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EVIDENCE OF PACHYOSTOSIS IN THE CRYPTOCLEIDOID 
PLESIOSAUR TATENECTES LARAMIENSIS FROM THE 

SUNDANCE FORMATION OF WYOMING 
 

HALLIE P. STREET and F. ROBIN O'KEEFE; Department of Biological Sciences, Marshall 
University, One John Marshall Drive, Huntington, West Virginia 25755, U.S.A., 
hallie.street@gmail.com, okeefef@marshall.edu 
 
 

INTRODUCTION 
 
     In this paper we present evidence for pachyostosis in the cryptocleidoid plesiosaur Tatenectes 
laramiensis Knight, 1900 (O'Keefe and Wahl, 2003a). Pachyostosis is not common in plesio-
saurs and is particularly rare in non-pliosaurian plesiosaurs, although enlarged gastralia were first 
recognized in Tatenectes by Wahl (1999). This study aims to investigate the nature of the dispro-
portionately large gastralia of Tatenectes m greater depth, based on new material. A recently dis-
covered partial skeleton consisting of a dorsal vertebral series, ribs, gastralia, and a complete 
pelvic girdle was collected from the Jurassic-aged Sundance Formation of the Bighorn Basin in 
Wyoming during the summer of 2006. The gastralia of this specimen are disproportionately large 
considering the small size of the taxon (about 3 meters total length), and we therefore investigat-
ed the size of these elements quantitatively. Polished cross-sections were also prepared to ex-
plore the histology of the ribs and gastralia. The ribs of Tatenectes are not pachyostotic, whereas 
the gastralia exhibit a novel condition of pachyostosis while lacking osteosclerosis.  
     Skeletal tissue modification is common among secondarily marine tetrapods. These modifica-
tions can follow one of two major trends: toward a lighter skeleton or toward a lighter skeleton. 
The skeleton can be made lighter by reduction in number or size of skeletal elements. Bones 
themselves can also be reduced in density (de Buffrénil et al., 1990; de Ricqlès and de Buffrénil, 
2001). This condi-tion, known as osteoporosis, occurs when the cortical bone layer, usually the 
most compact and dense region of a bone, is reduced, and the marrow cavity or regions of 
cancellous bone are increased (de Ricqlès and de Buffrénil, 2001). Osteoporosis is a common 
pathology in humans, but in secondarily marine tetrapods the osteoporosis is adaptive, having 
occurred in several lineages including ichthyosaurs, pliosaurs, and cetaceans (de Buffrénil et 
al.,1990; de Ricqlès and de, Buffrénil, 2001). 
     At the other end of the spectrum, the skeleton of secondarily marine tetrapods can become 
heavier. Bones can become enlarged via pachyostosis. Pachyostosis is another adaptive condition 
through which the periosteal cortex of the bone undergoes hyperplasy (Francillon-Viellot et al., 
1990). In such cases hyperplasy indicates that the cortical bone layer grows to a greater thick-
ness, either through increased amount of time m the growth stage, or accelerated growth rate. 
The periosteal cortex of the bone is therefore thicker, thus enlarging the entire bone (de Ricqlès 
and de Buffrénil, 2001). The total weight of the skeleton can also be multiplied through increase-
ed bone density. Osseous tissue may also become more dense via a condition termed osteosclero-
sis. This condition involves disruption of endochondral ossification, resulting in less resorption 
of endochondral tissue and a lack of endosteal development. Therefore, cancellous bone tissue or 
marrow cavities do not form and the bones are instead filled with dense calcified cartilage. 
Pachyostosis and osteosclerosis can occur concurrently, and this combined condition is known as 
pachyosteoslcerosis (Taylor, 2000; de Ricqlès and de Buffrénil, 2001 ). Varying degrees of these 



conditions are seen in basal sauropterygians, primitive cetaceans, and sirenians, among others 
(de Buffrénil et al., 1990; Domning and de Buffrénil, 1991; Taylor, 2000; de Ricqlès and de 
Buffrénil, 2001).  
     Pachyostosis is uncommon among plesiosaurs. The extant literature contains no mention of 
possible pachyostosis in other cryptocleidoid plesiosaurs other than that of Wahl (1999), 
although detailed descriptions of ribs and gastralia are rare in the literature (Andrews, 1910; 
Brown, 1981). Currently, Pachycostasaurus dawni Cruickshank et al., 1996, is one of the few 
plesiosaurs described as exhibiting some degree of pachyostosis. This small pliosauromorph ( ~ 
3m long) displays marked pachyostosis of the dorsal vertebrae, ribs, and gastralia. The pachy-
ostosis of these skeletal elements is accompanied by an increase in tissue density as well, result-
ing in a pachyosteosclerotic state (Cruickshank et al., 1996). It has also been hypothesized by 
Wiffen et al. (1995) that the condition of plesiosaurian bone tissue changes throughout ontogeny. 
Their research on Late Cretaceous elasmosaurs and pliosaurs indicates a possible trend from 
osteosclerosis in immature individuals to an osteoporotic state in adults (Wiffen et al., 1995). It 
should be noted that the specimen under consideration in this study, USNM 536076, is a fully 
mature adult. All known Tatenectes specimens, including the relatively common juvenile 
specimens, exhibit pachyostosis of the gastralia (Wahl, 1999, 2006). 
     In marine tetrapod taxa displaying pachyostosis that is not pervasive throughout the entire 
skeleton, the enlargement of bones is often concentrated within the thoracic region (de Ricqlès 
and de Buffrénil, 2001). This is expected if the increase in bone mass serves as ballast. For 
maximal maneuverability and stability, the most buoyant region of an aquatic tetrapod, the lungs, 
and the densest region, skeletal pachyostosis, should both be near the anteroposterior midpoint of 
the organism (Domning and de Buffrénil, 1991). The new partial skeleton of Tatenectes does 
appear to have this pattern and we describe in here. Unlike what is seen in Pachycostasaurus, the 
only bones in the new skeleton that exhibit pachyostosis are the gastralia, as mentioned briefiy in 
O'Keefe and Street (2009) and Wahl (1999). In comparison to the dorsal ribs, the gastralia of 
Tatenectes appear to be disproportionately robust. The gastralia are also noticeably thicker than 
those of Pantosaurus, another, larger Sundance cryptocleidoid. It is the goal of this research to 
determine if the gastralia of Tatenectes laramiensis do indeed exhibit pachyostosis, and if so 
whether the histologic condition is pachyostotic or pachyosteosclerotic. 
 
 

MATERIALS AND METHODS 
 

     This study focuses on the axial morphology and histology of the cryptocleidoid plesiosaur 
Tatenectes laramiensis. We also present comparative material from three related taxa: 
Pantosaurus striatus Marsh, 1891, Cryptoclidus eurymerus Phillips, 1871; and Muraenosaurus 
leedsii Seeley, 1874. Specimens were examined from the Natural History Museum, London 
(NHM), the National Museum of Natural History, Smithsonian Institution (USNM), 
and the University of Wyoming (UW). 
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FIGURE 1. Examples of midline gastralia of Tatenectes (top) and Pantosaurus (bottom) in dorsal view with anterior 
toward the bottom. Dashed line represents midline. 
_____________________________________________________________________________________________ 
 
     When first prepared, the gastralia of a new partial skeleton of Tatenectes appeared to be dis-
proportionately large. In order to determine if this size difference is statistically significant rela-
tive to closely related plesiosaurs, gastralia and ribs of each of the above taxa were measured so 
that statistical tests could be calculated. Using digital calipers, the widths of the midline gastralia 
were measured anteroposteriorly on the midline, and these measurements were recorded in centi-
meters to the nearest one-hundredth of a centimeter. Measurements are reported in Table 1. The 
width of the midpoint of the shaft of the dorsal ribs were also measured. The rib chosen for com-
parison was a rib close to the thoracic segement containing the most posterior gastralium. This 
particular rib was chosen in an attempt to standardize the comparison across taxa. One partial 
skeleton each for Tatenectes and Pantosaurus (USNM 536976 and USNM 536965, respectively) 
were examined. Multiple specimens of Cryptoclidus (NHM R.2860, NHM R.2862, and NMH 
R.8575) and Muraenosaurus (NHM R.2421 and NHM R.2863) were also examined. However, 
due to fixture to mounts or poor preservation, it was only possible to take accurate measurements 
from one specimen each of these taxa as well (NHM R.2860 and NHM R.2863, respectively). 
Due to the incomplete fusing of the neural arches to the vertebral centra, both of these specimens 
are considered to be sub-adult individuals. It should be noted that it was impossible to know 
exactly from which segment each measured gastralium or rib originated. However, care was 
taken to measure elements from similar segments as far as was possible. 
     From these measurements a ratio was calculated to remove the impact of body size differ-
ences among taxa. No complete specimen of Tatenectes has been found, but it is estimated that 
an adult would likely have been approximately 2 m long. Muraenosaurus measures between 4.5 
and 5.5 m (Brown, 1981), Pantosaurus is about 4.5 m (O'Keefe and Wahl, 2003b), and Crypto-
clidus is around 4 m (Brown, 1981) in length. Comparing ratios, as opposed to raw gastralium 
size, is especially important considering the relatively small size of Tatenectes. The ratio com-
pared the midline gastralium width to the dorsal rib width for each taxon:  
 

Gastraliumwidth (cm) 
Ribwidth (cm) 



     These ratios were analyzed with a Mann-Whitney U test in the program JMP to account for 
the small size of the data set and the possibility of the data being non-normal.  
     The second goal of this study was to determine if the unusually large gastralia of Tatenectes 
display pachyostosis or pachyosteosclerosis. We studied cross-sections of ribs and gastralia to 
investigate histology. Several fragmented ribs and gastralia of Tatenectes USNM 536976 were 
sliced with a rock saw and/or smoothed with a rock polisher to produce flat surfaces for observa-
tion and comparison to descriptions in the literature. A fragmentary rib of Pantosaurus was also 
used for comparison. 
 
 

RESULTS 
 
     The gastralia of Tatenectes laramiensis are found to be relatively larger than the gastralia of 
the comparison taxa (Fig. 1), and this difference is statistically significant. The gastralia width: 
rib width ratio for Tatenectes averages 2.30, whereas none of the other taxa studied average a 
gastraila:rib ratio above 1.50. The taxon with the next-largest gastralia is Cryptoclidus (1.44). 
The ratio for Pantosaurus is 1.35, and there is the least difference in size between the gastralia 
and ribs of M uraenosaurus (1.26). The difference between the ratios of Tatenectes and the 
other taxa is particularly interesting due to the fact that the difference in size is due completely to 
the size of the gastralia; the ribs of Tatenectes are not unusually slender. Figure 2 illustrates 
the range of gastralia:rib widths for the measured central gastralia for each taxon. There is no 
overlap between the ranges for Tatenectes and the other related cryptocleidoid plesiosaurs 
studied. A non-paramentric Mann-Whitney U test was run for these data, and a statistically 
significant P-value (0.01) was found between the Tatenectes ratios and the pooled ratios of other 
taxa. The gastralia of Tatenectes are therefore proportionately larger than those of related taxa, 
and this size increase is attributed to pachyostosis. 
 

 
 
FIGURE 2. Graphs plotting gastralia/rib widths for four taxa of cryptocleidoid plesiosaurs. Each data point 
represents a midline gastralium divided by a rib width. 
 



 
     Examination of the histology of the cross-sections of the ribs and gastralia of Tatenectes 
revealed unexpected results (Fig. 3). That the ribs (Fig. 3A, B) of Tatenectes are not osteo-  
sclerotic was unsurprising because this is not typical of plesiosaurs in general; but the histologic 
condition of the gastralia was unanticipated. If the purpose of the gastralia is to serve as ballast, it 
was thought that the distribution of mass throughout the gastralia would have been constant or 
graded from most pachyostotic or pachyosteosclerotic at the midline to least massive or dense in 
the lateral-most elements. None of the elements that were crosssectioned show any evidence of 
osteosclerosis. Instead there appear to be regions of osteoporotic tissue in the gastralia. Also 
contrary to what was expected, the tissue conditions are neither constant, nor do they display a 
smooth gradient. The midline gastralium (Fig. 3E) has thick and dense cortical regions. How-
ever, the element is bisected by an asymmetrical band of osteoporotic tissue similar to that seen 
in the rib head (Fig. 3A). This conformation of cancellous osseous tissue reaches completely to 
the edges of the gastralium and suggests of osteoporosis. Figure 3D is a cross-section through a 
middle gastralium. This element also has thick cortical bone and an asymmetrical band of osteo-
porotic tissue. However, this gastralium appears to have some degree of a free marrow cavity, 
somewhat similar to what is seen in the rib shaft (Fig. 3B). Finally, the lateral-most gastralium 
(Fig. 3C) is more similar to the midline element with an asymmetric band of osteoporotic tissue 
surrounded by thick layers of cortical tissue. A cross-section from a rib of Pantosaurns (Fig. 3F) 
has also been included to serve as an example from a plesiosaur that does not exhibit pachy-
ostosis. This arrangement of pachyostotic and osteoporotic tissue does not conform to other 
descriptions of either pachyostosis or osteoporosis found in the literature, either for plesiosaurs 
or any other taxon. In summary, Tatenectes displays a novel conformation of osteoporotic bone 
sandwiched between two layers of thick pachyostotic cortical tissue, and cannot be described as 
osteoporotic or osteosclerotic. The gastralia are clearly pachyostotic in terms of overall size, but 
their histology indicates that their unit density might not have differed much compared to more 
normal gastralia. 
 
 

TABLE 1. Data of midline gastralium and rib widths used in plotting Figure 2. 
 

 



 
 
 
 

 
 
FIGURE 3. Schematic transverse section of Tatenectes (top). Labeled cross-sections through ribs and gastralia of 
USNM 536974 (A-E) correspond with respective labeled hatch marks on transverse section. Crosssection F from 
Pantosaurus USNM 563965, presented for comparison with normal histology. 



DISCUSSION 
 

     Proportional and histological data indicate that although the gastralia of Tatenectes are indeed 
disproportionately large and hence pachyostotic, the gastralia are not pachyosteosclerotic. The 
nature of the pachyostosis exhibited by Tatenectes also appears to be different from that seen 
elsewhere. Based on the cross-sections made of the gastralia, the osseous tissue is distributed in a 
sandwich-like conformation with two rinds of hyperplasic cortical bone surrounding osteoporotic 
tissue. That band of cancellous bone, although asymmetric, trends generally anteroposteriorly. It 
is possible that this observed adult morphology persisted throughout ontogeny. On the other 
hand, if, as Wiffen et al. (1995) suggest, plesiosaurian bone tissues change throughout the life 
span, it is possible that the asymmetric cancellous bone region arose ontogenetically. The indivi-
dual described here was a fully mature adult at the time of its death, and it is possible that the 
bones had experienced a high degree of resorption. The thick cortical layer could therefore have 
originally completely encircled each gastralium, only to be preferentially reabsorbed along the 
anteroposterior axis. 
     Whether the hyperplasic cortical bone was originally deposited in this sandwich-like forma-
tion, or the current distribution is a result of ontogeny, the increase in overall size of the gastralia 
suggests hypotheses about the ecology of Tatenectes. When pachyostosis is exhibited by second-
arily marine tetrapods, it is most common among taxa that inhabit shallow water (de Ricqlès and 
de Buffrènil, 2001). Examples of such taxa, which also exhibit pachyostosis in the thoracic 
region, are primitive archaeocetes and sirenians (de  Buffrénil et al., 1990; Damning and de 
 Buffrénil, 1991). Although these mammalian taxa, particularly the herbivorous sirenians, are not 
ideal marine reptile analogs, their bone histology and known habitats can elucidate both the 
beneficial and restraining effects of pachyostosis on Tatenectes. It is thought that pachyostosis, 
particularly of the ribs and other thoracic elements, acts as hydrostatic ballast, which increases 
stability (Cruickshank et al., 1996). Hydrostatic ballast, such as osteosclerosis or swallowing 
gastroliths for negative buoyancy, and expanded lung volume for positive buoyancy, aids in 
maintaining the overall trim of the body within the water column without the need to expend 
energy. Conversely, hydrodynamic ballasts, such as the control surfaces that flippers or paddles 
provide, allow for the maintenance of equilibrium when an organism is in motion (Damning and 
de  Buffrénil, 1991). 
     Of course, the increased stability provided by pachyostosis at a low energy expenditure does 
not come without costs. Pachyostosis, the source of negative buoyancy, is often seen with a 
corresponding increase in lung volume for positive buoyancy (Taylor, 2000). This means that the 
volume of the organism is increased twice: in the lungs and in the pachyostotic skeletal elements. 
The increase in volume increases the effects of inertia and drag (Cruickshank et al., 1996).    
Therefore, any movements significantly influenced by inertia, such as accelerating or making 
precise turns at any swimming speed, would be reduced (Taylor, 2000; de  Ricqlès and de  
Buffrénil, 2001). These effects would also become greater with increased speed, thereby reduc-
ing the top efficient speed an organism with pachyostosis could achieve (Cruickshank et al., 
1996). Therefore, animals exhibiting pachyostosis are usually interpreted as being restricted by 
their low swimming speeds and lack of agility to living in shallow water environments, in which 
their increased stability is advantageous (de Ricqlès and de  Buffrénil, 2001). 
     We propose that Tatenectes laramiensis would have lived in very shallow marine environ-
ments, and may not have been a particularly agile swimmer. The Sundance Sea at the time of 
deposition was quite shallow, less than 50 m in depth, and was a high-energy environment with 
large areas above storm wave base (Wahl, 2006). The sediments in which USNM 536974 was 



found, a lens of coarse-grained sand within a silt matrix, support this shallow-marine hypothesis. 
The fossil was also found near the top of the formation, which shows other signs (ripple marks 
and cross-bedding) of shallow water sediment deposition. Surrounding invertebrate fossils, 
including numerous burrows, belemnites, and oyster shoals, offer the final evidence of 
Tatenectes lived in a shallow marine environment. 
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