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We introduce statistical methods for prediction of types of human movement based

on three tri-axial accelerometers worn simultaneously at the hip, left, and right wrist.

We compare the individual performance of the three accelerometers using movelets and

propose a new prediction algorithm that integrates the information from all three ac-

celerometers. The development is motivated by a study of 20 older subjects who were

instructed to perform 15 different types of activities during in-laboratory sessions. The

differences in the prediction performance for different activity types among the three ac-

celerometers reveal subtle yet important insights into how the intrinsic physical features

of human movements could be effectively utilized in prediction. The proposed integrative

movelet method takes into account those findings to augment the prediction accuracy and

improve our understanding of human movement measurements.

Keywords: Accelerometer; physical activity; signal processing; pattern recognition;

time series

1 Introduction

The objective and detailed characterization of daily physical activity is crucial for re-

search studies where physical activity is involved as an exposure or outcome of interest.

However, self-report based instruments for physical activity require people’s cognitive

and mental input, and are frequently subject to error due to recall bias, selection bias,
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Figure 1: Accelerometer placement on the body. The left and middle panels present how an
accelerometer was attached to hip and wrist, respectively. Accelerometers have the
same orientation. The right panel illustrates how the three axes of signals in the
output are denoted.

or potential cognitive decline and impairment in the target population. In the search

for objective and refined measurements of physical activity, researchers have increasingly

relied on accelerometers in observational studies and clinical trials (??????????). A tri-

axial accelerometer is a wearable electromechanical sensor that records ultra-high density

real-time dynamic accelerations in three mutually orthogonal directions. Accelerometers

are relatively small in size and can be attached to different parts of the human body. A

fundamental question is how to decipher and interpret the acceleration signals into mean-

ingful information such as duration, intensity, and type of physical activities. Here we

provide methods for predicting activity type based on single and multiple accelerometers

worn at different parts of human body, including hip, right wrist, and left wrist.

Our methods are motivated by the Aging Research Evaluating Accelerometry (AREA)

study, which is designed to investigate how well accelerometry data collected from the hip

versus/and from the wrist reflect a given program of activities, including movements that

emphasize either lower or upper body activities. The AREA study serves as a preceding

study for evaluating the accelerometry data from NHANES assessment that is using a

wrist accelerometer to increase compliance, as well as other epidemiological accelerometry

studies to be conducted by the Laboratory of Epidemiology and Population Science group

at the National Institute on Aging. In the study, 20 older participants were instructed
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Figure 2: The hip-worn, right wrist-worn, and left wrist-worn accelerometry data from Subject
1 for activities chairStand, fastWalk, and write
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Groups Labels Description Duration

Resting
lying lay still face-up on a flat surface with arms at

sides and legs extended
10 mins

stand standing still with arms hanging at sides 3 mins

Upper
body
(while
standing)

washDish fetch wet plates from a drying rack, dry them
using a trying towel, and stack adjacent to the
drying rack one-by-one

3 mins

knead knead a ball of playdough as if for cook-
ing/baking

3 mins

dressing unfold lab jacket, put jacket on (no but-
toning), then remove, place the jacket on a
hanger, and put the hanger on a nearby hook

3 mins

foldTowel fold towels and stack them nearby 3 mins
vacuum vacuum a specified area of the carpet 3 mins
shop walk along a long shelf, remove labeled items

from the upper shelf about chest height, and
place them on the lower shelf about waist
height

3 mins

Upper
body
(while
sitting)

write write a specified sentence on one page of the
notebook, then turn to the next page and re-
peat

3 mins

dealCards hold a full deck, and deal cards one-by-one to
six positions around a table

3 mins

Lower
body

chairStand starting in a sitting position, rise to a normal
standing position, then sit back down

5 cycles

normalWalk
Swing

starting from standing still, walk 20 meters at
a comfortable pace

20 meters

normalWalk
NoSwing

starting from standing still, walk 20 meters at
a comfortable pace with arms folded in front
of chest

20 meters

fastWalk
Swing

starting from standing still, walk 20 meters at
the fastest pace

20 meters

fastWalk
NoSwing

starting from standing still, walk 20 meters at
the fastest pace with arms folded in front of
chest

20 meters

Table 1: The labels, detailed description, and durations of the 15 activity types.
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to perform 15 different types of activities sequentially according to a protocol during a

65-minute period, while wearing an Actigraph GT3X+ at the hip, right wrist, and left

wrist, respectively. Table 1 provides the detailed description, duration, and labels for the

15 activities. The selection and design of these activities are intended to simulate a free-

living context. In the rest of the paper, the activity types are referred to by their labels.

For each accelerometer, the collected data contain a tri-axial time series of accelerations in

the units of the standard gravity on earth, i.e., g. The sampling frequency of the Actigraph

GT3X+ used is 80HZ. As presented in Figure 1, the accelerometers were attached to hip,

right, and left wrist in a consistent orientation with respect to the human body in a

standard standing up position, based on which, the three mutually orthogonal axes are

denoted “UpDown”, “ForwardBackward”, and “LeftRight”, respectively. Corresponding

to the protocol and the start/end times for each activity, a time series of labels of activity

types is constructed to annotate the accelerometry data for each subject.

Figure 2 displays the hip-worn, right wrist-worn, and left wrist-worn accelerometry

data from Subject 1 for activities chairStand (top panels), fastWalk (middle panels), and

write (bottom panels). In the top panels, Subject 1 repeats standing up and sitting back

down 5 times, which is recognizable from the accelerometry signals. For example, it is easy

to identify 5 spikes on the UpDown axis (shown in blue) from the hip-worn accelerometry

data. The middle row displays fastWalk, indicating a strong periodic pattern in all three

axes. For chairStand and fastWalk, the left and right wrist-worn accelerometers yield

similar patterns, while the hip-worn accelerometer provides different patterns from the

wrist-worn accelerometers for each activity. The bottom panels dedicated to writing

indicate that the hip-worn signals remain largely unchanged around approximately 1 unit

of gravity p9.81m{s2q on the UpDown axis, as subjects were sitting while writing. The

left wrist-worn accelerometer also indicates lack of movement, though the position of the

hand is different from that of the hip, as illustrated by the different mean signals. The

right wrist-worn accelerometer for write produces accelerations in a consistent pattern

with substantially lower magnitude than those for fastWalk. We can expect that Subject
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1 uses the dominant right hand to write, while placing the left hand on the table. The

short segment of irregular signals from the 10th to 12th second likely corresponds to a 1.5

second interval when Subject 1 used the left hand to turn over one page (See description

of write in Table 1). As it is shown in Figure 2, for accelerometers attached to the

same parts of human body, the tri-axial signals differ in sign (i.e., direction), magnitude,

and variability among different activities; whereas for the same activity, accelerometers

attached to different parts of human body reveal different aspects of the movements.

Here we introduce methods for predicting activity type and provide answers to the

following questions: 1) how well do accelerometry data reflect a given program of activities;

and 2) given available accelerometry data from hip, right, and left wrist, how could

we effectively integrate and take advantage of the combined information? The intrinsic

features of accelerometry data present a range of challenges for answering these questions.

First, the relatively high sampling frequency of accelerometers produces ultra-dense and

massive amount of acceleration data (80 � 9 � 720 observations per second with around

720 � 65 � 60 � 2, 808, 000 observations per subject during a 65-minute period). Second,

the output of accelerometers are tri-axial time series, which increases the dimension of the

activity prediction problem. Third, when more accelerometry data from multiple parts of

the human body are available, they also contain additional sources of variability that may

not necessarily help activity prediction. Meanwhile, human activities consists of different

movements of different parts of human body. Last but not least, novel graphic tools are

needed to visualize the accelerometry data and the prediction process.

The intuition behind our methods for predicting activity type is that the movements

with similar accelerometry patterns are likely to correspond to the same type of activity.

The movelet approach proposed in (?) developed for one tri-axial accelerometer provides

insight into what exactly leads to differences in prediction. A movelet is the entire time

series collected in a window of given length, say 1 second. The sets of movelets constructed

from the accelerometry data with annotated labels are organized by activity types, i.e.,

“chapters”, which play the role of accelerometry dictionaries for different activity types.
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Predictions of accelerometry data without annotated labels are provided through identi-

fying the chapter that is most similar to the data in terms of mean squared error. This

can be extended to multiple accelerometers in at least two ways: 1) by building separate

movelet dictionaries and then combining predictions using voting or sequential decisions;

or 2) by designing a joint dictionary, where a movelet is now a collection of nine time

series (3 for each accelerometer).

In the fields of electronic engineering and computer science, researchers have developed

various methods for recognition of physical activity type, but less intense methodological

development has been seen in Biostatistics, especially in the context of epidemiological

studies in public health. Many machine learning techniques have been developed for ac-

tivity recognition, including linear/quadratic discriminant analysis (??), hidden Markov

Chain (??), artificial neural networks (?), support vector machines (?) and combined

methods (??). (?) and (?) reviewed and evaluated methods used in classification of

normal activities and identifying falls from accelerometry data. However, these predic-

tion approaches were usually developed and evaluated based on accelerometry data from

subjects and activities that are of marginal interest in the settings of public health. Ad-

ditionally, the prediction process tends to be very difficult computationally and hard to

interpret, which reduces its appeal in realistic scenarios occurring in observational studies.

Some studies did take advantage of multiple accelerometers to predict the activity type

using machine learning techniques and to compare the performance of different accelerom-

eters (???). However, lack of transparency of these prediction algorithms provides little

insight into what exactly leads to differences in prediction. Meanwhile, subtle, intrinsic

characteristics of human movements have not been incorporated in these prediction algo-

rithms. Here we focus on accurate, fast methods that are easy to understand and mimic

the natural human pattern recognition.

The remainder of the paper is organized as follows. In section 2, we describe the

single movelets approach and compare prediction performance among hip, left wrist, and

right wrist-worn accelerometers. Section 3 proposes movelets integration approaches and
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presents the prediction results. We conclude with Section 4.

2 Single-accelerometer movelets

We first review the movelets approach developed for predicting activity type using one

tri-axial accelerometer in (?). The basic idea is to decompose the tri-axial time series into

overlapping short-segment pieces of data, i.e., the movelets. The prediction of the activity

type of an observation is based upon the similarity (distance) between the movelets that

contain the observation and the ones that are labeled. The similarity between two movelets

is measured by the mean square error. The entire process is similar to having a dictionary

of words (movelets) with their associated meaning (labels). Given a new word (unlabeled

movelet), the procedure simply requires looking up the word with closest meaning in

the dictionary (labeled movelet) and assigning the corresponding label to the new word

(unlabeled movelet). The idea is simple and easy to explain, though notations can be quite

involved, albeit necessary. Below we provide these notations and the detailed description

of the approach.

2.1 Single-accelerometer movelets definition

Denote the tri-axial accelerometry time series by X p
i ptq � tXi1ptq, Xi2ptq, Xi3ptqu, where

t � 1, 2, . . . , Ti and Ti is the length of time series, i � 1, 2, . . . , I and I is the total number

of subjects, p � 1, 2, 3, representing hip, right wrist, and left wrist-worn accelerometers,

respectively. Define the labeling function Lp
i ptq that maps time t P t1, 2, . . . , Tiu to a P A �

tAct1, Act2, . . . , ActAu based on data from the pth accelerometer, where Acta designates

the label of activity a. Let Ui and Wi be a partition of observation time into training data

and testing data for the ith subject. Lp
i ptq is known for labeled movelets in the training

data and needs to be estimated for movelets in the testing data. We can now define a

movelet as the basic unit of analysis. Let Mp
i ptq � tX p

i ptq,X
p
i pt� 1q, . . . ,X p

i pt�H � 1qu

define the movelet starting at t with length H. Note that movelets overlap; for example,
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the observation X p
i pt � H � 1q belongs to Mp

i ptq, M
p
i pt � 1q, . . . , Mp

i pt � H � 2q and

Mp
i pt�H�1q. We use overlapping movelets, as we are interested in predicting movements

without knowing precisely what part of a movement is captured by a particular movelet.

Movelets Mp
i ptq in the training data are labeled with known activity types and grouped

into activity-specific chapters Cp
i paq, a P A. More specifically, Cp

i paq is defined as Cp
i paq �

tMp
i ptq, t P Ui : Lp

i ptq � Actau. The set of chapters forms a subject-specific dictionary of

activities.

Given an unlabeled movelet, we find its closest match among labeled movelets in the

dictionary. The chapter title to which the closest-matched movelet belongs is used to

predict the unknown label. The intuition behind the approach is that movelets with

similar visual appearance are likely to represent a similar activity. Formally, given

an unlabeled movelet Mp
i pt0q, we can identify a movelet Mp

i pt
�q, t� P Ui as its closet

match in the dictionary that maximizes the similarity, or minimizes the distance. More

specifically, t� � argmintPUi
tD rMp

i ptq,M
p
i pt0qsu and the distance function Dp., .q is de-

fined as D rMp
i psq,M

p
i ptqs � 1

3

°3
d�1

b°H
h�1 rXidps� 1 � hq �Xidpt� 1 � hqs2. Denote

the activity label for Mp
i pt

�q by a� and thus Mp
i pt

�q P Cp
i pa

�q. For each observation

in the movelet Mp
i pt0q, i.e., tX p

i ptq,X
p
i pt � 1q, . . . ,X p

i pt � H � 1qu, the activity type a�

gets a vote. Given an observation X p
i pt1q, t1 P Wi, it is contained in H movelets, i.e.,

Mp
i pt1q,M

p
i pt1�1q, . . . ,Mp

i pt1�H�1q. Then we say each of those movelets would gener-

ate a vote for a certain activity type, referred to as
!
a�
Mp

i pt1q
, a�

Mp
i pt1�1q

, . . . , a�
Mp

i pt1�H�1q

)
,

for this observation. Define the number of votes for a certain activity a for the observation

X p
i pt1q by V p

i pa, t1q �
°t1�H�1

h�t1
1

�
a�
Mp

i phq
� a

	
, a P A. The activity type that gets the

largest number of votes is adopted as the final prediction for X p
i pt1q. Equivalently, define

Lp
i pt1q � argmaxaPAV

p
i pa, t1q.
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2.2 Single-accelerometer movelets results

We now apply the single movelets approach to the AREA study. In this approach each

accelerometer is treated independently of the other two accelerometers. As is described

in Section 1, data from hip, right, left wrist-worn accelerometers were collected from 20

subjects during 65-minute in-laboratory sessions. The subjects were instructed to perform

15 activities according to a protocol (see Table 1). The protocol is used to construct a

time series of activity labels accompanying the accelerometry time series. Four subjects

are excluded because they did not perform all 15 activities. The breaks between two

successive activities when subjects rested for around 3 minutes are removed from the

data; the transitional periods at the beginning and end of each activity where subjects

were transitioning from one activity to another are also dropped. In the following analysis,

data for a half-a-minute period for each activity of each subject are used as the testing

data. The length of the movelet H is taken to be 80, i.e., a 1-second window. A dictionary

of 15 chapters of activities is created for each accelerometer of each subject. For activities

with explicit beginning and end, such as chairStand, one replicate is used as training

data. For movements with periodic features, such as normalWalk and fastWalk, a 2-

second segment is utilized as training data. For other movements, a segment of length

2.5 seconds is adopted as training data.

The boxplot of the prediction accuracy, i.e., the proportions of correctly classified ob-

servations, for 15 activity types of 16 subjects using hip-worn accelerometer (red), right

wrist-worn accelerometers (blue), and left wrist-worn accelerometers (green) is shown in

Figure 3. On the x-axis we indicate the various activities and on the y-axis we display

the proportion of correctly classified observations for that particular activity for all sub-

jects. Because of the variability in the prediction accuracy across individuals, we present

the boxplots of those proportions of correctly classified observations for all subjects. For

each type of prediction approach, we plot a box in different color: 1) red for movelets

based on single accelerometer at hip; 2) blue for movelets based on single accelerometer
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at right wrist; 3) green for movelets based on single accelerometer at left wrist; 4) yellow

for movelets based on integrating the three accelerometers by expanding the movelets

from 3 to 9 time series; and 5) orange for movelets based on integrating the three ac-

celerometers by allowing the single movelet approaches to vote for the type of movement

and then by accepting the majority vote. We have created also a new activity type,

normalWalk combined, through combining normalWalk Swing and normalWalk noSwing

into one category; fastWalk combined is created in a similar way, combining fastWalk

Swing and fastWalk noSwing. The activity labels on the X axis are ordered decreasingly

by the median prediction accuracy of hip-worn accelerometers (red). Table 2 presents the

median prediction accuracy for each type of activities across subjects.

For resting activities, i.e., lying and standing, all accelerometers provide accurate pre-

dictions. This is reasonable, as visual data inspection reveals obvious differences between

these signals, even though they both have very low variability. The main difference be-

tween the accelerometry signals for lying and standing is that the local average of individ-

ual time series are different in magnitude and rank. This happens because accelerometers

have different angles with the vertical direction of gravity in the two different positions

lying and standing. For example, while standing still, the gravity would appear as accel-

eration signals mainly on the UpDown axis (simply because 1 earth gravity will be added

to any acceleration in the UpDown direction). Consequently, gravity affects differently

each accelerometer axis and the size of the effect depends fundamentally on the angles the

axes of the accelerometer form with the UpDown direction. Thus, the relative magnitude

of local average accelerations is a proxy for the angles of hip, right and left wrist with

the direction of gravity. While far from being a perfect proxy for position, this is enough

to differentiate between standing and lying. This is a case where the variability of time

series along their long term averages is of secondary importance, while the discrimination

between the two resting positions is done by the shift in the relative magnitude of the

mean functions.

Now we consider activities that mainly involving lower limbs. An arresting finding

12



Figure 4: Examples of prediction results using single movelets approach. Time series of raw
signals on three axes are plotted, accompanied by annotated labels and predicted labels.
Activities are color-coded. The examples are: 1) wrist-worn accelerometers can better
distinguish between normalWalk Swing and normalWalk noSwing (the left panels in
1st and 2nd rows) and between fastWalk Swing and fastWalk noSwing (the panels in
3rd and 4th rows); and 2) left wrist-worn accelerometers can predict dealCards with
higher accuracy than right wrist-worn accelerometers (the right panels in 1st and 2nd
rows).
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single
movelets:
hip %

single
movelets:
right
wrist %

single
movelets:
left
wrist %

expanded
movelets
%

movelets
voting
%

movelets
decision
tree %

lying 99.87 97.05 98.05 100.00 99.33 100.00
normalWalk
combined

99.15 99.36 99.35 100.00 100.00 98.13

write 98.91 97.91 97.81 100.00 97.52 99.58
fastWalk com-
bined

96.61 96.05 97.76 97.76 98.40 84.80

stand 96.09 95.31 96.25 100.00 97.81 98.13
normalWalk
Swing

93.50 98.87 98.86 99.19 98.45 97.55

chairStand 88.09 94.31 98.81 98.42 98.04 55.76
fastWalk Swing 84.97 95.87 97.68 96.70 98.22 84.75
normalWalk
noSwing

83.52 99.22 98.45 99.13 98.16 93.19

fastWalk
noSwing

81.56 97.85 98.73 98.89 97.32 96.30

knead 64.28 57.22 51.09 64.06 77.44 63.75
washDish 63.44 28.71 15.20 39.70 64.45 53.61
cards 52.81 62.21 95.94 100.00 80.31 33.75
vacuum 52.32 67.02 84.05 84.08 87.19 58.03
dressing 41.07 6.00 11.00 0.27 33.78 28.77
foldTowel 34.93 13.66 11.35 13.66 29.92 30.83
shop 24.72 37.97 24.43 32.80 40.54 28.40

Table 2: Median prediction accuracy for different types of activities using single movelets ap-
proach based on hip, right wrist, and left wrist-worn accelerometers, and using ex-
panded movelets, movelets voting, and movelets decision tree. Activities are ordered
decreasingly by the median prediction accuracy of hip-worn accelerometers.

is that the right wrist-worn and left wrist-worn accelerometers outperform hip-worn ac-

celerometers in predicting normalWalk Swing, normalWalk noSwing, fastWalk Swing,

fastWalk noSwing, and chairStand. This is unexpected and counter intuitive: why would

wrist worn accelerometers predict walking and chair standing better while these movement

are fundamentally performed by lower body acceleration? This requires more in-depth

analysis. Figure 4 shows three representative examples of prediction results for normal-

Walk, fastWalk, and dealCards. In each panel, labels of activities are coded in different

colors; the annotated labels and predicted labels are plotted in parallel accompanying the
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original signals. Given a time point, if the annotated label and the predicted labels are

of the same color, then the activity type is correctly predicted.

First consider accelerometry data for walking with and without arm swing as measured

by the hip (first row, left panel) and right wrist (second row, left panel) in Figure 4. It

is interesting that, as the person transitions from normal walk no arm swing to normal

walk with arm swing, the time series associated with hip movement does not seem to

display visually observable changes. In contrast, the wrist accelerometry indicates a strong

change. Most interestingly, the black accelerometry curve shifts to a much higher level

than before, probably because of the change in the angle of the accelerometer. Such

strong angle changes can be easily observed and detected using movelets and should

explain how information is being combined. The single movelets approach is confused

between the two types of movements when using the hip data only (see the predicted

labels alternating between gray and black, left panel in 1st row). In contrast, the predicted

labels based on wrist data is quite accurate for detecting differences between these two

types of movements. A very similar story holds for fast walking with or without arm

swing (row 3 and 4 panels). These findings have potential implication on accelerometers’

placement decisions in epidemiological studies. For example, consider a scenario when

investigators decide to use hip-worn accelerometers and are interested in distinguishing

between different types of walking. It is clear that it will be quite difficult to differentiate

between walking normally and walking carrying a small object (no arm swing). Thus, in

such situations it seems reasonable to simply define a label called normal walking that

includes both arm swing and no arm swing. Alternatively, a wrist worn accelerometer

could be used instead or in addition to the hip worn one.

Write and dealCards belong to the group of upper body activities while sitting. It

is somewhat surprising that accelerometers worn at three different positions yield very

accurate predictions for writing (see the blue red, blue and green boxplots in Figure 3

corresponding to write). Writing is a subtle movement that mainly involves hands com-

pared to other upper limb activities, such as foldTowel. While this may be viewed as a
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potential problem it actually helps discriminate between writing and other, more intense,

upper limb movements. The most counter intuitive finding was that hip accelerometry

also distinguishes writing from any other activity. This happens because people sit down

when writing and the posture of sitting helps distinguish writing from other upper limb

activities. It would probably be very hard to distinguish between sitting and writing

versus just sitting using hip accelerometry alone.

For dealCards, left wrist-worn accelerometers provide higher median prediction accu-

racy than right wrist-worn accelerometers and both outperform the hip-worn accelerom-

eters. The reason is that Hip-worn accelerometers cannot acquire the subtle movements

of hands, and often incorrectly classified dealCards as knead (5.4% averaged across sub-

jects) and foldTowel (5.3% average across subjects) etc. Right wrist-worn accelerometers

falsely predict on average 10.20% of observations of dealCards to be the activity write,

which is not completely surprising. The right panels in 1st and 2nd rows of Figure 4 shed

light on the difference of prediction performance between left and right wrist-worn ac-

celerometers. The right wrist-worn accelerometer yields more variable signals with larger

magnitude than the left-wrist accelerometer.

For activities knead, washDish, vacuum, dressing, foldTowel, and shop, all the three

accelerometers show lower median prediction accuracy and larger variability across sub-

jects, compared to the other activities. This probably happens because of the high level

of overlap in movement and ambiguity of some sub-movements across labeled activities.

The median prediction accuracy of each individual accelerometer for foldTowel, shop, and

dressing is below 50%. These six activities belong to the group of upper limb activities

while standing, are more complex, and require a series of distinct sub-movements (see

Table 1). Thus, selecting a short segment of training data that can characterize the main

features of the activities becomes a difficult task. Meanwhile, some of these activities

contain similar sub-movements; for example, in foldTowel, subjects are required to stack

the folded towels, and in washDish, subjects are also required to stack dried plates. This

also adds to the difficulty of distinguishing between those activities. On average, 12.80%,

16



13.05%, and 9.40% of dressing is falsely classified as foldTowel based on hip-worn, right

wrist-worn, and left wrist-worn accelerometers, respectively.

In summary, both accelerometers worn at the dominant hand and non-dominant hand

can capture lying, standing, normal walking, and fast walking as well as the hip-worn

accelerometers. The order of magnitudes of accelerations among the three axes is very

useful in detecting and differentiating various postures for all accelerometers. Handedness

may cause left and right wrist-worn accelerometers to record very different acceleration

signals, which may effect prediction performance. For activities like dealCards where the

dominant hand moves much more intensely than the non-dominant hand, the accelerome-

ters worn at the non-dominant hand yield higher prediction accuracy. Truncal movements

like walking are well recognized by all of the accelerometers worn at hip, right wrist, and

left wrist, while fine movements that occur at the distal extremities of human body are

predominantly captured by wrist-worn accelerometers. Thus, it is reasonable to expect

that integrating information from accelerometers worn at different positions would help

to better predict different activities, and thus leads to higher prediction accuracy. In the

next section, we propose several integrative movelets approaches.

3 Movelets integration

So far, we have applied and analyzed only the single-accelerometer movelets approach.

However, we have already shown that accelerometers worn at different positions contain

nontrivial complementary information about movement type. Here we propose simple

approaches for combining this information. Combining classifiers to improve prediction

is a intensely-studied topic in statistics and machine learning. In statistics, Breiman and

Wolpert discussed model stacking and averaging (???). Some good reviews on different

methods of combining classifiers in machine learning include (?????). We emphasize that

all these methods are developed for the case when a large space of predictors, X, is used

to predict an outcome, Y . Typically, these methods combine black box algorithms that
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are known to work well in many applications. Our case is different, as we have three

different predictor spaces, X1, X2, and X3 (i.e., accelerometers worn at hip, right and

left wrist, respectively), for each of which we have a good prediction approach: single-

accelerometer movelets. Meanwhile, we are fundamentally interested in preserving the

interpretation of the movelets approach, which allows fast exploration and visualization

of how they work and provide important insights into when they do not. Using black

box prediction algorithms when learning how to predict complex human activities would

be akin to starting to learn a new language by covering ones’ ears. Thus, we propose

three easy to understand and scale up integrative approaches: movelets voting, movelets

decision tree and expanded movelets. In movelets voting, among the three predictions

proposed by three accelerometers using single movelets approach, the prediction with the

largest number of votes is adopted as the combined prediction. Movelets decision tree

builds up a simple hierarchy of decisions based on movelets. The hip-worn accelerometer

first discriminate top-level groups of activities, followed by the low-level prediction using

wrist-worn accelerometers for specific activity types. The expanded movelets expands the

dimension of a movelet from three to nine, which incorporates the tri-axial time series

from all the three accelerometers. Now we provide the formal definition of these three

integrative movelet approaches.

3.1 Movelets integration definition

Following the notation from Section 2.1, for movelets voting, define LMV
i ptq � Lp�

i ptq,

where p� � argmaxpV
p
i pa, tq and represents the accelerometer that delivers the prediction

with the largest number of votes across activities. In movelets decision tree, the top-

level groups of activities are defined as Ã � tG1,G2,G3u, where G1 � tlyingu, G2 �

tdealCards, writeu, and G3 � tstand, washDish, kneading, dressing, foldTowel, vacuum,

shop, chairStand, normalWalk swing, normalWalk noSwing, fastWalk swing, fastWalk

noSwingu. The three top-level groups of activities correspond to lying, activity while
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sitting, and activity while standing (see Table 1). We use hip-worn accelerometers in the

top level and define the top-level chapters as C̃1
i pgq � tM1

i ptq, t P Ũi : L1
i ptq P Ggu, where

g � 1, 2, 3 and Ũi denote the top-level training data. The prediction results from the top-

level classifier reduces the number of candidate activity types for each observation; for

example, the observation predicted as resting by the top-level classifier will not be assigned

any activity types other than lying in the low level. Within each of the three top-level

groups, we use the prediction of the single-accelerometer movelets approach with left wrist-

worn accelerometers as our final prediction. For the expanded movelets, define Miptq �

tM1
i ptq,M

2
i ptq,M

3
i ptqu

T . Now movelets in testing data and training data are all extended

to nine dimensions. We define a variant of the distance function as D̃ rMipsq,Miptqs �
°3

p�1 tωp �DrMp
i psq,M

p
i ptqsu, where ωp ¥ 0, p � 1, 2, 3 and

°3
p�1 ωp � 1. ωp represents

the level of importance we assign to the information captured by the pth accelerometer.

If all the weights are assigned to a single accelerometer, the expanded movelets method

reduces to the single movelet approach.

3.2 Movelets integration results and discussion

Figure 3 presents the prediction accuracies for the expanded movelets approach (yellow),

movelets voting (orange), and movelets decision tree (grey). Table 2 provides the median

prediction accuracy for different activities. Equal weights across hip-worn, right wrist-

worn, and left wrist-worn accelerometers are imposed in the expanded movelets approach.

For the activities lying, normalWalk combined, write, stand, normalWalk Swing, fastWalk

Swing, and dealCards, the expanded movelets approach yields the highest prediction ac-

curacy with least variability across subjects among all the approaches. A substantial

increase in prediction accuracy for dealCards is observed for the expanded movelets ap-

proach. In Figure 5, for both subjects, the expanded movelets approach provides better

prediction for dealCards than all the single movelets approach on its own. The movelets

voting approach is inferior to either one of the single movelets approaches or the expanded
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Figure 5: Examples of prediction results using expanded movelets approach. Each row of panels
corresponds to one subjects. The four columns display the prediction results for deal-
Cards using the single hip-worn accelerometer, the single right wrist-worn accelerom-
eter, the single left wrist-worn accelerometer, and the expanded movelets approach.
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movelets approaches for all the activities with exceptions for knead, washDish, vaccum,

and shop. The movelets decision tree gives comparably good performance for lying, write,

and stand; whereas for the rest of the activities, it tends to present lower median accuracy

with larger variability across subjects than other approaches. The main reason is that,

in movelets decision tree approach, the prediction error in the first level fully propagates

into the second level. The left panel of Figure 6 displays the prediction accuracy for the

top level of the movelets decision tree. It is not surprising that the top-level group lying

presents very high prediction accuracy. However, there exists much variation in the pre-

diction accuracy across subjects for standing and sitting. The median prediction accuracy

for standing is higher than that for sitting. The right panel in Figure 6 shows an example

of the top level prediction of movelets decision tree. The subject performed the activities

standing still, vacuum while standing, and write while sitting in sequence. Standing still

and vacuum while standing belong to the top-level standing group, and write while sitting

belongs to the top-level sitting group. As it is shown in the right panel, standing still and

vacuum while standing are mostly recognized by the movelets decision tree. In contract,

the whole period of vacuum is misclassified in the sitting group at the top level. This

is probably due to the leaning forward while vacuuming, which makes the orientation of

accelerometers more similar to that of sitting. Such misclassifications fully propagated to

the second level when using the movelets decision tree approach.

All integration approaches are flexible and can easily be generalized to more devices.

The expanded movelets approach yields the best overall performance among the three

integrated movelets approaches. However, each approach has strengthes and weaknesses.

Movelets voting is conceptually straightforward. Since the integration of information

occurs after using single-accelerometer movelets for each accelerometer, it can simultane-

ously process acceleration information from different sources and save computing time.

At the same time, integration with majority votes of categorical activities labels loses

some of the rich information embedded in the original signals. The expanded movelets

approach merges all available information and provides the flexibility of weighting differ-
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Figure 6: The left panel presents the prediction accuracy for the top-level movelets decision tree.
The right panel shows an example of the top-level prediction of movelets decision tree
approach. The subject performed standing, vacuum (while standing), and write in
sequence. The whole period of vacuum is misclassified as an activity while sitting,
which is truly an activity while standing.

ent information sources. This method yields exceptional good prediction in well controlled

environments, though may be more prone to errors when one of the devices malfunctions

or moves to a different position on the body. The movelets decision tree approach in-

tegrates information adaptively. An important assumption is that the top level of the

decision tree is well designed to provide coarse discrimination between activity groups,

while lower level decisions are well designed to make within-group predictions. Thus de-

signing the tree hierarchy is rather delicate, will probably be application specific, and

require refinement as more information becomes available.

4 Conclusion

In this paper we have addressed a tantalizing actual problem: can one predict the type

of human activity from small sensors attached to the human body? The answer is yes,

as otherwise this paper would never get published. However, here we want to qualify

and nuance our response, clearly underline remaining roadblocks, and propose sampling

designs that can dramatically improve data collection and analysis.

All predictions here are done on subjects in the lab wearing devices installed by trained

technicians and subjects doing a given sequence of activities, which are intended to rep-
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resent activities that happen in the subject’s own environment. As much as one tries to

standardize lab experiments, the data is likely to provide only a partial view of the hetero-

geneous activities individuals perform in their own houses. It remains unclear how in-lab

data prediction algorithms perform in real life environments, especially in the absence

of labeled in-home data on hundreds of individuals. Also, we have not yet investigated

how well methods could be trained on one or multiple subjects and then applied to other

subjects. Our experience seems to indicate that more work needs to be done and we

remain mildly optimistic about the problem.

Probably the most important problem epidemiological studies will face in the future

is the lack of in-home activity labeling as the ground truth. Moreover, increased quality

control and standardization for in-home measurement will be necessary in future studies.

Here we propose that observational studies involving accelerometers could dramatically

improve data quality by incorporation of a set of standardized “life” activities that could

be performed at the time the devices were initially placed. While the home setting is

preferable, if not feasible, then even a clinic setting would still result in enhanced data

quality. Our paper indicates that the activities can be far shorter with fewer repetitions

and with far less physical and mental burden on the participants. Careful data annotation

would be necessary, and careful checks of the location and orientation of the accelerom-

eter devices should be performed. We suggest these to be done for several days, while

instructing the individual to correctly install the device.

Needless to say, our proposal has met with strong resistance from scientists collecting

the data and the main arguments merit in-depth discussion. First, it can be argued

that this raises the burden to the individual by adding one or multiple short in-home

visits. We actually think that, if done correctly and with sufficient planning, this will

dramatically decrease the burden on the individuals. Indeed, a visit to the clinic or lab

would require individuals, many of whom are older or impaired, to visit the clinic, spend

hours traveling from home to the clinic, and possibly require assistance from a family

member. Instead, the burden is shifted to trained professionals who travel to the home of
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individuals, help them with basic device installation in their familiar environment, thus

reducing the physical and psychological burden on the individuals in the study. Second, it

can be argued that asking individuals to go through a pre-determined set of activities may

be physically prohibitive. We agree that performing strenuous physical activities should

not be a requirement for individuals in the study. Moreover, we also agree that requiring

any type of activity by phone or other means of communication without direct supervision

should be avoided to prevent any possibly induced adverse health effects. However, the

set of activities we propose is actually much less intense than the one required in current

studies. For example, we would only require 2 repetitions of standing up from a chair,

one normally, and one without using arms. For normal walking we can require as few as

10 seconds of combined walking in an area of the house where most walking is likely to

occur. Third, it is argued that devices can simply be sent to individuals with instructions

and activity can then be almost “magically” predicted using machine learning methods.

As much as we enjoy “magic shows”, the technology is not there yet, though important

progress has being made. Here we argue in favor of fully transparent methods where

the scientist understands the complex measurement, has access to the entire processing

pipeline, and can access different levels of data compression via reproducible code and

verifiable results.
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