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A versatile test for equality of two survival
functions based on weighted differences of

Kaplan-Meier curves

Hajime Uno, Lu Tian, Brian Claggett, and L. J. Wei

Abstract

With censored event time observations, the logrank test is the most popular tool
for testing the equality of two underlying survival distributions. Although this test
is asymptotically distribution-free, it may not be powerful when the proportional
hazards assumption is violated. Various other novel testing procedures have been
proposed, which generally are derived by assuming a class of specific alternative
hypotheses with respect to the hazard functions. The test considered by Pepe and
Fleming (1989) is based on a linear combination of weighted differences of two
Kaplan-Meier curves over time and is a natural tool to assess the difference of two
survival functions directly. In this article, we take a similar approach, but choose
weights which are proportional to the observed standardized difference of the es-
timated survival curves at each time point. The new proposal automatically makes
weighting adjustments empirically. The new test statistic is aimed at a one-sided
general alternative hypothesis, and is distributed with a short right tail under the
null hypothesis, but with a heavy tail under the alternative. The results from ex-
tensive numerical studies demonstrate that the new procedure performs well under
various general alternatives. The survival data from a recent cancer comparative
study are utilized for illustrating the implementation of the process.
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1 Introduction

In summarizing the comparisons of two survival distributions with censored event time observations, it

is conventional to provide a plot of two Kaplan-Meier (KM) curves along with a p-value from the two-

sample logrank test. Note that the logrank test statistic reflects the difference of two underlying hazard

functions, not of the KM curves directly (Pepe and Fleming, 1989). Asymptotically, the logrank test is

valid nonparametrically, but may perform rather poorly when the proportional hazards (PH) assumption

does not hold (Tarone and Ware, 1977; Lagakos and Schoenfeld, 1984). As an example, in a randomized

clinical trial (E4A03) recently conducted by the Eastern Cooperative Oncology Group, low-dose and high-

dose dexamethasone for treating newly diagnosed multiple myeloma patients were compared with respect to

the patient’s overall survival (Rajkumar et al., 2010). Of a total of 445 enrolled patients, 222 were assigned

to the low-dose and 223 to the high-dose group. This trial was terminated at the first interim analysis

conducted in March 2007 as a result of the superior performance of the low-dose group with respect to

overall survival. Twenty eight patients who were still receiving high-dose treatment were then switched to

low-dose treatment, and the trial continued to further study the patients’ long term survival profiles. Figure

1 presents the KM curves of overall survival, based on the data as of November 2009, for the two dose groups.

The two curves are markedly separated before 30 months of follow-up, but then appear to cross near the end

of the study. Since there were relatively few patients in the original high-dose group switching to the low dose

after the interim analysis, the differential patterns of the KM curves is intriguing. Visually, it appears that

the low-dose does have a short-term survival advantage over the high dose. However, the two-sided p-value

from the logrank test is 0.46, and the p-value from the Peto-Prentice-Wilcoxon test is 0.28. Neither test

gives strong evidence that the low-dose group is better than the high-dose group under the intent-to-treat

principle. In this example, the PH assumption is likely violated, and the logrank test may not be powerful

for detecting the difference of the survival functions.

To avoid a “fishing expedition” in which tests of equality of the survival curves are selected ad hoc, a

pre-specified test needs to be well described in the study protocol or the statistical analysis plan before

unblinding the data. Unfortunately, in general, little or no information is available regarding the profile of

the potential difference between two survival curves at the design stage. To this end, various flexible test
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procedures have been proposed. For example, the Gρ,γ tests, which are constructed assuming a class of

survival distributions indexed by ρ and γ under the alternative hypothesis (Fleming and Harrington, 1991),

a linear combination or the maximum of several test statistics (Tarone, 1981; Fleming and Harrington, 1984,

1991; Gastwirth, 1985; Zucker and Lakatos, 1990; Self, 1991; Lee, 1996; Kosorok and Lin, 1999), and other

novel robust procedures (Lai and Ying, 1991; Pecková and Fleming, 2003) have been extensively studied.

The pros and cons of those procedures were discussed in a recent paper by Yang and Prentice (2010). Note

that the above novel alternatives to the logrank test are more or less built with respect to a family of pre-

specified survival functions. The test recently proposed by Yang and Prentice (2010) is a weighted logrank

test whose weights are obtained by fitting the data to the model proposed by Yang and Prentice (2005),

which includes the proportional hazards and the proportional odds models as special cases.

Note that a class of novel tests based on the weighted Kaplan-Meier (WKM) statistics proposed by Pepe

and Fleming (1989; 1991) did not get much attention in practice. Specifically, let Ŝ1(·) and Ŝ2(·) be the KM

estimators for the two groups to be compared. A WKM test statistic is

WKM =

(

n1n2
n1 + n2

)1/2 ˆ τ

0

Ŵ (t)D̂(t)dt, (1.1)

where D̂(t) = Ŝ2(t)− Ŝ1(t), τ = sup
[

t : min
{

K̂1(t), K̂2(t)
}

> 0
]

, K̂i(·) denotes the left-continuous version

of the KM estimator for the censoring survival function for the ith group, ni is the sample size in group i,

(i = 1, 2), and Ŵ (·) is the data-dependent weight function. Since we conventionally present the KM curves

as in Figure 1 to show the temporal profile of the group difference, it seems natural to provide a test which

directly compares two survival functions, rather than their hazard functions. For the class of test statistics

in (1.1), Pepe and Fleming (1989) considered two weighting schemes:

K̂1(t)K̂2(t)

q̂1K̂1(t) + q̂2K̂2(t)
, (1.2)

and
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{

K̂1(t)K̂2(t)

q̂1K̂1(t) + q̂2K̂2(t)

}1/2

, (1.3)

where q̂i is the proportion of subjects assigned to group i. Note that their weighting schemes only depend

on the censoring distributions.

In this article, we also consider tests similar to (1.1) for testing against a one-sided alternative hypothesis,

i.e., one survival curve is greater than the other for a time interval of the follow-up. However, in choosing

Ŵ (·), instead of considering only the observed censoring distribution, we propose to put more weight at the

time points t such that the difference D̂(t) is “large”. One possible choice is to let Ŵ (t) = D̂(t); the resulting

test statistic, however, is like a “chi-square” statistic and tends to have a rather long right tail under the

null hypothesis. It follows that this omnibus test may not be powerful for certain alternatives. In the next

section, we propose a simple weighting scheme whose weight at time t depends on D̂(t). Under the null, the

distribution of the test statistic has a relatively short tail, but under a general one-sided alternative, the

observed test statistic tends to be large and likely to reject the null hypothesis. The new test statistic is

not derived from any pre-specified class of distributions like most existing test procedures in the literature.

Instead, it automatically chooses the weights adaptively based on the size of D̂(·) or a function thereof,

to effectively differentiate the null and alternative hypotheses. For the above cancer study survival data,

the resulting one-sided p-value of the proposed test is 0.005. The details of implementing the new test are

given in Section 2. We also conducted extensive numerical studies to assess the performance of the proposed

procedure.

2 Combining weighted differences of Kaplan-Meier curves

Let S1(·) and S2(·) be two survival functions for failure times T1 and T2, respectively. Let C1 and C2 be

the corresponding censoring times. Also, let {(T1j , C1j), j = 1, . . . , n1} and {(T2j , C2j), j = 1, . . . , n2} be

independent random copies from (T1, C1) and (T2, C2), respectively. Due to censoring, one can only observe

{(Xij ,∆ij); i = 1, 2, j = 1, . . . , ni} , where Xij = min(Tij , Cij) and ∆ij is equal to 1 if Tij ≤ Cij and 0

otherwise. Let D(·) = S2(·) − S1(·). Let [0, ζ] be a given time interval, and we assume that Pr(Xi > ζ) >

0, i = 1, 2. We are interested in testing the null hypothesis that D(t) = 0, for t ∈ [0, ζ], against a general
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one-sided alternative, that is, D(·) ≥ 0 with at least one t ∈ [0, ζ], such that D(t) > 0. Now, let D̂(·) be equal

to Ŝ2(·)− Ŝ1(·), σ̂(·) be its standard error estimate, and Z(·) = D̂(·)/σ̂(·), which is distributed approximately

N(0, 1) under the null hypothesis.

Instead of utilizing Z(t) as a test statistic at a specific time point t for testing the null hypothesis, we

consider a test statistic which is a weighted integration of standardized differences between two survival

curves over [0, ζ]. For example, one potential class of test statistics is

V =

ˆ ζ

0

Ŵ (t)Z(t)dt, (2.1)

where Ŵ (·) is a data-dependent weight function. Note that (2.1) is slightly different from (1.1). We replace

D̂(·) by Z(·) due to the fact that we are primarily interested in hypothesis testing. Note that we define

Z(t) = 0 for D̂(t) = σ̂(t) = 0, that is, Ŝ1(t) = Ŝ2(t) = 1 where no events have been observed by t.

Heuristically, a test based on V would perform well if Ŵ (t) is proportional to E (Z(t)) under alternatives.

That is, Ŵ (t) is large for a large observed Z(t). A natural choice is to let Ŵ (t) = Z(t). However, as discussed

in the Introduction, the distribution of this “chi-square-like” statistic may have a rather long right tail under

the null hypothesis and the test may not perform well for specific alternatives. On the other hand, when

Ŵ (·) is constant over time, the distribution of such a “normal-like” statistic is centered around zero, and has

a short tail, under the null, but this test may only be powerful when Z(t) is approximately constant over

[0, ζ]. Therefore, the question is how to choose the weight function such that the distribution of the resulting

statistic has a short right tail under the null, but the observed V is large under the alternative. A possible

solution is to expand on the idea proposed by Xu et al. (2003) for combining a small number of dependent

test statistics for linkage or association across multiple phenotypic traits. Specifically, let c ∈ [0, η], where η

is a constant, say 4. Let Ŵc(t) = max {Z(t), c} and

V1(c) =

ˆ ζ

0

Ŵc(t)Z(t)dt. (2.2)

For a fixed c, say 1.65, under the null hypothesis, since Z(t) is approximately N(0, 1), Ŵc(t) ∼ 1.65 for

most t ∈ [0, ζ]. It follows that the distribution of V1(c), which is similar to a linear combination of dependent

standard normal random variables, would not have a long right tail. On the other hand, under an alternative

hypothesis, for a large observed Z(t), (≥ 1.65), Ŵ (t) = Z(t) and the resulting observed V1(c) would be large.
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On the other hand, the choice of c = 1.65 may not work well for cases in which D(·) is positive for a large

portion of time points but the observed Z(·)′s are less than 1.65 due to, for example, the low observed

mortality rates. Therefore, it is not obvious how to select such a threshold value c a priori.

Here, we propose a simple, automatic way to choose c adaptively to construct a test statistic based on

{V1(c), 0 ≤ c ≤ η}. First, suppose that we can generate a good approximation to the null distribution of

the process V1(c) indexed by c ∈ [0, η]. Let v1(c) be the observed value of V1(c) and its p-value p(c) can be

obtained via the approximation to the null distribution of V1(c). Let pb = min {p(c) : c ∈ [0, η]} , the most

significant p(c) in c ∈ [0, η]. A small pb would support the alternative hypothesis. The question is how to

choose the threshold value for claiming a “statistical significance” based on pb. That is, one needs to obtain the

null distribution of Pb = min {P (c) : c ∈ [0, η]} , the random counterpart of pb, where P (c) = SV1(c) (V1(c)) ,

and SV1(c)(v) is the survival function of V1(c). Using the standard martingale theory, it can be shown that

Z(·) converges weakly to a limiting Gaussian process G(·) (Gill, 1983). In Appendix A, we show that V1(c)

and P (c), as processes in c, converge weakly to ψ(c) =
´ ζ

0
max{G(t), c}G(t)dt and U(c) = Sψ(c)(ψ(c)),

respectively, where Sψ(c)(v) is the survival function of ψ(c).

To empirically approximate the limiting distribution of this process under the null, one may utilize a

perturbation-resampling method, which has been applied successfully to various problems in survival analysis

(Lin et al., 1994; Parzen et al., 1997). Specifically, the distribution of the process
{

Ŝi(t)− Si(t)
}

, i = 1, 2

can be approximated by that of

Qi(t) = −Ŝi(t)

ni
∑

j=1





{

ni
∑

k=1

I(xik ≥ xij)

}−1

δijI(xij ≤ t)ξij



 ,

where (xij , δij) is the observed value of (Xij ,∆ij) , I(·) is the indicator function, and {ξij , i = 1, 2, j = 1, . . . , ni}

is a random sample from a distribution with mean 0 and variance 1, for example, the standard normal dis-

tribution. In practice, the null distribution of V1(c) can be approximated by generating M sets of {ξij} . For

each realized set {ξij} , we compute

V ∗1 (c) =

ˆ ζ

0

W ∗
c (t)Z

∗(t)dt, (2.3)

where Z∗(·) = {Q2(·)−Q1(·)} /σ̂(·) andW
∗
c (·) = max {Z∗(·), c} . The setD ofM realizations {V ∗1 (c), c ∈ [0, η]}

serves as a reference set for the proposed test. For each of the M sets, we compute (2.3), and obtain the
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corresponding P (c), using the reference set D, denoted by P ∗(c). The null distribution of Pb can be estimated

using theM realizations of P ∗b = min {P ∗(c) : 0 ≤ c ≤ η} based on {V ∗1 (c), c ∈ [0, η]} . The bona fide p-value

of the proposed test is then given by Pr (P ∗b < pb) . In Appendix B, we show that conditional on the observed

data, under the null, the limiting distributions of V ∗1 (c) and P
∗(c) are ψ(c) and U(c), respectively, and thus

the null distribution of Pb can be approximated well by min {P ∗(c) : 0 ≤ c ≤ η} .

Another potential class of test statistics is

V2(c) =

ˆ ζ

0

Ŵc(t)Z(t)dN̄(t), (2.4)

where N̄(t) = (n1 + n2)
−1
∑2
i=1

∑ni

j=1 I(Xij ≤ t)∆ij . Note that the null distribution of Pb can also be ap-

proximated via the aforementioned procedure. The role of N̄(·) as the integrator serves as another weighting

function for Z(·), that is, the weight is heavy for the time intervals with large numbers of observed events.

The parameter η in the proposed test can be any positive constant. Empirically we find that the choice

η = 4 works well since it is unlikely Z(·) would be beyond 4 under the null (see Section 3 for details).

3 The E4A03 example and numerical comparison studies

First, we apply the proposed tests to the survival data from E4A03 for comparing the low- and high-dose

groups discussed in the Introduction section. We calculate V1(c) and V2(c) over the range [0, 40] months

at each value of c = 0, 0.1, 0.2, . . . , 4, where we use Greenwood’s formula for estimating variances of Ŝ1(·)

and Ŝ2(·) to calculate the standard error of D̂(·). The observed pb values are 0.0044 and 0.0018 based on

V1(c) and V2(c), respectively, both of which are obtained at c = 0 in this example. To construct the null

reference sets for these two tests, we generate M = 5000 realized samples {ξij} from N(0, 1) to obtain

the null distributions of Pb. The resulting one-sided bona-fide p-values, Pr(Pb < pb), are 0.0048 and 0.0020

respectively. For comparison, we also analyze the data with the two WKM tests, (1.2) and (1.3), proposed

by Pepe and Fleming (1989); the corresponding p-values are 0.007 and 0.014, respectively. The test proposed

by Yang and Prentice (2010) gives p=0.138. Recall that the Peto-Prentice-Wilcoxon test and logrank test

yield p=0.142 and p=0.233, respectively.
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We conduct an extensive simulation study to examine the performance of the new tests. First, we assess

the size and power of the tests under a similar setting to the E4A03 trial. The pattern illustrated in

Figure 2(a), with no difference between the two survival functions, is considered for evaluating the empirical

Type I error rate. The curve in Figure 2(a) is the survival function of a Weibull distribution derived as the

best approximation of the low-dose group data from E4A03 using the maximum likelihood method. Figure

2(b) shows survival functions of Weibull distributions that approximate the low- (solid line) and high-dose

(dashed line) groups data from the E4A03 trial, respectively. For the underlying censoring time distributions,

we consider four scenarios: (i) no censoring, (ii) light censoring, (iii) heavy censoring and (iv) the observed

censoring patterns from the E4A03 trial, obtained by fitting the data with a Weibull distribution model with

the low- and high-dose groups combined. For all censoring configurations, we consider an administrative

censoring at 40 months. We graphically present those censoring patterns in Figure 3.

We generate 2000 independent samples, with sample size n = 300 (per group), from the distributions

described above (Figures 2 and 3). Note that, for each subject, we generate a survival time and an underlying

censoring time and compute the observable time (i.e., the minimum of the survival time and the censoring

time) and the censoring indicator. Similar to the analysis for E4A03 presented above, we let [0, ζ] = [0, 40]

(months), M = 5000, and {ξij} is from the standard normal distribution, and c is evaluated in increments

of 0.1 up to a maximum of η = 4. For comparators, we include the logrank, Peto-Prentice-Wilcoxon, Yang-

prentice, and Pepe-Fleming tests. Because the results of Pepe-Fleming tests with the weights (1.2) and (1.3)

are similar, we present the results with the weight (1.2) only.

Table 1 shows the results of this numerical study. The empirical Type I error rates are nearly identical to

their nominal level of 0.05. The new tests appear to be consistently more powerful than their comparators.

For this cancer study data, the logrank test performs rather poorly with respect to power, as expected.

We also examined other scenarios to evaluate the performance of the new proposals. In one of the

numerical studies, we consider the following patterns of differences between two survival functions illustrated

in Figure 4. Specifically, five different patterns are examined: 4(a) no difference, 4(b) PH difference (with

true hazard ratio of 0.8), 4(c) early difference, 4(d) middle difference, and 4(e) late difference. For this

numerical study, the sample size is n = 200 per arm. Other configurations, such as the underlying censoring
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distributions (Figure 3), the number of iterations, etc. are the same as described above.

Table 2 presents the results of the study. The results from pattern 4(a) show that the empirical significance

levels of all tests are close to their nominal value of 0.05. Under the PH alternative (pattern 4(b)), the test

V2 is comparable with other tests which are not designed for this specific alternative. However, the test V1

performs as well as the logrank test in this scenario. For the early difference alternative (pattern 4(c)), the

Peto-Prentice-Wilcoxon test gives a higher power than the logrank as we expect, but the new tests are even

more powerful than the Wilcoxon. For the pattern 4(d), our tests are more powerful than the other tests.

For the late difference (pattern 4(e)), the Peto-Prentice-Wilcoxon test is worst, and V1 is the best among all

the test procedures considered. Note that V2 is not as powerful under this setting due to the fact that most

of the failures are observed prior to the time at which the survival curves separate.

We also observe how the distribution of the selected value of c corresponding to pb, the smallest p−

values, varies across simulation scenarios. For each simulation scenario, we obtain the selected optimal c

for each of the generated 2000 independent samples, and draw the histogram. Figure 5 shows the results

from simulation scenarios corresponding to Figure 4(a-e) with (i) no censoring, for the test based on V1. The

selected values of c rarely reach 4 in our simulations, which suggests that [0, 4] is a reasonable search range

for c in practice.

In summary, while the test based on V2 performs particularly well when the survival curves separate early,

the test based on V1 appears to be more generally useful, demonstrating power equal to that of the logrank

test under the PH alternative and exceeding the power of all comparator tests under all other scenarios,

including those proposed by Pepe and Fleming(1989). Such robust performance characteristics are likely

indicative of the fact that the proposed tests are not derived to detect a specific departure from the null

hypothesis. Unlike other procedures, the new proposals are not derived under the assumption of a specific

type of alternative hypotheses.

4 Remarks

Unlike the estimates of the hazard function or the cumulative version thereof, the Kaplan-Meier plots are

informative and easily interpretable in describing the temporal profile between-group differences. It seems
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natural to have a companion two-sample test for a global statistical assessment of such differences. The

logrank test statistic is sensitive for testing the equality of two hazard functions, especially under the PH

model, but not necessarily for comparing two survival functions directly. The new proposal, on the other

hand, is shown to be a useful tool to serve this purpose.

Since the weighted logrank test is constructed by combining 2x2 tables at the observed event times, in

principle, one may utilize the same idea to choose the weight associated with each table. However, the

operating characteristics of the resulting test procedure are not clear. Further research is needed along this

line. The new tests automatically and empirically adjust the weighting functions, which are not required to

be pre-specified in the protocol or statistical analysis plan, and are not restricted to be powerful only for

specific alternatives.

Although hypothesis testing provides statistical evidence of treatment difference, the estimation of the

treatment difference is also important for assessing the magnitude of the difference. The standard companion

quantification procedure to the logrank test is the hazard ratio estimation. However, when the PH assumption

is violated, the resulting estimate is difficult to interpret, as it is not simply an average of the true hazard ratio

over time (Struthers and Kalbfleisch, 1986; Xu and O’Quigley, 2000). An alternative, model-free approach

is to use the restricted mean event time as the parameter of interest, which can be estimated by the area

under the KM curve. Inferences about the difference or ratio of two restricted mean survival times can then

be made (Royston and Parmar, 2011; Zhao et al., 2012; Tian et al., 2013), which are both based directly on

the KM curves. Further research is warranted to connect the proposed testing procedure with these closely

related estimators.
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Appendix

A Weak convergence of V1(c) and P (c)

Note that, under the null hypothesis, Z(t) converges weakly to G(t) as a process. Assuming that c2 − c1 =

o(1), we have

|V1(c2)− V1(c1)| ≤ |c2 − c1|O

(

ˆ ζ

0

|Z(t)|dt

)

= op(1). (A.1)

Coupled with the continuous mapping theorem, (A.1) implies that V1(c) converges weakly to ψ(c) =

´ ζ

0
max{G(t), c}G(t)dt.

Next we show that under H0, P (c) → U(c), c ∈ [0, η] in distribution as n → ∞, where the limiting

process U(c) = Sψ(c){ψ(c)}, and Sψ(c)(v) = pr{ψ(c) ≥ v}, the survival function of ψ(c). Here we consider

the survival function of V1(c), SV1(c)(v) = pr{V1(c) ≥ v} as well. To simplify the notation in the following

argument, we use Sc(v) and Ŝc(v) for Sψ(c)(v) and SV1(c)(v), respectively. Because of the weak convergence

of V1(c), for any c1, c2, · · · , cK ∈ [0, η], we have

sup
1≤k≤K

sup
v∈(−∞,∞)

|Ŝck(v)− Sck(v)| = o(1)

as n→∞. Thus,

sup
1≤k≤K

|P (ck)− Sck{V1(ck)}| = sup
1≤k≤K

|Ŝck{V1(ck)} − Sck{V1(ck)}| = o(1), a.s

which implies that

∣

∣

∣

∣

pr {P (c1) ≥ p1, · · · , P (cK) ≥ pK} − pr {U(c1) ≥ p1, · · · , U(cK) ≥ pK}

∣

∣

∣

∣

≤

∣

∣

∣

∣

pr {P (c1) ≥ p1, · · · , P (cK) ≥ pK} − pr [Sc1{V1(c1)} ≥ p1, · · · , ScK{V1(cK)} ≥ pK ]

∣

∣

∣

∣

+

∣

∣

∣

∣

pr
{

V1(c1) ≤ S−1
c1 (p1), · · · , V1(cK) ≤ S−1

cK (pK)
}

− pr
{

ψ(c1) ≤ S−1
c1 (p1), · · · , ψ(cK) ≤ S−1

cK (pK)
}

∣

∣

∣

∣

=o(1) for 0 ≤ p1, · · · , pK ≤ 1.

Thus, for any c1, c2, · · · , cK ∈ [0, η], the joint distribution of {P (c1), · · · , P (cK)} converges to that of

{U(c1), · · · , U(cK)}. In addition, (A.1) implies that, for c2 − c1 = op(1),
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|P (c2)− P (c1)| = |Sc2{V1(c2)} − Sc1{V1(c1)}|+ op(1)

≤ |Sc2{V1(c2)} − Sc1{V1(c2)}|+ |Sc1{V1(c2)} − Sc1{V1(c1)}|+ op(1)

= op(1).

Thus, under the null, P (c) converges weakly to the process U(c) indexed by c.

B Approximation of the null distribution of Pb by P
∗
b

Let O be the observed data. Let Ŝ∗c (v) = pr{V ∗1 (c) ≥ v|O}. Note that under the null, Z∗(t)|O converges

weakly to G(t) as a process almost surely. Coupled with the continuous mapping theorem, V ∗1 (c)|O converges

weakly to ψ(c) almost surely. Thus, using the same argument in the Appendix A, we can show that, for any

c1, c2, · · · , cK ∈ [0, η],

sup
1≤k≤K

sup
v∈(−∞,∞)

|Ŝ∗ck(v)− Sck(v)| = o(1)

almost surely as n → ∞, which implies {P ∗(c1), · · · , P
∗(cK)} | O → {U(c1), · · · , U(cK)}. Also, |P ∗(c2) −

P ∗(c1)| = op(1), for |c1 − c2| = o(1) is derived in the same way. Therefore, P ∗(c) = Ŝ∗c {V
∗
1 (c)}, conditional

on the observed data, converges weakly to the process U(c), c ∈ [0, η] almost surely. Therefore, the null

distribution of Pb = min {P (c) : 0 ≤ c ≤ η} can be approximated by P ∗b = min {P ∗(c) : 0 ≤ c ≤ η} .
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Table 1: Size and power of logrank [LR], Peto-Prentice-Wilcoxon [PP], Pepe-Fleming tests based on (1.2)[PF],

Yang-prentice [YP] and the new tests based on (2.1) [V1] and (2.4) [V2]. 2(a) no difference and 2(b) difference

observed in E4A03 (see Figure 2).

Size of tests

Survival distributions: 2(a)

Test Censoring

(i) (ii) (iii) (iv)

LR 0.051 0.049 0.045 0.051

PP 0.051 0.047 0.044 0.049

YP 0.061 0.060 0.056 0.065

PF 0.053 0.045 0.044 0.044

V1 0.052 0.042 0.040 0.047

V2 0.055 0.042 0.041 0.043

Power of tests

Survival distributions: 2(b)

Test Censoring

(i) (ii) (iii) (iv)

LR 0.111 0.123 0.166 0.230

PP 0.176 0.196 0.247 0.307

YP 0.200 0.214 0.278 0.330

PF 0.631 0.625 0.627 0.725

V1 0.840 0.828 0.827 0.847

V2 0.830 0.827 0.837 0.868
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Table 2: Size and power of logrank [LR], Peto-Prentice-Wilcoxon [PP], Pepe-Fleming tests based on (1.2)[PF],

Yang-prentice [YP] and the new tests based on (2.1) [V1] and (2.4) [V2], to detect the difference between

two survival curves, based on 2000 of iterations, with sample size 200 per arm. 4(a) no difference, 4(b)

proportional hazards, 4(c) early difference, 4(d) difference in middle, and 4(e) late difference (see Figure 4).

Censoring (i) no censoring (ii) light censoring

Test Survival distributions Survival distributions

4(a) 4(b) 4(c) 4(d) 4(e) 4(a) 4(b) 4(c) 4(d) 4(e)

Size Power Size Power

LR 0.046 0.703 0.294 0.401 0.205 0.045 0.686 0.310 0.410 0.200

PP 0.051 0.605 0.832 0.387 0.098 0.050 0.599 0.851 0.374 0.089

YP 0.062 0.730 0.651 0.451 0.244 0.054 0.713 0.690 0.455 0.242

PF 0.051 0.693 0.303 0.526 0.268 0.046 0.681 0.320 0.524 0.259

V1 0.057 0.703 0.951 0.620 0.383 0.051 0.699 0.959 0.614 0.378

V2 0.051 0.627 1.000 0.558 0.160 0.049 0.600 1.000 0.547 0.148

Censoring (iii) heavy censoring (iv) observed in E4A03

Test Survival distributions Survival distributions

4(a) 4(b) 4(c) 4(d) 4(e) 4(a) 4(b) 4(c) 4(d) 4(e)

Size Power Size Power

LR 0.051 0.669 0.332 0.408 0.187 0.043 0.684 0.304 0.415 0.260

PP 0.048 0.582 0.864 0.355 0.088 0.050 0.603 0.847 0.386 0.093

YP 0.062 0.695 0.719 0.458 0.235 0.055 0.710 0.681 0.469 0.317

PF 0.052 0.657 0.338 0.517 0.233 0.047 0.671 0.327 0.567 0.253

V1 0.054 0.677 0.960 0.609 0.352 0.063 0.714 0.971 0.645 0.401

V2 0.049 0.585 1.000 0.513 0.124 0.049 0.605 1.000 0.560 0.136
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Figure 1: Overall survival curves for low-dose arm (solid line) and high-dose arm (dashed line) with the

E4A03 data
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Figure 2: Comparison of survival functions considered in simulation studies
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Figure 3: Survival functions of the underlying censoring distributions considered in the simulations.
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Figure 4: Comparison of survival functions considered in simulation studies
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Figure 5: Frequency of the selected value of c for V1(c) in simulation studies
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