We then outline the de-

tailed steps of the method, from formally defining the data and the target param-

eter of interest, to estimating the statistical model using data-adaptive approaches

(SuperLearner), to using the resulting prediction model to optimally estimate, via

Targeted Maximum Likelihood, the variable importance measure.

We then present a generalization of Limma that can be used for the estimates

of these type of variable importance measures. In section 3, we apply the proposed

methodology to the example study, and we finish in section 4 with a discussion.

2 Methods

2.1 Data Structure

MicroRNAs (miRNA) are single-stranded RNA molecules of about 21-23 nucleotides

in length, which regulate gene expression. In this study our aim is to find out the

association of miRNA expression between an exposure in 18 subjects (20 samples, 2

technical replicates), from a study of occupational exposure in factories in Tianjin,
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China (McHale et al., 2011) and Lan et al. (2004). The miRNA expression was

measured by Affymetrix GeneChip miRNA 2.0 microarrays based on 4592 probes

specific to Homo Sapiens small RNAs, including miRNAs. Among the 18 subjects,

11 were exposed and the rest were unexposed controls. We considered 5 potential

confounding factors: age, gender, BMI, cigarette smoking, and alcohol use.

In this example, our aim is to find the association of an environmental exposure

on the gene expression of 4592 probes (miRNA) simultaneously and about some

complicated situations and the challenging part which is due to the small sample

sizes with existing of confounders in the model. This could be easily generalized to

situations where one has a greater number of potential exposure biomarkers, as well

as other confounding variables.

2.2 Defining the model and targeted parameter

The aim of analyzing these datasets is to rank the importance of a set of candi-

date biomarkers with regards to their independent association with the outcome

(exposure in this case). In order to find a method for ranking biomarkers, we

define a so-called variable importance measure (VIM) (Van der Laan and Rose,

2011). Let O = (W,A, Y ) ∼ P0 represent a random variable regarding the observed

data, where W are the corresponding confounders, A is the exposure of interest,

Y is a vector of potential biomarkers (Y = (Yb, b = 1, .., B)), and P0 be the corre-

sponding unknown probability distribution of the data. For our specific data set,

W = W1,W2,W3,W4,W5 where factor age (W1) is continuous measure, gender (W2)

is binary, smoking situation (W3) binary, BMI (W4) is continuous measure and al-

cohol consumption (W5) is a binary variable, A is binary exposure (yes=1, no=0),

and Yb are, one at a time, the miRNA expression values.

First, as a general definition of a parameter, consider Ψ(P0) be the target pa-

rameter according some function Ψ that maps the probability distribution P0 in

to the target feature of interest. The parameter Ψ(P0) is a function of the un-

known probability distribution P0. If Pn represents the empirical distribution of the

O1, O2, ..., On, we are interested in the substitution estimators of the form Ψ(Pn),

that is we apply the same mapping but to the empirical distribution, to derive our

estimate. Thus, we expand the parameters of interest beyond coefficients in a typi-

4

http://biostats.bepress.com/ucbbiostat/paper315



cally arbitrary (and certainly misspecified) parametric statistical model, to define a

parameter as a feature of the true probability distribution P0 of the data using true

knowledge we have about P0. Specifically, we propose here what we refer to as a

targeted variable importance measure (VIM)(Bembom et al., 2008):

Ψb = Ψb(P0) = EW [E0(Yb|A = 1,W )− E0(Yb|A = 0,W )]. (1)

Note that under identifiability assumptions, such as no unmeasured confounding,

that this parameter of the statistical model identifies a parameter of a causal model,

specifically Ψ(P0)b = E[Yb(a = 1) − Yb(a = 0)], or the differences in the mean of

the biomarker in the population had everyone been exposed minus the mean had no

one been exposed (Pearl, 2000). This is referred to as the average treatment effect

(Rosenbaum and Rubin, 1983). The significance of this is that such parameters are

not defined via a parametric model, and so one is free then to fit the model based

on few if any assumptions; thus, one can use data-adaptive methods and still report

the estimate of a relatively simple parameter.

2.3 Estimation

The targeted parameter is defined as a feature of the unknown probability distribu-

tion P0 in Section 2.2, and the next step is to making inference about this parameter.

There are general classes of estimators available for estimating Ψ. Here we focus on a

substitution estimator (that is estimate 1 plugging estimates for Q and the empirical

for P0(W )), where the estimate of Qb
0(A,W ) ≡ E0(Yb|A,W ) is based on TMLE (Tar-

geted Maximum Likelihood Estimator ) Gruber and Van Der Laan (2009). TMLE

is a two stage estimation procedure, in which an initial estimate of Q0 is updated

(in the 2nd step) before deriving the substitution estimator,

Ψ(Pn)b =
1

n

n∑
i=1

Qb
n(1,Wi)−Qb

n(0,Wi) (2)

where Qb
n represents an estimate of Qb

0.
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2.3.1 SuperLearning

The first step in this two-stage estimator is to derive an initial estimate of Qb
0,

referred to as Q
(b,0)
n . One could, for instance, assume a parametric statistical model

that results, for instance, 1 being equivalent to a coefficient (e.g., Qb
0(A,W ) =

αb + βb
AA + βb

WW ). However, given that 1 is defined in a nonparametric model,

there’s little sense in estimating with a misspecified regression model, when tools

exists to data-adaptively estimate Qb
0 in a much bigger model. Specifically, given

that the model Qb
0 is typically unknown, one should be able to derive less biased

estimates by applying available machine learning algorithms, many of them imply

a (near) nonparametric statistical model for Qb.

However, this raises the issue of which data-adaptive algorithm is optimal, and

no such theory exists for any one ”learner”. However, there is theory to support a

procedure that examines a multitude of candidates. Specifically, the SuperLearner

(SL) algorithm, which is a so-called stacking algorithm implemented as a cross-

validated selector, that produces a estimate which is an optimally weighted (to

minimize the cross-validated risk) the predictions from a set of candidate algorithms.

These algorithms can very from very simple/smooth to highly data-adaptive (Van

Der Laan et al., 2007).

Though the set of candidates is somewhat arbitrary, the theory developed behind

SL (the Oracle Inequality) offers some guidance as to the type and number of candi-

dates one should consider in the fitting routine. Specifically, if one of the candidate

learners is actually the true model and converges at a parametric rate, the SL will

converge at an close to parametric rate. In general, the SL will do, in first order,

do as well (in terms of risk) as an algorithm that chooses the particular candidate

learner based on knowing the true distribution (that is, the Oracle Selector), and

this result holds as long as the number of candidates is on the order of a polynomial

in sample size. Thus the SL theory encourages the use of a very large number of

possible learning algorithms and ones that vary from very smooth, to aggressively

data-adaptive. The SL algorithm is available as a statistical package (Polley and

van der Laan, 2012) in the R programming language (Ihaka and Gentleman, 1996).
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2.3.2 TMLE

The SL estimate of Q0 is done to minimize the cross-validated risk, based on some

loss-function (such as squared error, or -log likelihood), that is not the target of

the analysis, which is to minimize the mean-squared error of Ψb. In addition, there

is no guarantee that given a set of highly data-adaptive learners used by the SL,

that the estimate of Ψb, particularly for a relatively small sample size, has a normal

sampling distribution. Fortunately, Van der Laan and Rose (2011) introduced an

estimator for Q0, that ”targets” the estimate of the regression, towards the particu-

lar parameter of interest, and also ”smooths” the estimator such that the sampling

distribution converges more quickly to a normal distribution. In addition, this tar-

geting step can be thought of as a bias reduction step, given that data-adaptive

selection represented by SL can result in an estimate of Ψb that suffers from residual

confounding. This can occur, for instance, if selection of the variables in a pro-

cedure for estimating Qb
0 leaves out some regressors that are truly confounders of

the association of A and Y . The resulting estimator is also more robust to model

misspecification than the substitution estimator based on the initial SL fit, as well

as being semi-parametrically locally efficient. For a full explanation of the theory

behind TMLE and the formal justification of the estimator as most efficient among

a class of estimators in a semiparametric model, see the appendix of Van der Laan

and Rose (2011).

Algorithmically, the TMLE estimator in this context is a simple one-dimensional

augmentation of the initial fit. Specifically, to the SL fit, if the outcome is continuous,

one fits a simple, one-dimensional regression of type:

Q(b,1)
n (A,W ) = Q(b,0)

n (A,W ) + εhĝ(A,W ),

where the initial fit, Q
(b,0)
n (A,W ) is treated as an offset, and hĝ(A,W ) is a covariate:

hĝ(A,W ) =
I(A = 1)

ĝ(1|W )
− I(A = 0)

ĝ(0|W )

where ĝ(1|W ) is an estimate of the P (A = 1 | W ) or the propensity score (Rosen-

baum and Rubin, 1983). The selection of ĝ can also be made by a process that

minimizes the mean-squared error of the parameter of interest (Gruber and Van

7
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Der Laan, 2010), but in this case, we use simple main terms logistic regression. Fi-

nally, one derives the final TMLE estimate of the Ψb using the augmented estimate

of Q, or

Ψ̂b(Pn) =
1

n

n∑
i=1

[Q(b,1)
n (1,Wi)−Q(b,1)

n (0,Wi)]. (3)

2.4 Inference

As shown in Van der Laan and Rose (2011), Ψ̂b(Pn) of Ψb is asymptotically linear

with influence curve IC(O) if it satisfies

√
n(Ψb(Pn)−Ψb(P0)) =

1√
n

n∑
i=1

IC(Oi) + op(1). (4)

Thus, in other words, the variance of Ψ̂b(Pn) is well approximated by sample variance

of the influence curve divided by the sample size, n. In this case, the plug-in influence

curve (IC) for the ATE is:

ICb,n(Oi) =

(
I(Ai = 1)

gn(1|Wi)
− I(Ai = 0)

gn(0|Wi)

)
(Yb,i −Q(b,1)

n (Ai,Wi)) +Q(b,1)
n (1,Wi)

−Q(b,1)
n (0,Wi)−Ψb(Pn). (5)

Finally, we can derive asymptotic p-values and confidence intervals using a Wald

type approach, or

pvalue = 2

[
1− Φ(

|Ψb(Pn)|
σb
n/
√
n

)

]
95 % CI = Ψb(Pn)± 1.96σb

n/
√
n,

where σb
n is the sample standard deviation of the ICb and Φ(·) is the cumulative

standard normal distribution.

2.4.1 Limma Applied to Influence Curve-Based Inference

By applying directly the TMLE estimator of targeted parameter, using data adap-

tive methods in small samples, one will often face high unstable standard error
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estimation, so that the joint inference of this targeted variable importance measure

can result in erroneously significant biomarkers. Thus, we want a technique that

asymptotically provides the correct inference, but in small samples, can “borrow”

information across the many estimates of sampling variability (the σb
n), to provide

more robust finite sample inference. Fortunately, an established empirical Bayes

technique, developed for high dimensional situations (such as one involving 1000’s

of candidate biomarkers) accomplishes this twin goals. Specifically, we propose the

Limma approach for improving the finite sample performance for the inference about

targeted parameter. Limma is package in R which use linear model for microarray

data by using empirical Bayes (Smyth et al., 2004). Limma borrows information

across all genes and make more stable and robust inference for microarray data

(Smyth, 2005a). In Section 2 we explained that a common way of making inference

about the targeted parameter Ψb, (for the enough sample size), is to find the influ-

ence curve values for Ψb. Then by calculating the corresponding standard errors of

the influence curve of Ψb and finding the corresponding p-values based on that and

making inference about Ψb for each probe. We used Limma package for the applying

empirical Bayes inference for all probes based on (Smyth, 2005b) as the following

steps:

• Find influence curve for each probe, and find the corresponding matrix of

influence curve for all subjects and all probes.

• Add the Ψb(Pn) estimate to each row of the mean zero influence curve matrix,

to get a row that has as simple sample average, Ψb(Pn), but whose variance is

the sample variance of the ICb.

• Perform Limma on this matrix (assuming estimating the simple mean),

• Use the resulting inference, based on the shrinkage estimate of the sampling

standard deviation of the influence curve, σ̃b
n which is a weighted average of

σb
n and a value close to the average of all these sample standard deviation esti-

mates across the biomarkers, or σb
n ≈ 1

B

∑B
b=1 σ

b
n, or σ̃b

n = wtbσ
b
n + (1−wtb)σb

n,

where the wtb is between (0,1). see Smyth (2005a) for formal presentation. As

n→∞, wtb → 1, and so σ̃b
n → σb

n

9
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• Use multiple testing corrections to make inference about all probes. Here we

used False Discovery Rate (FDR) correction.

Thus, this procedure will shrink aberrant values variability estimates toward the

center of the distribution, particularly if the sample sizes is relative small. The

practical effect is that it tends to reduce the number of significant biomarkers, driven

by (potentially) erroneous underestimate of variation of the parameter estimates of

interest, Ψb(Pn).

3 Data Analysis

3.1 miRNA

For the miRNA dataset in 2.1, we first applied a standard, linear model approach

to get the VIM, using Limma as well. We show these results in Table 3.1.1, where

for each method we calculated the parameter estimate (coefficient correspond to

exposure in linear model), standard errors of the coefficient, original p-values and

the corresponding adjusted p-values or q-values based on BH correction (Benjamini

and Hochberg, 1995) for top 10 more important biomarkers.

Then we made inference about miRNA dataset based on the semiparametric

method using TMLE 2.3.2 as well as adapting of empirical Bayes Limma method,

that introduced in chapter 2.4.1. We used TMLE package in R which is introduced

by Gruber and van der Laan (2012), and we used stepwise generalized linear models

and choose the best model in a stepwise algorithm. If one had a relatively larger

sample size, then a larger set of more flexible algorithms would be added.

As in the case for the simple linear model, we performed BH multiple testing

procedure to find the significant probes. We show the results in Table 3.1.1 where we

calculated the estimation of targeted parameter, standard error of parameter, origi-

nal p-values and the corresponding q-values for both methods, after BH corrections

for all probes. the results are shown for top 10 most significant probes.

10

http://biostats.bepress.com/ucbbiostat/paper315



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Top significant P−values based on TMLE and Limma for testing the targeted parameter

TMLE

Li
m

m
a

Figure 1: P-values of top 10 significant probes according to TMLE and

Limma for IC of Ψ

3.1.1 Results

The results show that applying parametric linear regression model and also Limma

for testing the corresponding parameter gives no significant Probes and inference

based on TMLE estimation there are 23 significant probes at 5% of significant level

and by applying Limma package on the matrix of influence curve added by estima-

tion of Ψb effect, there are only 2 significant probes at 10% of significant level. In

Figure 3.1.1 we compare the significant probes based on two methods. The results

suggest that the shrinkage estimator using Limma for targeted parameter, provides

more conservative inference for the targeted parameter, relative than directly using

just σb
n based only on the IC within one biomarker, b.

As expected, Limma reduced the spread of the standard deviation estimates

of the IC (σ̃b
n) across the 4952 probes, and the corresponding Wald-statistics for

testing the targeted parameter, in comparison of using the original standard error,

σb
n. In Figure 3.1.1 we compare the boxplots of Wald-statistics between two methods

for top significant probes. Thus using directly TMLE for the small sample size of

subjects leads many significant probes that may comes from variability of standard

errors estimated by influence curve and adapting TMLE by Limma will reduce the

variability of standard errors and reduce the number of significant probes which

leads to the more robust inference.

11
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Figure 2: Comparison of variability of standard errors for top 10 signif-

icant probes, according to TMLE estimation based on TMLE (Standard) and

TMLE (Limma)

3.2 Genomic Example

We performed simulations using mRNA data generated from subjects in the ben-

zene occupational study, 59 shoe factory workers exposed to benzene (1<ppm ) and

42 healthy unexposed control clothing factory workers McHale et al. (2011). First,

we calculated statistical inference for all subjects using both methods. According

to TMLE, differential expression of 2188 probes was found to be significant. Ac-

cording to Limma, 2086 significant probes were found after multiple test correction

FDR (BH), treating these set as the set of “true” differentially expressed probes.We

then randomly sampled from the list of arrays and re-did the analysis. This was

repeated randomly as different sample for equal numbers of exposed vs. controls

(n = 8, 15, 20, 25, 30) and, we report the performance (overlap) relative to the set

found with all original samples (59 exposed, 42 controls).

12
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Table 1: Top 10 table of probes listing for testing the effect of exposure

based on Linear model estimation according to standard Linear model and

Limma inference. SE, p and q are corresponding to standard error of regression

parameter (ΨLM ) and corresponding p-values and q-values (adjusted p-values

after BH correction)

Linear Model (standard) Linear Model (Limma)

Ψ̂LM SE p q Ψ̂LM SE p q

Prob 1 0.36 0.08 1× 10−3 >0.10 0.36 0.04 1× 10−3 >0.10

Probe 2 0.55 0.13 1× 10−3 >0.10 0.55 0.07 1× 10−3 >0.10

Probe 3 0.25 0.06 1× 10−2 >0.10 0.25 0.03 1× 10−2 >0.10

Probe 4 0.35 0.09 1× 10−2 >0.10 0.35 0.05 1× 10−2 >0.10

Probe 5 0.45 0.13 1× 10−2 >0.10 0.45 0.07 1× 10−2 >0.10

Probe 6 -1.14 0.33 1× 10−2 >0.10 -1.14 0.42 1× 10−2 >0.10

Probe 7 0.40 0.11 1× 10−2 >0.10 0.40 0.06 1× 10−2 >0.10

Probe 8 -0.68 0.20 1× 10−2 >0.10 -0.68 0.16 1× 10−2 >0.10

Probe 9 0.83 0.24 1× 10−2 >0.10 0.83 0.23 1× 10−2 >0.10

Probe 10 0.70 0.22 1× 10−2 >0.10 0.70 0.18 1× 10−2 >0.10

3.2.1 Results

In Table 3.2.1 the simulation is based on one draw for each sample size and shows

that at small sample sizes the number of significantly differentially expressed probes

decreases dramatically using the standard IC-based inference, versus adding the

Limma approach, which also means a much lower false positive rate. This difference

continues at larger sample sizes, but not as dramatically, as difference of Limma

versus standard estimates of the IC’s by probe diminishes. Though not a simulation

from a known true distribution, this shows the potential danger of using IC-based

inference with aggressive data-adaptive procedures at small sample sizes, and the

benefit of Limma to make these inferences much more robust.
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Table 2: Top 10 table of probes listing for testing the effect of exposure

based on Targeted Maximum Likelihood Estimation according to TMLE and

TMLE adjusted by Limma inference . SE, p and q are corresponding to both

the non-altered initial sampling standard deviation of the IC, σb
n, and that

corresponding to the Limma estimate, σ̃b
n, p-values, and q-values (adjusted

p-values after BH correction)

TMLE (σb
n) TMLE (Limma; σ̃b

n)

Ψ̂TMLE SE p q SE p q

Probe 1 0.36 0.29 1× 10−9 <0.05 0.11 1× 10−5 <0.10

Probe 2 0.56 0.47 1× 10−7 <0.05 0.23 1× 10−5 <0.10

Probe 3 0.24 0.23 1× 10−6 <0.05 0.09 1× 10−4 >0.10

Probe 4 0.33 0.33 1× 10−6 <0.05 0.13 1× 10−4 >0.10

Probe 5 0.47 0.49 1× 10−5 <0.05 0.24 1× 10−4 >0.10

Probe 6 -1.23 1.31 1× 10−5 <0.05 1.28 1× 10−4 >0.10

Probe 7 0.40 0.43 1× 10−5 <0.05 0.20 1× 10−4 >0.10

Probe 8 -0.76 0.80 1× 10−5 <0.05 0.58 1× 10−4 >0.10

Probe 9 0.84 0.92 1× 10−4 <0.05 0.75 1× 10−4 >0.10

Probe 10 0.71 0.77 1× 10−4 <0.05 0.54 1× 10−4 >0.10

4 Discussion

The goal of this paper is to introduce an automated, robust method for analyzing

high dimensional exposure and omic data with relatively modest sample sizes. In the

example used, the challenge was not just from a large number of comparisons (poten-

tial biomarkers), but involve adjusting for potential confounders, all in the context

of a large statistical model and small numbers of biological replicates. Given the

goal is estimation within an unknown statistical model, the technique must involve

data adaptive estimation, though the goal is to still provide trustworthy statistical

inference and estimators that are based on semiparametric efficiency theory. That

is, given the parameter of interest and the statistical model, the choices guiding

the algorithm should not be ad hoc, but based on the relative efficiency of compet-

ing estimators. We have proposed methods that take the existing work on GWAS
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Table 3: Number of significants Probes after BH correction for the mRNA

Data sets using TMLE and adapting by Limma. n is the number of sub-samples

from each of exposed and non-exposed samples. FP TMLE shows the number

of false positive Probes in TMLE method and FP Limma shows the number of

false positive Probes in Limma.

n TMLE FP TMLE Limma FP Limma

8 373 296 25 12

15 1136 312 771 159

20 1353 295 1047 168

25 1357 178 1159 120

30 2009 532 1741 403

and merge them with existing proposals for variable importance, and techniques for

deriving empirical Bayes estimates of the sampling variance in the context of high

dimensional data, for an automated procedure that can data adaptively list the most

promising biomarkers among similar study designs.

We illustrated the method using an example miRNA versus benzene exposure

by applying, on a probe by probe basis, TMLE/SuperLearning to estimate the as-

sociation of each potential marker with exposure. The estimation was conducted

using a combination of SuperLearning and TMLE. In addition, as has been proposed

before, we present a simple way to generalize the Limma approach (Smyth, 2005a),

to robustify small sample inference, that relies on deriving the influence curve of the

estimator of the parameter of interest. The results suggest that one can ameliorate

unstable small-sample inference by combining this asymptotically efficient estimator

(TMLE) with Limma; in our data example, this results in fewer statistically signifi-

cant biomarkers. In addition, because Limma has no impact on the asymptotics (the

adjustment to the within probe inference becomes negligible as sample size grows),

we can rely on the asymptotic theory developed for TMLE.

This combination of existing methods offers many advantages: 1) it estimates

parameters relevant to scientific question, in context of confounders, making no

assumptions about the statistical model, 2) it uses theoretical optimality of loss-

based estimation (Oracle selector) via the SuperLearner algorithm, which does an
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optimal job balancing the variance-bias trade off in small samples by automatically

choosing a level of parsimony to match the information available in the sample, 3)

TMLE estimators reduce residual bias and add an appropriate amount of smoothing,

along with the availability of influence curve based inference unavailable for the

straight substitution estimator, 4) robustifies the inference by using an empirical

Bayes approach (Limma) to derive joint inference with less false positives resulting

from poor estimation of the sampling variability. The result is a theory-driven, data-

adaptive procedure based on pre-specified algorithm with robust statistical inference.

Though the continuing development of new technologies promises new insights into

the relationship of biomarkers, and human health and disease, this procedure helps

to ameliorate the pitfalls of increasing the dimension of the data (and thus avoiding

a commiserate increase in false positive findings) by creating a rigorous statistical

procedure for discovery.
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