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VARYING INDEX COEFFICIENT MODELS

Shujie Ma and Peter Xuekun Song

Abstract

It has been a long history of utilizing interactions in regression analysis to inves-
tigate interactive effects of covariates on response variables. In this paper we aim
to address two kinds of new challenges resulted from the inclusion of such high-
order effects in the regression model for complex data. The first kind arises from
a situation where interaction effects of individual covariates are weak but those
of combined covariates are strong, and the other kind pertains to the presence of
nonlinear interactive effects. Generalizing the single index coefficient regression
model (Xia and Li, 1999), we propose a new class of semiparametric models with
varying index coefficients, which enables us to model and assess nonlinear inter-
action effects between grouped covariates on the response variable. As a result,
most of the existing semiparametric regression models are special cases of our
proposed models. We develop a numerically stable and computationally fast esti-
mation procedure utilizing both profile least squares method and local fitting. We
establish both estimation consistency and asymptotic normality for the proposed
estimators of index coefficients as well as the oracle property for the nonparamet-
ric function estimator. In addition, a generalized likelihood ratio test is provided
to test for the existence of interaction effects or the existence of nonlinear interac-
tion effects. Our models and estimation methods are illustrated by both simulation
studies and an analysis of body fat dataset.
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1 Introduction

Regression analysis has played a central role in studying relationships between variables in the

statistical literature. In a linear regression model, the dependent variable is typically assumed to

be a linear function of one or more independent variables plus an error given as follows:

Y = ZTβ + ε, (1)

where Y is the response variable, Z = (Z1, . . . , Zp)
T is the p-dimensional vector of covariates of

interest, ε is the error term with mean 0, and β =
(
β1, . . . , βp

)T
is the p-dimensional vector of

regression coefficients. As one of the most widely used regression methods, the linear model and

properties of parameter estimators have been extensively studied. One challenge arising from ap-

plications of the linear model in practical studies is the violation of the linearity assumption on the

relationship between Y and Z. Such misspecification may give rise to large bias in estimation and

incorrect inference, and hence misleading conclusions. For example, it is pointed out in popular

public health monographs (e.g. Behnke and Wilmore (1974) pp. 66-67, Wilmore (1976) pp.

247 and Katch and McArdle (1977) pp. 120-132), body fat can be predicted by body circumfer-

ence measurements such as abdominal, chest and hip circumferences. In a dataset available online

(http://lib.stat.cmu.edu/datasets/bodyfat), it contains measured percentages of body fat deter-

mined by underwater weighing, and 12 circumference measurements from 252 men aged from 22 to

81 years old. By a routine analysis, one may fit the data by a linear model (1), where the response

Y is the log-transformed body fat percentage, and six covariates Z1, . . . , Z6 are, respectively, mea-

sured circumferences of chest, abdomen, hip, thigh, forearm and wrist. Denote the obtained least

squares estimate of β by β̂. To check the validity of linearity assumption, one approach would be

based on the following nonparametric regression of Y and Z: regress Y on linear predictor U = ZTβ̂

by the means of local linear fitting (Fan and Gijbels (1996)). The left panel of Figure 1 shows

the fitted curve in U obtained by the local linear fitting (solid line), as well as the routine linear

fitted line (dotted line). The contrast between these two fitted curves unveils a possible violation

of linear relationship between Y and Z.

The above approach of capturing nonlinear relationships is referred to the semiparametric single-

index model, in which the response variable depends on an unknown but smooth nonlinear function
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of an index that takes a form of a linear combination of some covariates, given as follows:

Y = m
(
ZTβ

)
+ ε, (2)

where both the smooth function m (·) and the index coefficients β are unknown. Studied intensively

in the literature, this class of semiparametric single-index models is widely used in practice, because

they enable us to deal with the curse of dimensionality (Bellman (1961)) and to achieve dimension

reduction in nonparametric regression; also see Härdle et al. (1993), Stute and Zhu (2005), Cui

et al. (2011), among others, for an overview and more references therein. It is worth noting that

those covariates used in the index variables (e.g. circumference measurements) are often correlated

variables of same or similar types.

Insert Figure 1 here

In the research of obesity or nutritional health science, age has been repeatedly reported as an

important factor with a positive effect on body fat percentage (see Zamboni et al. (1997) and

Jackson et al. (2002)). The right panel of Figure 1 displays two fitted curves over age obtained by

nonparametric local linear fitting (solid line) and linear regression (dotted line), respectively. It is

interesting to notice that body fat percent shows a nonlinear pattern for middle-aged men (40-60

years old), during which men’s hormones are deemed to change significantly. We can observe that

between ages 22 and 39, the fitted solid line indicates a linear increasing pattern. After age 39 the

line rises up faster, followed by a phase of decreasing pattern after age 45. It returns the stable

increasing mode after age 60. To better understand how the relationship between body fat percent

and circumference measurements interact with covariate age, we ran nonparametric regression of Y

on U = ZTβ̂, respectively, for three different age groups of 22-39, 40-60, and 61-81. Figure 2 shows

the resulting three fitted curves over the estimated circumference index u = zTβ̂, each for one age

group. Clearly, the three curves have demonstrated different patterns, which implies that there

exist strong interaction effects between age and circumference index; in other words, the profiles of

circumferences may have modified the rate of change regarding body fat percentage over age.

Insert Figure 2 here
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To evaluate both nonlinear main effects of Z (e.g. circumferences) and interaction effects with

X (e.g. age), we propose to extend model (2) as follows:

Y = m0

(
ZTβ0

)
+m1

(
ZTβ1

)
X + ε, (3)

where m0 (·) and m1 (·) are unknown nonlinear functions, and βl =
(
βl1, . . . , βlp

)T
are coefficient

vectors for l = 1, 2. It is interesting to note that m1 (·) behaves as a varying index coefficient of age

X that explains the mechanism how covariates (e.g. suspected endocrine disrupting compounds)

modify collectively the rate of growth. To generalize model (3) to include multiple covariates, we

let X be a d-dimensional vector X = (X1, . . . , Xd)
T. A class of varying index coefficient models

(VICM) is specified as follows:

Y = m (Z,X,β) =
∑d

l=1
ml

(
ZTβl

)
Xl + ε, (4)

where ml (·) are unknown smooth functions, and βl =
(
βl1, . . . , βlp

)T
are coefficient vectors for

1 ≤ l ≤ d.

Note that in our model (4), the index coefficient vectors βl are assumed to be different, unlike

the setup of the single-index coefficient regression model proposed by Xia and Li (1999) in which

a common coefficient vector β is assumed. Such difference, when the β vectors are given, gives

rise to different nonparametric models, namely their varying-coefficient model and our additive

model. Technically, the former involves one nonparametric function and the latter contains multiple

nonparametric functions in estimation and inference. As a matter of fact, the former may be

regarded as a special case of the latter, so the proposed profile estimation procedure in this paper

for model (4) may also be applied to Xia and Li’s model with minor modifications. It is worth

noting that in real data analysis,with little knowledge about the nonparametric model structures it

seems more natural to start with a model that include a full set of Z covariates in each coefficient

function ml (·), and then identify any important ones interacting with Xl through, for example,

a hypothesis testing procedure. Denote Ul (βl) = ZTβl. We assume that Ul(βl) is confined in a

compact set [a, b]. Without loss of generality, let [a, b] = [0, 1]. In this paper, we do not assume any

distributions for error term ε, instead only requiring E (ε |Z,X) = 0 and Var(ε |Z,X) = σ2 (Z,X).
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For the sake of identifiability, let β =
(
βT

1 , . . . ,β
T
d

)T
belong to the parameter space:

Θ =
{
β =

(
βT
l : 1 ≤ l ≤ d

)T
: ‖βl‖2 = 1, βl1 > 0,βl ∈ Rp

}
,

where ‖·‖2 denotes the L2 norm of a vector such that ‖ζ‖2 = (|ζ1|
2 + · · ·+ |ζs|

2)1/2 for any vector

ζ = (ζ1, . . . , ζs)
T ∈ Rs.

The class of models specified by (4) is quite general, containing many existing models as special

cases. Some of the examples include:

1. When ml (·) ≡ ml, where ml are unknown constants, model (4) is reduced to a linear regres-

sion model.

2. When d = 1 and X1 ≡ 1, model (4) becomes a single-index model. When X1 ≡ 1 and

ml

(
ZTβl

)
≡ ml for l ≥ 2, it is a partially linear single-index model (PLSiM, Carroll et al.

(1997), Xia et al. (1999), Lu et al. (2006) and Liang et al. (2010)).

3. When Xl ≡ 1 for all 1 ≤ l ≤ d, model (4) is an additive index model (Yuan (2011)).

4. When Z is a scalar (p = 1), model (4) becomes a varying-coefficient model (VCM, Hastie and

Tibishirani (1993), Cai et al. (2000), Lin et al. (2007) and Ma et al. (2011)).

5. By treating ZTβl as a covariate Ul and letting Xl ≡ 1 for all 1 ≤ l ≤ d, model (4) may be

regarded as an additive model (Hastie and Tibshirani (1990) and Wang and Yang (2007)),

and moreover by letting ml (·) ≡ ml for some l, it is a partially linear additive model (PLAM,

Wang et al. (2011) and Ma and Yang (2011)).

6. As mentioned above, when βl are the same for all 1 ≤ l ≤ d, model (4) is the single-index

coefficient model (SiCM) studied in Xia and Li (1999).

We develop a profile least squares (LS) estimation procedure to estimate the parameter vector

β =
(
βT

1 , . . . ,β
T
d

)T
. Precisely, for a given β, we apply the LS estimation to approximate each

ml (·) via B-spline basis functions (de Boor (2001)), and the resulting estimator of ml (·) is a

function of β. By replacing ml (·) with its spline estimator in the conditional mean, we obtain

the estimator of β by the LS method. This proposed profile spline estimation is motivated by
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the profile kernel estimation studied in Liang et al. (2010) and Cui et al. (2011) for PLSiMs

and single-index models. Other existing methods of estimating parameters in single-index models

include the backfitting algorithm (Carroll et al. (1997)), the penalized spline estimation (Yu and

Ruppert (2002)) and the minimum average variance estimation (MAVE, Xia and Li (1999), Xia

et al. (1999) and Xia and Härdle (2006)). It is noteworthy that to deal with the estimation in

model (4) the backfitting algorithm may be unstable, while the penalized spline estimation may be

inefficient. Although MAVE overcomes some of these limitations, it could encounter the so-called

sparseness problem as noted by Cui et al. (2011). Since the proposed LS profile estimator of β

implicitly involves the spline estimates of the nonparametric functions with a divergent number of

parameters, the existing asymptotic distribution for the estimator in parametric models cannot be

directly applied. In this paper, we propose a new approach to establishing the asymptotic normality

for the profile LS estimator of β in model (4).

Another challenge arises in the estimation of the nonparametric functions ml (·) in model (4),

which requires more sophisticated estimation procedures than the kernel smoothing method em-

ployed in both Xia and Li (1999) for the SiCM and Liang et al. (2010) for the PLSiM. Note that

when parameters β are fixed by known values or by their root-n consistent estimates, the SiCM is

simplified as to be a VCM in which each coefficient function is univariate, and thus some of the

existing nonparametric smoothing methods proposed for the VCM may be directly applied; for

example, the kernel-based method (Cai et al. (2000); Fan and Zhang (2008)) and the spline-based

method (Huang et al. (2004)). Our VICM (4), however, involves multiple additive nonparametric

functions due to different parametric vectors βl. Moreover, these nonparametric functions interact

with covariates Xl to form nonlinear interaction effects of scientific interest. Obviously, the esti-

mation methods for univariate nonparametric functions fails to directly applicable in model (4).

In the literature, several methods have been proposed for estimation in multivariate additive mod-

els, summarized as follows. It is shown in Stone (1985) that the one-step LS B-spline estimators

of the additive nonparametric functions have the univariate convergence rate, but no asymptotic

distribution is available. Later, there are several alternative estimation methods proposed for the

additive models that provide asymptotically normally distributed estimators, including the backfit-
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ting algorithm (Hastie and Tibshirani (1990), Mammen et al. (1999) and Opsomer and Ruppert

(1997)), the marginal integration method (Linton and Nielsen (1995) and Fan et al. (1998)), the

two-stage estimation (Linton (1997), Horowitz (2006) and Horowitz and Mammen (2004)), and

the spline backfitted local linear (SBLL, Wang and Yang (2007)).

In this paper, we adopt the SBLL procedure, which theoretically enjoys the oracle property

and is computationally expedient. The SBLL procedure is briefly outlined as follows: in model

(4), for a given l, to estimate ml (·), (i) first utilize the one-step B-spline estimation for all the

other functions ml′ (·), l′ 6= l, as the initial estimates in replace of ml′ (·), l′ 6= l; and (ii) then

estimate ml (·) by the means of local linear smoothing. The resulting SBLL estimator will be

shown to satisfy the oracle property; that is, it has the same asymptotic distribution as that of

the univariate oracle estimator under the assumption that all the other nonparametric functions

were known. Such useful properties are achieved by taking the advantage of joint asymptotics of

kernel and spline functions. Furthermore, by taking advantage of the asymptotic normality for the

estimators of the index parameters β and the nonparametric functions ml (·), we construct a Wald

test and a generalized likelihood ratio test (see Fan et al. (2001); Fan and Jiang (2007)) to make

statistical inferences.

The rest of this paper is organized as follows. Section 2 introduces the profile LS estimation and

presents asymptotic properties of the proposed estimators. Section 3 discusses the SBLL estimation

and inference for parameter β and the nonparametric function ml (·). In Section 4, we describe the

procedure of selecting smoothing parameters. In Sections 5, we evaluate finite sample properties of

the proposed estimation and inference procedures via simulation studies. Section 6 illustrates the

proposed model and method through the analysis of body fat percentage data. Some concluding

remarks are given in Section 7. All technical details including detailed proofs are provided in the

Appendix.

2 Profile Least Squares Estimation

Suppose (Yi,Zi,Xi,Ui(β)), 1 ≤ i ≤ n, are the i.i.d. realizations of (Y,Z,X,U(β)), where U(β) =

(U1(β1), . . . , Ud(βd))
T. We propose an estimation of parameter β by a profile LS procedure. Letting
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β be fixed, we estimate nonparametric functions ml (ul) by B splines described as follows. Let Gn

denote the space of polynomial splines of order q ≥ 2. Consider a knot sequence with N ≡ Nn

interior knots, denoted by

ξ1 = · · · = 0 = ξq < ξq+1 < · · · < ξq+N < 1 = ξN+q+1 = · · · = ξN+2q,

where N increases along with the number of subjects n. Space Gn consists of functions, say $,

satisfying (i) $ is a polynomial of degree q − 1 on each of subintervals Is =
[
ξs, ξs+1

)
, s =

0, ..., Nn−1, and INn =
[
ξNn

, 1
]
; (ii) for q ≥ 2, function $ is q−2 times continuously differentiable

on [0, 1]. For 0 ≤ s ≤ Nn, let Hs = ξs+1 − ξs be the distance between neighboring knots and let

H = max0≤s≤Nn Hs. Following Zhou et al. (1998), to study asymptotic properties of the spline

estimator of ml (·), we assume that max0≤s≤Nn−1 |Hs+1 −Hs| = o
(
N−1

)
and H/min0≤s≤Nn Hs ≤

M , where M > 0 is a predetermined constant. Such an assumption assures that M−1 < NnH < M ,

which is necessary for numerical implementation. Let Jn = Nn + q. Denote the q-th order B spline

basis for Gn (de Boor (2001), p. 89) as Bq (u) = (Bs,q (u) : 1 ≤ s ≤ Jn)T, u ∈ [0, 1], with some

q ≥ 3. Then ml (ul), l = 1, . . . , d, are estimated by the following spline functions:

m̂l(ul,β) =
∑Jn

s=1
Bs,q (ul) λ̂s,l(β) = Bq (ul)

T λ̂l(β), (5)

where λ̂(β) =
(
λ̂1(β)T, . . . , λ̂d(β)T

)T
, with λ̂l(β) =

(
λ̂s,l(β) : 1 ≤ s ≤ Jn

)T
, is given by

λ̂(β) = argminλ∈RdJn

∑n

i=1

{
Yi −

∑d

l=1

∑Jn

s=1
Bs,q (Uil(βl))λs,lXil

}2

. (6)

Denote Di(β) = (Di,sl(βl), 1 ≤ s ≤ Jn, 1 ≤ l ≤ d)T with Di,sl(βl) = Bs,q (Uil(βl))Xil and D(β) =[
(D1(β), . . . , Dn(β))T

]
n×Jnd

. Thus the solution to (6) is expressed as

λ̂(β) =
{
D(β)TD(β)

}−1
D(β)TY, (7)

where Y = (Y1, . . . , Yn)T. In the estimation of βl, it requires estimates of both ml and its first

order derivative ṁl. According to de Boor (2001, page 116), ṁl can be approximated by the spline

functions with one order lower than that of ml. Thus, a spline estimator of ṁl is given by

̂̇ml(ul,β) =
∑Jn

s=1
Ḃs,q (ul) λ̂s,l(β) =

∑Jn

s=2
Bs,q−1 (ul) ω̂s,l(β), (8)
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where

ω̂s,l(β) = (q − 1)
{
λ̂s,l(β)− λ̂s−1,l(β)

}
/
(
ξs+q−1 − ξs

)
,

for 2 ≤ s ≤ Jn. In addition, ̂̇ml(ul,β) can be re-expressed as ̂̇ml(ul,β) = Bq−1 (ul)
T D1λ̂l(β),

where Bq−1 (ul) = (Bs,q−1 (ul) : 2 ≤ s ≤ Jn)T and

D1 = (q − 1)


−1

ξq+1−ξ2
1

ξq+1−ξ2
0 · · · 0

0 −1
ξq+2−ξ3

1
ξq+2−ξ3

· · · 0

...
...

. . .
. . .

...

0 0 · · · −1
ξN+2q−1−ξN+q

1
ξN+2q−1−ξN+q


(Jn−1)×Jn

. (9)

In the estimation of β, to ensure identifiability, we exclude the first component βl1 of βl by

setting βl1 =
(

1−
∥∥βl,−1

∥∥2

2

)1/2
, where βl,−1 =

(
βl2, . . . , βlp

)T
, for all 1 ≤ l ≤ d (see Cui et al.

(2011)), and reformulate the parameter space of βl, l = 1, . . . , d, as follows:

Θ−1 =

[{(
1−

∥∥βl,−1

∥∥2

2

)1/2
, βl2, . . . , βlp

}T

:
∥∥βl,−1

∥∥2

2
< 1

]
.

Let βl,−1 =
(
βl2, . . . , βlp

)T
and Jl=∂βl/∂β

T
l,−1 be the Jacobian matrix of size p × (p− 1), which

is Jl =

(
−βT

l,−1/
√

1−
∥∥βl,−1

∥∥2

2

Ip−1

)
. Denote the estimate of β−1 =

(
βT

1,−1, . . . ,β
T
d,−1

)T
by β̂−1 =(

β̂1,−1, . . . , β̂d,−1

)T
, which can be obtained by β̂−1 = arg minβ−1∈Θ−1 Ln(β), where

Ln(β) = 2−1
∑n

i=1

{
Yi −

∑d

l=1

∑Jn

s=1
Bs,l (Uil(βl)) λ̂s,l(β)Xil

}2

,β−1 ∈ Θ−1.

Moreover, one can obtain β̂−1 as the solution of the following estimation equations:

∂Ln(β)/∂β−1 = −
∑n

i=1

{
Yi −

∑d

l=1

∑Jn

s=1
Bs,l (Uil(βl)) λ̂s,l(β)Xil

}
×

{ ̂̇m1(Ui1(β1),β)Xi1J
T
1 Zi +

(
∂λ̂(β)T/∂β1,−1

)
Di(β)

}
...{ ̂̇md(Uid(βd),β)XidJ

T
dZi +

(
∂λ̂(β)T/∂βd,−1

)
Di(β)

}


= 0, (10)

where ̂̇ml (,β) is given in (8). Now define the space M as a collection of functions with finite L2

norm on [0, 1]d ×Rd by

M =

{
g (u,x) =

∑d

l=1
gl (ul)xl, Egl (Ul)

2 <∞
}
,

8
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where u = (u1, . . . , ud)
T and x = (x1, . . . , xd)

T. To study the large-sample properties of parameter

estimators, let β0 =
{(

β0
1

)T
, . . . ,

(
β0
d

)T}T
with β0

l =
{
β0
l1,
(
β0
l,−1

)T}T
and β0

l,−1 =
(
β0
l2, . . . , β

0
lp

)T
for 1 ≤ l ≤ d be the true parameters in model (4). For 1 ≤ k ≤ p, define g0

k as the one satisfying:

P (Zk) = g0
k

(
U
(
β0
)
,X
)

=
∑d

l=1
g0
l,k

(
Ul(β

0
l )
)
Xl = arg min

g∈M
E
{
Zk − g

(
U
(
β0
)
,X
)}2

. (11)

Let P (Z) = {P (Z1) , . . . ,P (Zp)}T, Z̃ = Z− P (Z) and

Φ
(
X,Z,β0

)
=

[{
ṁl(Ul(β

0
l ),β

0)XlJ
T
l Z̃
}T

, 1 ≤ l ≤ d
]T

. (12)

Here Φ
(
X,Z,β0

)
is a vector with (p− 1) d elements. For any matrix A, denote A⊗2 = AAT.

Theorem 1. Under Conditions (C1)-(C5) in the Appendix, and nN−4 → ∞ and nN−2q−2 → 0,

we have

(i) (consistency)
∥∥∥β̂−1 − β0

−1

∥∥∥
2

= Op
(
n−1/2

)
;

(ii) (asymptotic normality) as n→∞,

√
n
(
β̂−1 − β0

−1

)
=

{
n−1

∑n

i=1
Φ
(
Xi,Zi,β

0
)⊗2
}−1
×{

n−1/2
∑n

i=1
(Yi −m (Zi,Xi)) Φ

(
Xi,Zi,β

0
)}

+ op (1) .

Moreover
√
n
(
β̂−1 − β0

−1

)
d→ Nd(p−1) (0,Σ), as n→∞, where

Σ =
[
E
{

Φ
(
X,Z,β0

)⊗2
}]−1 [

E
{
σ2 (Z,X) Φ

(
X,Z,β0

)⊗2
}] [

E
{

Φ
(
X,Z,β0

)⊗2
}]−1

. (13)

Remark 1. If we assume homoscedasticity to the random noise ε in model (4), that is,

σ2 (Z,X) = σ2 for some constant σ2 > 0, then the asymptotic variance matrix given in (13) is

reduced to

Σ = σ2
[
E
{

Φ
(
X,Z,β0

)⊗2
}]−1

. (14)

Let Jdp×d(p−1)= ⊕dl=1Jl =diag(J1, . . . ,Jd) be the direct sum of Jacobian matrices J1, . . . ,Jd.

For 1 ≤ l ≤ d, βl1 is estimated by β̂l1 =
(

1−
∑p

k=2 β̂
2

lk

)1/2
. Let β̂l =

(
β̂l1, . . . , β̂lp

)T
. Both

consistency and asymptotic normality of β̂ =
(
β̂

T

1 , . . . .β̂
T

d

)T
follow directly from Theorem 1 with

an application of the multivariate delta-method. Thus we obtain
√
n
(
β̂ − β0

)
d→ Ndp

(
0,JΣJT

)
,

n→∞.

9
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Next we consider the spline estimator of the nonparametric function ml (·) given as follows:

m̂l(ul, β̂) =
∑Jn

s=1
Bs,q (ul) λ̂s,l(β̂) = Bq (ul)

T λ̂l(β̂), (15)

where λ̂(β̂) =
(
λ̂1(β̂)T, . . . , λ̂d(β̂)T

)T
with λ̂l(β̂) =

(
λ̂s,l(β̂) : 1 ≤ s ≤ Jn

)T
given by (7) in which

β is replaced with β̂. The following theorem provides the convergence rate of m̂l(ul, β̂).

Theorem 2. Under Conditions (C1)-(C5) in the Appendix, and nN−4 →∞ and nN−2q−2 → 0, we

have for each 1 ≤ l ≤ d,
∣∣∣m̂l(ul, β̂)−ml(ul)

∣∣∣ = Op

(√
N/n+N−q

)
uniformly for any ul ∈ [0, 1].

Remark 2. The order assumptions regarding N , nN−4 →∞, and nN−2q−2 → 0, in Theorem

2 implies that N � n1/(2q+1), which is the optimal order for the number of interior knots needed

to estimate the nonparametric functions. The resulting convergence rate is then Op
{
n−q/(2q+1)

}
.

For instance, when q = 4, which is the order for cubic splines, the optimal convergence rate is

Op
(
N−4/9

)
.

Remark 3. To estimate the asymptotic covariance matrix Σ given in (13), we need estimation

of Φ
(
X,Z,β0

)
given by (12). There Z̃ can be estimated by Ẑ = Z − Pn (Z), with Pn (Z) =

{Pn (Z1) , . . . ,Pn (Zp)}T and Pn (Zk) =
∑d

l=1 ĝ
0
l,k

(
Ul

(
β̂
)
, β̂
)
Xl, where ĝ0

l,k

(
·, β̂
)

is the spline

estimate of g0
l,k (·) obtained by carrying out the same procedure as for m̂l(·, β̂) with the response

Y replaced by Zk. Thus Φ
(
X,Z,β0

)
is estimated by

Φ̂
(
X,Z, β̂

)
=

[{ ̂̇ml(Ul(β̂l), β̂)XlJ
T
l Ẑ
}T

, 1 ≤ l ≤ d
]T

,

and the resulting estimate of Σ defined in (13) is given by

Σ̂ = n

{∑n

i=1
Φ̂
(
Xi,Zi, β̂

)⊗2
}−1{∑n

i=1
ê2 (Zi,Xi) Φ̂

(
Xi,Zi, β̂

)⊗2
}

(16)

×
{∑n

i=1
Φ̂
(
Xi,Zi, β̂

)⊗2
}−1

,

where ê (Xi,Zi) = Yi−
∑d

l=1 m̂l

(
ZT
i β̂l, β̂

)
Xil. For the homoscedasticity case, Σ in (14) is estimated

by

Σ̂ = σ̂2n

{∑n

i=1
Φ̂
(
Xi,Zi, β̂

)⊗2
}−1

, (17)

where σ̂2 =
∑n

i=1 ê
2 (Xi,Zi) / {n− d (Jn + p)}.

10
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3 Inference

3.1 Oracle property of SBLL estimation for ml (·)

In Theorem 2 we show that the spline estimator m̂l

(
·, β̂
)

obtained from the profile estimation

procedure in (15) is a consistent estimator of ml (·). The asymptotic distribution of m̂l

(
·, β̂
)

,

however, is not available. Thus, no measure of confidence can be established in statistical inference.

To overcome this, we consider a two-step spline backfitted local linear (SBLL) estimation for the

nonparametric function ml (·), for which the spline estimate m̂l

(
·, β̂
)

given in (15) will be used

as the initial estimate. We will establish the asymptotic normality for the SBLL estimators. The

SBLL estimation proceeds as follows. Without loss of generality, we focus on the estimation of the

first nonparametric function m1 (·). The spline estimates m̂l(·, β̂), l ≥ 2, given in (15) are used as

the initial estimates and held fixed in the estimation of m1 (·). When ml (·) for l ≥ 2 were known,

we could define the oracle pseudo response Yi,1 = Yi−
∑d

l=2ml

(
ZT
i β̂l

)
Xil = m1

(
ZT
i β̂1

)
Xi1 + εi,

where β̂l are the LS profile estimators given in Section 2. For each given u1, m1 (u1) is estimated by

the means of local linear fitting, namely m̃LL,1

(
u1, β̂

)
= â

(
β̂
)

, where â
(
β̂
)

and b̂
(
β̂
)

minimize

the following local kernel objective function:

∑n

i=1

{
Yi,1 − aXi1 − b

(
Ui1(β̂1)− u1

)
Xi1

}2
Kh1

(
Ui1(β̂1)− u1

)
.

Here Kh1 (u) = K (u/h1) /h1 is a symmetric kernel function and h1 is a bandwidth. Let

C
(
u1, β̂1

)
=

[
X11 · · · X1n

X11

{(
U11(β̂1)− u1

)
/h1

}
· · · X1n

{(
U1n(β̂1)− u1

)
/h1

} ]T

,

W
(
u1, β̂1

)
= diag

{
Kh1

(
U11(β̂1)− u1

)
, . . . ,Kh1

(
U1n(β̂1)− u1

)}
,

and Y1 = (Y1,1, . . . , Yn,1)T. Then we have

â
(
β̂
)

= (1, 0)

{
C
(
u1, β̂1

)T
W
(
u1, β̂1

)
C
(
u1, β̂1

)}−1

C
(
u1, β̂1

)T
W
(
u1, β̂1

)
Y1. (18)

Because ml (ul) for l ≥ 2 are actually unknown, we modify (18) by replacing ml (ul) with their

spline estimators m̂l(ul, β̂) given in (15), which is equivalent to replacing Y1 in (18) by Ŷ1, where

Ŷ1 =
(
Ŷ1,1, . . . , Ŷn,1

)T
and Ŷi,1 = Yi −

∑d
l=2 m̂l

(
ZT
i β̂l, β̂

)
Xil. The resulting SBLL estimator is

denoted by m̂SBLL,1

(
u1, β̂

)
. Denote µ2 (K) =

∫
u2K (u) du and ‖K‖22 =

∫
K2 (u) du.

11
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Theorem 3. Under Conditions (C1)-(C6) in the Appendix, and h1 � n−1/5, nN−4 → ∞ and

nN−2q−2 → 0, as n→∞, for any u1 ∈ [h1, 1− h1], we have

sup
u1∈[h1,1−h1]

∣∣∣m̃LL,1

(
u1, β̂

)
−m1 (u1)

∣∣∣ = Op

(√
log (n) / (nh1)

)
= Op

(
n−2/5

√
log (n)

)
,

and √
nh1

{
m̃LL,1

(
u1, β̂

)
−m1 (u1)− b1 (u1)h2

1

}
d→ N (0, v1 (u1)) ,

where

b1 (u1) = µ2 (K) m̈1 (u1) /2,

v1 (u1) =
{
E
(
X2

1 |u1

)}−2
f−1

1 (u1) ‖K‖22E
{
X2

1σ
2 (Z,X) |u1

}
.

in which m̈1 (·) is the second order derivative of m1 and f1 (·) is the density function of ZTβ0
1.

The theorem below presents the uniform oracle efficiency of the SBLL estimator m̂SBLL,1

(
u1, β̂

)
such that the absolute difference between m̂SBLL,1

(
u1, β̂

)
and m̃LL,1

(
u1, β̂

)
is of order op

(
n−2/5

)
uniformly. As a result, m̂SBLL,1

(
u1, β̂

)
has the same asymptotic distribution as m̃LL,1

(
u1, β̂

)
.

Theorem 4. Under Conditions (C1)-(C6) in the Appendix, and nN−4 → ∞, nN−2q−2 → 0 and

nN−5q/2 → 0, we have

sup
u1∈[0,1]

∣∣∣m̂SBLL,1

(
u1, β̂

)
− m̃LL,1

(
u1, β̂

)∣∣∣ = Op

(
n−1/2 +N−q

)
= op

(
n−2/5

)
.

Corollary 1. Under Conditions (C1)-(C6) in the Appendix, and h1 � n−1/5, nN−4 → ∞,

nN−2q−2 → 0 and nN−5q/2 → 0, for any u1 ∈ [h1, 1− h1], as n→∞, we have

√
nh1

{
m̂SBLL,1

(
u1, β̂

)
−m1 (u1)− b1 (u1)h2

1

}
d→ N (0, v1 (u1)) .

Remark 4. Since the spline order q needs to be no smaller than 3, under the assumption of

N given in Corollary 1, the same order N � n1/(2q+1) as given in Remark 2 can be applied in the

first step of spline estimation. For instance, when q = 4 for cubic splines, N � n1/9. In the second

step of SBLL estimation, the bandwidth satisfies the optimal order h1 � n−1/5.

12
Hosted by The Berkeley Electronic Press



3.2 Inference for index parameter β

With the availability of asymptotic normality in Theorem 1, we can easily derive a Wald chi-square

testing procedure to test whether a subset of βl =
(
β2l, . . . , βpl

)
, l = 1, . . . , d, equals to zero. Let K

be an integer satisfying 2 ≤ K ≤ p, and let (k1, . . . kK) be a subset of indices in {2, . . . , p}. The null

hypothesis of interest is: H0 : βk1l = βk2l = · · · = βkK l = 0 for the i-th index coefficients. Following

Theorem 1, a Wald test statistic takes the form χ2
W =

(
β̂Kl − 0K

)T {
V̂
(
β̂Kl

)}−1 (
β̂Kl − 0K

)
,

where β̂Kl =
(
β̂k1l, β̂k2l, . . . , β̂kK l

)T
is the profile estimate of βKl =

(
βk1l, βk2l, . . . , βkK l

)T
, and{

V̂
(
β̂Kl

)}−1
is the inverse of the estimated asymptotic variance-covariance matrix of β̂Kl. Under

H0, χ2
W follows asymptotically the central chi-square distribution with K degrees of freedom.

3.3 Inference for nonparametric function ml (·)

For a given 1 ≤ l ≤ d, both main and interaction effects of Xl are related to the nonparametric

function ml (·). To test whether ml (·) has a specific parametric form, we set up the hypothesis

testing as: H0 : ml (·) = mθ,l (·) versus Ha : ml (·) 6= mθ,l (·), where mθ,l (·) is a certain given

parametric function with the pθ-dimensional parameter vector θ. For example, setting mθ,l (ul) ≡

θl0 (constant), we aim to test whether there exist any interaction effects, while setting mθ,l (ul) =

θl1 + θl2ul (a linear function), we attempt to test whether there exists a linear interaction effect

between Ul and Xl. Following Fan et al. (2001) and Liang et al. (2010), we construct generalized

likelihood ratio (GLR) statistics based on the SBLL estimator m̂SBLL,l

(
ul, β̂

)
given in section 3.1.

First we construct a GLR statistic and establish its asymptotic distribution by using the oracle

estimator m̃LL,l

(
ul, β̂

)
assuming that all the other nonparametric functions ml′(·) for l′ 6= l were

known. Because of Theorem 4, the same asymptotic distribution will be satisfied by the GLR

statistic by plugging in the SBLL estimates.

For example, let us consider l = 1. Applying the same procedure as proposed in Liang et

al. (2010), under Ha, we estimate mθ,1 (u1) by minimizing
∑n

i=1

{
Yi,1 −mθ,1

(
Ui1(β̂1), β̂

)
Xi1

}2
,

denoted as m̃
θ̂,1

(
u1, β̂

)
, and the resulting residual sum of squares under the null and alternative

13
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hypotheses are given as

RSSLL,1 (H0) =
∑n

i=1

{
Yi,1 − m̃θ̂,1

(
Ui1(β̂1), β̂

)
Xi1

}2
,

RSSLL,1 (H1) =
∑n

i=1

{
Yi,1 − m̃LL,1

(
Ui1(β̂1), β̂

)
Xi1

}2
,

where β̂ and m̃LL,1

(
u1, β̂

)
are the profile and local linear estimates of β and m1 (u1), respectively.

It follows that a GLR statistic is defined by

TLL,1 =
n {RSSLL,1 (H0)− RSSLL,1 (H1)}

2RSSLL,1 (H1)
.

Let

Γ1 (u1) = E
(
X2

1 |U1 = u1

)
f1 (u1) , Γ∗1 (u1) = E

{
X2

1σ
2 (Z,X) |U1 = u1

}
f1 (u1) .

Corollary 2. Assume Conditions (C1)-(C7) in the Appendix, and h1 � n−1/5, nN−4 → ∞ and

nN−2q−2 → 0.

(i) Suppose H0 : mθ,1 (·) is linear such that mθ,1 (u1) = θ11 + θ12u1. Then under H0, τKTLL,1 has

an asymptotic χ2 distribution with dfn degrees of freedom, where

τK =

{
K (0)− 0.5

∫
K2 (u) du

}
/

∫ {
K (u)− 0.5

∫
K ∗K (u) du

}2

du,

dfn = τK

{
K (0)− 0.5

∫
K2 (u) du

}
/h,

and K ∗K (u) denotes the convolution of K;

(ii) Suppose H0 : mθ,1 (·) is a constant such that mθ,1 (u1) = θ10. Then under H0, τ̃KTLL,1 has an

asymptotic χ2 distribution with d̃fn degrees of freedom, where

τ̃K = τKE
{
σ2 (Z,X)

}{∫ (
Γ∗1 (u1) Γ−1

1 (u1)
)
du1

}{∫ (
Γ∗1 (u1) Γ−1

1 (u1)
)2
du1

}−1

,

d̃fn = τKcKh
−1

{∫ (
Γ∗1 (u1) Γ−1

1 (u1)
)
du1

}2{∫ (
Γ∗1 (u1) Γ−1

1 (u1)
)2
du1

}−1

,

where cK = K (0)− 0.5 ‖K‖22.

Results (i) and (ii) in Corollary 2 can be proved by following the same reasoning as the proofs

of Theorems 5 and 9 given in Fan et al. (2001) as well as the proofs of Theorem 5 given by Liang

et al. (2010). Now we construct a sample version of GLR statistic by using the SBLL estimator

14
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m̂SBLL,1

(
u1, β̂

)
. Similarly, denote by m̂

θ̂,1

(
u1, β̂

)
the least squares estimator that minimizes∑n

i=1

{
Ŷi,1 −mθ,1

(
Ui1(β̂1), β̂

)
Xi1

}2
. Then a GLR statistic is defined by

TSBLL,1 =
n {RSSSBLL,1 (H0)− RSSSBLL,1 (H1)}

2RSSSBLL,1 (H1)
,

where

RSSSBLL,1 (H0) =
∑n

i=1

{
Ŷi,1 − m̂θ̂,1

(
Ui1(β̂1), β̂

)
Xi1

}2
,

RSSSBLL,1 (H1) =
∑n

i=1

{
Ŷi,1 − m̂SBLL,1

(
Ui1(β̂1), β̂

)
Xi1

}2
.

By the oracle property given in Theorem 4, under Conditions (C1)-(C7) and the order requirements

of h1 and N given in Corollary 1, it is easy to show that the above test statistic TSBLL,1 has the

same asymptotic distribution as that of TLL established in Corollary 2. The implementation of such

GLR test is carried out by the bootstrap method as suggested by Fan and Jiang (2007).

4 Smoothing Parameter Selection

In the profile LS estimation of β, the nonparametric functions ml (·) are approximated by cubic

spline (q = 4), where the number of interior knots is set as N =
[
2n1/(2q+1)

]
+ 1 =

[
2n1/9

]
+ 1,

which satisfies the optimal order of N as discussed in Remark 2. Here [a] denotes the closest

integer to a. After we obtain the estimate of β, each ml (·) is estimated by its B spline estimate

m̂l

(
·, β̂
)

with the number of interior knots selected by minimizing the BIC criterion on the range[
n1/9

]
≤ N ≤

[
2n1/9

]
+ 1 given as

BIC (N) = log
[
n−1

∑n

i=1
{Yi − m̂ (Z,X)}2

]
+

log n

n
d (N + q) ,

where m̂ (Z,X) =
∑d

l=1 m̂l

(
ZTβ̂l, β̂

)
Xl. Then one selects the optimal number of interior knots

N̂ =argminN∈IN BIC(N). In the second step, the SBLL estimation for m1 (·) is performed with the

optimal bandwidth h1,opt, which minimizes the total asymptotic mean integrated squared errors

(AMISE):

AMISE (m̂SBLL,1) =

∫ [{
b1 (u1)h2

1

}2
+ v1 (u1) / (nh1)

]
f1 (u1) du1.

It is easy to show that the optimal bandwidth h1,opt is

h1,opt =

{
n−1

∫
v1 (u1) f1 (u1) du1

4
∫
b1 (u1)2 f1 (u1) du1

}1/5

.
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In this paper, we use Epanechnikov kernel function, K (u) = 3
4

(
1− u2

)
I (|u| ≤ 1). The optimal

bandwidth h1,opt is estimated by

ĥ1,opt =

[
(4n)−1

{∑n

i=1
v̂1

(
XT
i β̂1

)}
/

{∑n

i=1
b̂1

(
XT
i β̂1

)2
}]1/5

,

where

b̂1 (u1) = 2−1µ2 (K) ̂̈m1

(
u1, β̂

)
,

v̂1 (u1) =
{
Ê
(
X2

1 |u1

)}−2
f̂−1

1 (u1) ‖K‖22 Ê
{
X2

1 ê
2 (Z,X) |u1

}
,

in which f̂1 (u1) is a kernel density estimate of f1 (u1), ê (Z,X) = Y −
∑d

l=1 m̂l

(
ZTβ̂l, β̂

)
Xl, and̂̈m1

(
u1, β̂

)
, Ê
(
X2

1 |u1

)
and Ê

{
X2

1 σ̂
2 (Z,X) |u1

}
are respectively the spline estimators given as fol-

lows: ̂̈m1

(
u1, β̂

)
=
∑Jn

s=1 B̈s,1(u1)λ̂s,1(β̂), Ê
(
X2

1 |u1

)
=
∑Jn

s=1Bs,1(u1)ζ̂s,1, Ê
{
X2

1 ê
2 (Z,X) |u1

}
=∑Jn

s=1Bs,1(u1)η̂s,1, where ζ̂1 =
(
ζ̂s,1

)Jn
s=1

and η̂1 =
(
η̂s,1
)Jn
s=1

are obtained by minimizing, respec-

tively,

∑n

i=1

{
X2
i1 −

∑Jn

s=1
Bs,1 (Ui1) ζ1

}2

and
∑n

i=1

{
X2
i1ê

2
i −

∑Jn

s=1
Bs,1 (Ui1) η1

}2

,

with

ê2
i =

{
Yi −

∑d

l=1

∑Jn

s=1
Bs,l

(
Uil(β̂l)

)
λ̂s,l(β̂)Xil

}2

.

5 Simulation Experiments

In this section, we conduct simulation studies to evaluate the performance of the proposed es-

timation methods. We generate Zi = (Zi1, Zi2, Zi3)T independently from Uniform [0, 1], Xi1

from Bernoulli (0.5)−0.5, and (Xi2, Xi3)T from a bivariate normal distribution with mean 0,

variance 1 and covariance 0.2. Set true parameters as β1 = 1√
14

(2, 1, 3)T, β2 = 1√
14

(3, 2, 1)T

and β2 = 1√
14

(2, 3, 1)T. Also set m1 (u1) = 5 sin (πu1), m2 (u2) = 5 cos (πu2) − 10/3, and

m3 (u3) = 5 {sin (πu3) + cos (πu3)} − 10/3. The random errors εi are generated from N
(
0, σ2

)
with σ = 1. Then Yi, 1 ≤ i ≤ n, are generated from the following VICM model:

Yi = m1

(
ZT
i β1

)
Xi1 +m2

(
ZT
i β2

)
Xi2 +m3

(
ZT
i β3

)
Xi3 + εi.
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The sample size is set as n = 200, 500, 1000, respectively, and 500 simulation replications are

run to draw summary statistics. Table 1 shows the empirical coverage rates of the 95% con-

fidence intervals for β1 = (β11, β12, β13)T, β2 = (β21, β22, β23)T and β3 = (β31, β32, β33)T for

n = 200, 500, 1000. The standard errors are calculated according to the asymptotic formula given

in (17). We can observe that the coverage rates get closer to 95% as the sample size increases. This

result is confirmatory to the asymptotic normal distribution of the parameter estimators established

in Theorem 1.

Insert Table 1 here

Tables 2 presents the average bias. We can observe that the biases are close to 0 for all cases.

This result confirms the asymptotic property that the parameter estimators are asymptotically

unbiased as given in Theorem 1. It also indicates that estimation consistency is achieved even with

a relatively small sample size n = 200. Table 3 shows the average asymptotic standard error (ASE)

calculated according to Theorem 1 and the empirical standard error (ESE) among 500 replications

for n = 200, 500, 1000. With no surprise, the standard errors become smaller as n increases, due

to the fact of root-n consistency of the parameter estimators. it is more important that the ASEs

are very similar to the corresponding ESEs for all cases, suggesting that the asymptotic covariance

matrix is correctly derived.

Insert Tables 2 and 3 here

To evaluate the performance of the two-step SBLL estimator m̂SBLL,l (·) for a given l, we

define the median integrated squared error (MISE) as the median value of the ISE(m̂SBLL,l) =

n−1
∑n

i=1

{
m̂SBLL,l(Uil

(
β̂l

)
, β̂)−ml(Uil)

}2
among the 500 replications. The MISE for the oracle

estimator m̃LL,l (·) is defined in the same way. Table 4 shows the MISEs for the two-step SBLL

estimators m̂SBLL,l and the oracle estimators m̃LL,l (·) for1 ≤ l ≤ 3, n = 200, 500, 1000. We can

observe that the MISE values for the SBLL estimators become closer to those values for the oracle

estimators as n increases, and the MISE values decrease as n increases.

Insert Table 4 here
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To visualize the estimated functions, Figure 3 displays the estimated curves by the SBLL

estimator m̂SBLL,l (·) (thick line), with the upper and lower 95% pointwise confidence intervals

(upper and lower thick lines), and by the oracle estimator m̃LL,l (·) (thin line) and the true function

ml (·) (dashed line) for l = 1, 2, 3 in the setting of n = 200. It is evident that the proposed SBLL

estimators perform well.

Insert Figure 3 here

The proposed estimation procedure is computationally fast. We ran the above simulation

experiments on Macbook Pro with 2 GHz Intel Core. The average operation time per simulated

dataset in R is 1.375 seconds, 2.429 seconds and 4.068 seconds for sample size n = 200, 500, 1000,

respectively, including the total running time of generating one data sample and computing both

the profile LS estimate of βl, l = 1, 2, 3, and the SBLL estimate of ml (·), l = 1, 2, 3.

6 Application

In this section we illustrate our method via the analysis of body fat dataset introduced in Section

1. It is suggested in the public health science literature that percentage of body fat is an important

biomarker of health status (see Bailey (1994)). Since available procedures accurately measuring

body fat are all complex, expensive, and impractical on the daily use, it is desirable to develop

some practical formulas that enable to calculate body fat percentage conveniently. In many studies,

body circumference measurements are extensively used as surrogate variables to approximate the

determination of body fat percentage; see the published work by Behnke and Wilmore (1974),

Wilmore (1976), Katch and McArdle (1977), among others. However, their formulas are mostly

derived by using the ordinary multiple linear regression models. As a matter of fact, in addition to

circumference measurements, body fat is also potentially related to age, weight, height and other

personal characteristics. As an illustration, in this analysis we consider 6 circumferences as Z

covariates to form index coefficients and two other covariates, age and fat free weight, are treated

as the X covariates of interest to build a varying index coefficient model. Our model will reveal

how the relationships of the body fact percent with age and fat free weight are modified by the

profiles of circumference indices.
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To specify the model, let the response variable Y =log(percent body fat + 1). The percent

body fat is measured by Brozek’s equation 457/Density (gm/cmˆ3)−414.2. Also the centered and

standardized versions of 6 circumferences (cm) serve as the vector of covariates Z in the index coef-

ficient including Z1 = chest circumference, Z2 = abdomen circumference, Z3 = hip circumference,

Z4 = thigh circumference, Z5 = forearm circumference, and Z6 = wrist circumference. Covariates

of interest include X1 = 1, X2 =age (yrs), X3 =fat free weight =(1 - fraction of body fat) ×weight,

and both X2 and X3 are also centered and standardized. Thus our model takes the following form:

Y =
∑3

l=1
ml

(
ZTβl

)
Xl + ε, (19)

where ml (·) are unknown nonparametric functions and βl = (βl1, . . . , βl6)T are unknown coefficient

vectors for l = 1, 2, 3, both of which will be estimated.

To begin, we first apply a principle component analysis (PCA) on Z, which allows us to form an

index variable UPCA = ZTw , where w is the vector of loadings for the first principle component.

Then we fit a varying coefficient model Y =
∑3

l=1ml

(
UPCA

)
Xl + ε. This simple analysis provides

us with reasonable initial estimates of the nonparametric functions m̂ini
l (·). In the meanwhile, the

initial estimates of βl, denoted by β̂
ini

l , can be obtained by minimizing

Ln (β) = 2−1
∑n

i=1

{
Yi −

∑3

l=1
m̂ini
l

(
ZT
i βl

)
Xil

}2

.

In our analysis, the number of interior knots and the bandwidth are chosen based on the criteria

discussed in Section 4. Fitting model (19) by the proposed profile LS estimation procedure, we

obtain the estimates (EST) of βl and their standard errors (SE) according to (16), 1 ≤ l ≤ 3, as

well as their lower bound (LB) and upper bound (UB) of 95% confidence intervals (CI) according

to Theorem 1. Table 5 lists all the results, including the corresponding p-values.

Insert Table 5 here

Table 5 indicates that for β1 in the first coefficient index with X1 =intercept, the estimated

coefficients for Z1 (chest), Z2 (abdomen), Z3 (hip) and Z5 (forearm) are significantly different

from zero. This means that in terms of the main effects of circumferences, chest, abdomen, hip and

forearm are significant factors on body fat percentage. For β2 withX2 =age, the abdomen and thigh
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circumferences (Z2 and Z4) appear to be important factors for the interactions of circumferences and

age. In other words, the association between body fat percent and age is modified by a combination

of abdomen and thigh circumferences. For β3 with X3 =fat free weight, a combination of chest,

abdomen and thigh circumferences alters the association between body fat percent and fat free

weight.

We also conduct the Wald chi-square test described in Section 3.2 for each subset of βl =

(βl2, . . . , βl6)T, l = 1, 2, 3, and results are summarized in Tables 6. Whenever a subset contains

more than three Z components, it is found to be significant with p-value much smaller than 0.01.

Therefore, we do not report the results of four circumferences or more in Table 6 for the sake

of saving space. Tables 6 lists critical values (C-value) and p-values for each significant subset

of the three Z variables. We observe that for β1, all subsets are significant at significance level

0.05. For β2 and β3, β2 has just one more significant subset, i.e. (2, 5, 6), than β3, and all the

other significant subsets are the same. To examine interaction effects of the circumferences with

the intercept, age and fat free weight, we conduct the GLR test proposed in Section 3.3. For the

intercept, age and fat free weight, we obtain the p-values of GLR test statistics all less than 0.0001

in the following hypothesis tests. First, we consider H0 : ml (·) is constant (or absence of interaction

effect for covariate Xl) versus Ha : ml (·) is not constant. Second, we look at H0 : ml (·) is linear (or

existence of a linear interaction with Xl) versus Ha : ml (·) is nonlinear. The very small p-values

are not in favor of the null hypotheses, implying strong nonlinear main effects of the circumferences

and more importantly the presence of strong nonlinear interaction effects of the circumferences

with age and fat free weight. Such findings are consistent with the graphic evidence presented in

Figure 4.

Insert Table 6 here

To further illustrate the change pattern of the estimates of ml (·) along with the estimated

circumference index ZTβ̂l, Figure 4 displays the fitted curves obtained by our two-step SBLL

method (middle solid line), the one-step spline estimate given in (15) (middle dashed line), and

their 95% pointwise confidence intervals (lower and upper lines) of ml (·), 1 ≤ l ≤ 3. In addition,

the estimates m̂θ,l = θ̂l0 (horizontal dashed lines) by assuming ml (·) is a constant and m̂θ,l =
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âl + b̂lUl

(
β̂l

)
(straight thin lines) by assuming linearity of ml (·) are included for comparison.

Insert Figure 4 here

The first plot for intercept of Figure 4 clearly shows that the estimated function m̂1 (·) is an

increasing function of the circumference index U1 and the increasing speed declines as the index

value increases. The parametric models by assuming constant and linear coefficients, respectively,

apparently missed the opportunity to capture this feature. This finding is clearly corroborative

with the GLR test results. In Table 5, the estimated coefficients of significant Z are positive,

so it is of scientific importance to unveil the pattern that m̂1 (·) increases along with the higher

chest, abdomen, hip and forearm circumferences. The second plot for age of Figure 4 shows that

the modification by the circumferences on the association of body fat percent and age is highly

nonlinear. Note that this association with age starts from a positive value and drops quickly

to around zero as the important circumference measurements increase, and then becomes stable.

This pattern of change illustrates the complexity in terms of interaction effects between body

circumferences and age ranged between 22 and 81 years old. The other two simple parametric

models cannot provide these informative relationships of human body development. The third

plot for fat free weight of Figure 4 again demonstrates that the interaction effect between the

circumferences and fat free weight is not a constant or linear. Moreover, the one-step spline method

and the two-step SBLL method yield similar estimated curves for m1 and m2, while the former

method results in a curve with more waves for m3. However, the two curves by the two methods

clearly have the same change pattern in general.

Finally, we compare model (19) with the varying coefficient model (VCM) of the following form:

Y =
∑3

l=1
ml

(
UPCA

)
Xl + ε. (20)

We perform the leave-one-out cross validations for the proposed model (19) and the VCM (20), as

well as two linear models by assuming constant and linear coefficient functions, respectively. The

cross-validation (CV) errors are 0.042, 0.059, 0.066, 0.215, respectively. The proposed model has

the smallest CV error, while the linear model with only main effects of age and fat free weight has

the largest CV error, consistent with what we learn above from all the figures and tables.
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7 Discussion

In this paper, we propose a new class of semiparametric models with varying index coefficients,

which allows us to study nonlinear interactive effects that are of scientific importance in the un-

derstanding of the response-covariate relationship. We demonstrate that regression coefficient of

a covariate can be altered or directed by a nonlinear function of multiple other covariates. The

proposed modeling framework gives rise to a rich class of regression models, including many popular

semiparametric models as special cases. Utilizing the least squares estimation approach, we develop

a profile estimation procedure that is both conceptually simple and computationally efficient, and

the resulting estimators are consistent and asymptotically normal.

One of the co-authors is currently involved in multiple collaborative projects studying effects of

environmental pollutants on the somatic growth of children in USA. We believe that the proposed

model has a great potential to investigate the developmental effects resulting from ubiquitous

environmental exposure to known or suspected endocrine disrupting components(EDCs) among

children. In this kind of study, a single EDC has typically a weak effect to alter the rate of somatic

growth but a bundle of EDCs (termed as a mixture of EDCs in environmental health sciences)

is possibly attributive to altered hormone secretion and hence modifies the rate of growth among

children in a nonlinear fashion. Similar analysis has been also called in the study of exposure

to EDCs affecting the pregnancy as well as early life of children. Our VICM model provides a

comprehensive way to understand interactions between environmental factors and physiological

variables in the study of human growth and diseases.

Our future studies will be focused on the extension of the proposed model for longitudinal data

as well as on discrete or categorical response variables along the line of quasi-likelihood estimation

inference. Since the proposed model is quite general, it may involve a large number of parameters

(e.g. index coefficients) to estimate given that we assume each coefficient function depends on

different index parameters. In order to achieve model sparsity, variable selection procedures via

regularization will be investigated as future work. Also a user friendly R package for the imple-

mentation of the VICM will be released to the public.
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Appendix

A.1 Assumptions

For positive numbers an and bn, let an � bn denote that limn→∞an/bn = c, where c is some

nonzero constant. For any vector ζ = (ζ1, . . . , ζs)
T ∈ Rs, denote ‖ζ‖∞ = max1≤l≤s |ζ l|. For any

symmetric matrix As×s, denote its Lr norm as ‖A‖r = maxζ∈s,ζ 6=0 ‖Aζ‖r ‖ζ‖
−1
r . For any matrix

A = (Aij)
s,t
i=1,j=1, denote ‖A‖∞ = max1≤i≤s

∑t
j=1 |Aij |.

We denote the space of p-th order smooth function as C(p) [0, 1] =
{
ϕ
∣∣ϕ(p) ∈ C [0, 1]

}
. Let

C0,1 (Xw) be the space of Lipschitz continuous function on Xw, i.e.,

C0,1 (Xw) =

{
ϕ : ‖ϕ‖0,1 = sup

w 6=w′,w,w′∈Xw

|ϕ (w)− ϕ (w′)|
|w − w′|

<∞

}
,

in which ‖ϕ‖0,1 is the C0,1-norm of ϕ. To establish the consistency and asymptotic normality for

the proposed estimators, we need the following regularity conditions.

(C1) For every 1 ≤ l ≤ d, the density function fUl(βl)
(·) of random variable Ul (βl) = ZTβl is

bounded away from 0 on Sw and fUl(βl)
(·) ∈ C0,1 (Sw) for βl in the neighborhood of β0

l ,

where Sw =
{
ZTβl,Z ∈ S

}
and S is a compact support set of Z. Without loss of generality,

we assume Sw = [0, 1].

(C2) For every 1 ≤ l ≤ d, the nonparametric function ml ∈ C(q) [0, 1].

(C3) The conditional variance function σ2 (z,x) is measurable and bounded above from Cσ, for

some constant 0 < Cσ <∞.

(C4) There exist constants 0 < cQ ≤ CQ <∞, such that cQ ≤ Q (z) = E
(
XXT |Z = z

)
≤ CQ for

all z ∈S.

(C5) For 1 ≤ k ≤ p and 1 ≤ l ≤ d, g0
l,k ∈ C(1) [0, 1].

(C6) The kernel function K is a symmetric probability density, supported on [−1, 1] and K ∈

C0,1 [−1, 1].

(C7) The functions u3K (u) and u3K ′ (u) are bounded and
∫
u4K (u) du <∞. E |ε|4 <∞.
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It is noteworthy that Condition (C1) is the same as Condition (d) in Cui et al. (2011).

Condition (C2) is given in Theorem 2.1 of Zhou et al. (1998). Condition (C3) is the same as

Condition (C5) of Xue and Yang (2006). Condition (C4) is given in Condition (C2) of Xia and

Härdle (2006) and Condition (C5) of Xue and Liang (2010). Condition (C5) gives the smoothness

condition of functions g0
l,k defined in (11). Condition (C6) is a common assumption on the kernel

function in the nonparametric smoothing literature. Condition (C7) is the same as Conditions (A3)

and (A4) in Fan et al. (2001), which is used for obtaining the asymptotic distribution of the GLR

statistic.

A.2 Proofs of Theorems 1 and 2

Denote Y = (Y1, . . . , Yn)T and m =
{
m
(
Z1,X1,β

0
)
, . . . ,m

(
Zn,Xn,β

0
)}T

. By (7), λ̂(β) can be

decomposed into λ̂(β) = λ̂m(β) + λ̂e(β), where

λ̂m(β) =
{
D(β)TD(β)

}−1
D(β)Tm, λ̂e(β) =

{
D(β)TD(β)

}−1
D(β)T(Y −m). (A.1)

We first present several lemmas which will be used in the proofs of Theorems 1 and 2. Define

V(β) =E
(
Di(β)Di(β)T

)
, V̂(β) =n−1D(β)TD(β). (A.2)

Lemma A.1. Under Conditions (C1) and (C4), for any vector α =
{(

αT
1 , . . . ,α

T
d

)T}
dJn×1

with

αl = (αs,l : 1 ≤ s ≤ Jn)T, there are constants 0 < cV < CV < ∞, such that for ∀β ∈ Θ and for

large enough n,

cV J
−1
n αTα ≤ αTV(β)α ≤ CV J−1

n αTα, C−1
V Jnα

Tα ≤ αTV(β)−1α ≤ c−1
V Jnα

Tα. (A.3)

sup
1≤s,s′≤Jn,1≤l≤d

∣∣∣n−1
∑n

i=1
Di,sl(βl)Di,s′l(βl)− E

{
Di,sl(βl)Di,s′l(βl)

}∣∣∣
= Oa.s.

(√
J−1
n n−1 log n

)
, (A.4)

sup
1≤s,s′≤Jn,l 6=l′

∣∣∣n−1
∑n

i=1
Di,sl(βl)Di,s′l′(βl)− E

{
Di,sl(βl)Di,s′l′(βl)

}∣∣∣
= Oa.s.

(
J−1
n

√
n−1 log n

)
. (A.5)
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Proof. By Theorem 5.4.2 of DeVore and Lorentz (1993) and Condition (C1), one has for large

enough n, there are constants 0 < cl ≤ Cl <∞, for ∀β ∈ Θ, such that

clJ
−1
n αT

l αl ≤ αT
l E
(
Bq (Uil(βl))Bq (Uil(βl))

T
)
αl ≤ ClJ−1

n αT
l αl.

Let Gil =
∑

s αs,lBs,q (Uil(βl)) and Gi = (Gi1, . . . , Gid)
T. By Conditions (C1) and (C4) and

the above result, for large enough n,

αTE
(
Di(β)Di(β)T

)
α =

∑
l,l′

∑
s,s′

E
{
αs,lαs′,l′Bs,q (Uil(βl))Bs′,q (Uil′(βl′))XilXil′

}
= E

(∑
l
GilXil

)2
= E

(
GT
i XiX

T
i Gi

)
≥ cQE

(
GT
i Gi

)
= CQ

∑
l
αT
l E
(
Bq (Uil(βl))Bq (Uil(βl))

T
)
αl ≥ CQdmin (cl) J

−1
n αTα.

Similarly it can be proved that αTE
(
Di(β)Di(β)T

)
α ≤ CQdmax (cl) J

−1
n αTα. The second result

in (A.3) follows directly from the first result. Results A.4 and A.5 can be proved by Bernstein’s

inequality in Bosq (1998).

By Lemma A.1, one has with probability approaching 1, for large enough n, for ∀β ∈ Θ,

cV J
−1
n αTα ≤ αTV̂(β)α ≤ CV J−1

n αTα, C−1
V Jnα

Tα ≤ αTV̂(β)−1α ≤ c−1
V Jnα

Tα (A.6)

for any vector α =
{(

αT
1 , . . . ,α

T
d

)T}
dJn×1

with αl = (αs,l : 1 ≤ s ≤ Jn)T. By (A.3) and Demko

(1986), it can be proved that for ∀β ∈ Θ and for large enough n, there is a constant 0 < C∗V <∞

such that
∥∥∥V(β)−1

∥∥∥
∞
≤C∗V Jn. Following this result, (A.4) and (A.5), it can be proved that for

∀β ∈ Θ,
∥∥∥V̂(β)−1

∥∥∥
∞

=Op (Jn). Let E = Y −m = (ε1, . . . , εn)T.

Lemma A.2. Under Conditions (C1), (C3) and (C4), for ∀β ∈ Θ,
∥∥n−1D(β)TE

∥∥
2

= Op
(
n−1/2

)
.

Proof. With probability approaching 1,

∥∥n−1D(β)TE
∥∥2

2
=

∑
l,s

{
n−1

∑n

i=1
Bs,q (Uil(βl))Xilεi

}2

� n−2
∑

l,s

∑n

i=1
E {Bs,q (Uil(βl))Xilεi}2 = O

(
n−1

)
.

The proposition below presents the convergence rate of the estimators m̂l(ul,β
0) and ̂̇ml(ul,β

0)

for the nonparametric function ml (ul) and its first derivative ṁl (ul), for l = 1, . . . , d.
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Proposition A.1. Under Conditions (C1)-(C4), and N → ∞ and nN−1 → ∞, as n → ∞ one

has (i)
∣∣m̂l(ul,β

0)−ml(ul)
∣∣ = Op

(
n−1/2N1/2 +N−q

)
uniformly for any ul ∈ [0, 1]; and (ii) under

N → ∞ and nN−3 → ∞, as n → ∞,
∣∣∣ ̂̇ml(ul,β

0)− ṁl(ul)
∣∣∣ = Op

(
n−1/2N3/2 +N−q+1

)
uniformly

for any ul ∈ [0, 1].

Proof. Let λ̂e(β) =
{
λ̂1,e(β)T, . . . , λ̂d,e(β)T

}T
, where λ̂l,e(β) =

{
λ̂s,l,e(β) : 1 ≤ s ≤ Jn

}T
and

λ̂m(β) =
{
λ̂1,m(β)T, . . . , λ̂d,m(β)T

}T
, where λ̂l,m(β) =

{
λ̂s,l,m(β) : 1 ≤ s ≤ Jn

}T
. Thus

m̂l(ul,β) = m̂l,e(ul,β) + m̂l,m(ul,β), (A.7)

where

m̂l,e(ul,β) = Bq (ul)
T λ̂l,e(β) and m̂l,m(ul,β) = Bq (ul)

T λ̂l,m(β). (A.8)

According to the result on page 149 of de Boor (2001), for ml satisfying Condition (C2), there is a

function m0
l (ul) = Bq (ul)

T λl ∈ Gn, such that

supul∈[0,1]

∣∣m0
l (ul)−ml(ul)

∣∣ = O
(
J−qn

)
. (A.9)

Let Bq (u) =


Bq (u1)T · · · 0

...
. . .

...

0 · · · Bq (ud)
T


d×Jnd

, where u = (u1, . . . ud)
T. Thus m̂l,e(ul,β

0) =

1T
l Bq (u) λ̂e(β

0) and m̂l,m(ul,β
0) = 1T

l Bq (u) λ̂m(β0), where 1l is the d × 1 vector with the l-th

element as “1” and other elements as “0”. Let λ =
{
λT

1 , . . . ,λd
T
}T

. By Berstein’s inequality in

Bosq (1998), it can be proved that
∥∥n−1D(β0)T1n

∥∥
∞ = Op

(
J−1
n

)
. Thus by (A.6) and (A.9), for

every ul ∈ [0, 1],

∣∣m̂l,m(ul,β
0)−m0

l (ul)
∣∣

=
∣∣∣n−11T

l Bq (u) V̂(β0)−1D(β0)T
{
m−D(β0)λ

}∣∣∣
≤

∣∣∣∣∑Jn

s=1
Bs,q (ul)

∣∣∣∣ ∥∥∥V̂(β)−1
∥∥∥
∞

∥∥n−1D(β0)T1n
∥∥
∞O

(
J−qn

)
= Op (Jn)Op

(
J−1
n

)
O
(
J−qn

)
= Op

(
J−qn

)
. (A.10)

Moreover, for every ul ∈ [0, 1], by (A.1), (A.6) and Condition (C3), with probability approaching
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1,

E
{
m̂l,e(ul,β

0) |X,Z
}2

= n−21T
l Bq (u) V̂(β0)−1D(β0)TE

(
EET |X,Z

)
D(β0)V̂(β0)−1Bq (u)T 1l

≤ n−1Cσ1
T
l Bq (u) V̂(β0)−1Bq (u)T 1l

≤ n−1Cσ

∥∥∥Bq (u)T 1l

∥∥∥2

2

∥∥∥V̂(β0)−1
∥∥∥

2
= O (Jn/n) . (A.11)

Thus by the weak law of large numbers, for every ul ∈ [0, 1], m̂l,e(ul,β
0) = Op

(
J

1/2
n n−1/2

)
. There-

fore, by (A.9), (A.11) and (A.10),
∣∣m̂l(ul,β

0)−ml(ul)
∣∣ = Op

(
J

1/2
n n−1/2 + J−qn

)
, uniformly for

every ul ∈ [0, 1]. Results in (i) of Proposition A.1 are proved. Similarly, ̂̇ml(ul,β
0) can be writ-

ten as ̂̇ml,e(ul,β
0) + ̂̇ml,m(ul,β

0), where ̂̇ml,e(ul,β
0) = Bq−1 (ul)

T D1λ̂l,e(β
0) and ̂̇ml,m(ul,β

0) =

Bq−1 (ul)
T D1λ̂l,m(β0). It is easy to prove that ‖D1‖∞ = O (Jn), where D1 is defined in (9).

Following the similar reasoning as the proof for m̂l,m(ul,β
0), one can proved that

̂̇ml(ul,β
0)− ṁl(ul) = Op

(
J3/2
n n−1/2 + J−q+1

n

)
,

uniformly for every ul ∈ [0, 1]. Thus, results in (ii) of Proposition A.1 are proved.

Define Pn (Zi) = Di(β
0)Tδ̂, where

δ̂ = arg min
δ∈RdJn×p

∑n

i=1

{
Zi − δTDi(β

0)
}T {

Zi − δTDi(β
0)
}
.

Let Z= (Z1, . . . ,Zn)T. Thus

δ̂ =
{
D(β0)TD(β0)

}−1
D(β0)TZ,

Lemma A.3. Under Conditions (C1)-(C5), and nN−4 →∞ and nN−2q−2 → 0, as n→∞,

∂Ln
(
β0
)
/∂β−1 = −

∑n

i=1

{
Yi −

∑d

l=1
ml

(
ZT
i β

0
l

)
Xil

}[
ṁl(Uil(β

0
l ),β

0)XilJ
T
l Z̃i

]d
l=1

+op

(
n1/2

)
.

Proof. For λ̂e(β
0) defined in (A.1), first we will show that for every 1 ≤ l ≤ d,{

∂λ̂e(β
0)T/∂βl,−1

}
Di(β

0) = −ṁl(Uil(β
0
l ),β

0)XilJ
T
l Pn(Zi) +Op

(
J−q+1
n + n−1/2

)
. (A.12)

Let Ψ(β0) =
[
V̂(β0)

−1
D(β0)T

]
Jnd×n

. Then

Di(β
0)T

{
∂λ̂e(β

0)/∂βT
l,−1

}
= n−1Di(β

0)T
{
∂Ψ(β0)/∂βT

l,−1

}
(Y −m)

+Di(β
0)TΨ(β0)

{
∂ (Y −m) /∂βT

l,−1

}
,
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where ∂Ψ(β0)/∂βT
l,−1 = (Ψi,sl,k) is Jnd × n × (p− 1) dimensional array and ∂ (Y −m) /∂βT

l,−1is

n× (p− 1) dimensional matrix. By the weak law of large numbers, it can be proved that

Di(β
0)T

{
∂Ψ(β0)/∂βT

l,−1

}
(Y −m)

= n−1
∑n

i′=1

∑d

l=1

∑Jn

s=1
Di,sl(β

0
l )
(
Ψi′,sl,k

)p
k=2

εi′ = Op

(
n−1/2

)
.

Let ζ ′il = ṁl

(
ZT
i β

0
l

)
Xil and Pn

(
ζ ′il
)

be defined in the same way as Pn (Zi). Following similar

reasoning as the proof for (A.10) and the fact that supul∈[0,1]

∣∣ṁ0
l (ul)− ṁl(ul)

∣∣ = O
(
J−q+1
n

)
, we

have
∣∣ζ ′il − Pn

(
ζ ′il
)∣∣ = Op

(
J−q+1
n

)
. Thus

Di(β
0)TΨ(β0)

{
∂ (Y −m) /∂βT

l,−1

}
= −Di(β

0)TΨ(β0)
[
ṁl(Uil(β

0
l ),β

0)XilZ
T
i Jl
]n
i=1

= −Pn
(
ζ ′li
)
Di(β

0)TΨ(β0)ZJl +Op
(
J−q+1
n

)
= −ṁl(Uil(β

0
l ),β

0)XilPn
(
ZT
i

)
Jl +Op

(
J−q+1
n

)
.

Therefore, (A.12) is proved by the above results. For λ̂m(β0) defined in (A.1), by (A.3) and (A.10),

with probability approaching 1,∥∥∥λ̂m(β0)− λ
∥∥∥
∞

=
∥∥∥{D(β0)TD(β0)

}−1
D(β0)T

{
m−D(β0)λ

}∥∥∥
∞

(A.13)

≤ c−1
V Jn

∥∥n−1D(β0)T
{
m−D(β0)λ

}∥∥
∞

≤ c−1
V Jn sups,l n

−1
∑n

i=1

∣∣Bs,q (Uil(β0
l )
)
Xil

∣∣O (J−qn )
� c−1

V sups,lE
∣∣Bs,q (Uil(β0

l )
)
Xil

∣∣O (J−q+1
n

)
≤ O

(
J−1
n

)
O
(
J−q+1
n

)
= O

(
J−qn

)
.

By the decomposition of λ̂(β0), (A.1), (A.12) and (A.13), one has{
∂λ̂(β0)T/∂βl,−1

}
Di(β

0) = −ṁl(Uil(β
0
l ),β

0)XilJ
T
l Pn (Zi) +Op

(
J−q+1
n + n−1/2

)
.

By result (ii) in Proposition A.1,

̂̇ml(Uil(β
0
l ),β

0)XilJ
T
l Zi = ṁl(Uil(β

0
l ),β

0)XilJ
T
l Zi +Op

(
J3/2
n n−1/2 + J−q+1

n

)
.

By Condition (C5), it can be proved that ‖Pn (Zi)− P (Zi)‖∞ = Op

(
(Jn/n)1/2 + J−1

n

)
. For nota-

tion simplicity, we let ̂̇mil = ̂̇ml(Uil(β
0
l ),β

0) and ṁil = ṁl(Uil(β
0
l ),β

0). Thus

̂̇milXilJ
T
l Zi +

{
∂λ̂(β0)T/∂βl,−1

}
Di(β

0) = ṁilXilJ
T
l Z̃i +Op

(
J3/2
n n−1/2 + J−1

n

)
.
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Let 1s be the s × 1-dimensional vector with “1”’s as its elements, and let mi = m
(
Zi,Xi,β

0
)
.

Hence, by (10) and the above result, one has

∂Ln(β0)/∂β−1 = −
∑n

i=1

{
Yi −Di(β

0)Tλ̂(β0)
}[

ṁilXilJ
T
l Z̃i +Op

(
J3/2
n n−1/2 + J−1

n

)
× 1p−1

]d
l=1

= −
∑n

i=1

{
Yi −mi +mi −Di(β

0)Tλ̂(β0)
}[

ṁliXilJ
T
l Z̃i +Op

(
J3/2
n n−1/2 + J−1

n

)
× 1p−1

]d
l=1

= −
∑n

i=1
{Yi −mi}

[
ṁliXilJ

T
l Z̃i

]d
l=1
− (I1 + I2 + I3) ,

where

I1 =
∑n

i=1

{
mi −Di(β

0)Tλ̂(β0)
}[

ṁliXilJ
T
l Z̃i

]d
l=1

,

I2 =
∑n

i=1
{Yi −mi}Op

(
J3/2
n n−1/2 + J−1

n

)
× 1d(p−1),

I3 =
∑n

i=1

{
mi −Di(β

0)Tλ̂(β0)
}
Op

(
J3/2
n n−1/2 + J−1

n

)
× 1d(p−1).

We will prove that ‖Ij‖∞ = op
(
n1/2

)
for each j = 1, 2, 3. By Lemmas A.1 and A.2,∑n

i=1

{
mi −Di(β

0)Tλ̂(β0)
}

= Π1 + Π2 + Π3,

where Π1 = 1T
n

(
m−D(β0)λ

)
= O

(
nJ−qn

)
, Di(β

0) =
(
Di,sl(β

0
l ), 1 ≤ s ≤ Jn, 1 ≤ l ≤ d

)T
with

Di,sl(β
0
l ) = Bs,q

(
Uil(β

0
l )
)
Xil and D(β0) =

[{
D1(β0), . . . , Dn(β0)

}T
]
n×Jnd

.. With probability ap-

proaching 1,

∥∥D(β0)T1n
∥∥2

2
=

∑d

l=1

∑Jn

s=1

{∑n

i=1
Bs,q

(
Uil(β

0
l )
)
Xil

}2

� n2
∑d

l=1

∑Jn

s=1

[
E
{
Bs,q

(
Uil(β

0
l )
)
Xil

}]2 � n2J−1
n .

By (A.6) and (A.9),

|Π2| =
∣∣∣1T
nD(β0)

{
D(β0)TD(β0)

}−1
D(β0)T

(
m−D(β0)λ

)∣∣∣
≤

∥∥D(β0)T1n
∥∥2

2

∥∥∥V̂n

(
β0
)−1
∥∥∥

2
O
(
n−1J−qn

)
= Op

(
n2J−1

n

)
Op (Jn)O

(
n−1J−qn

)
= Op

(
nJ−qn

)
,

|Π3| =
∣∣∣1T
nD(β0)

{
D(β0)TD(β0)

}−1
D(β0)TE

∣∣∣
≤

∥∥D(β0)T1n
∥∥

2

∥∥∥V̂n

(
β0
)−1
∥∥∥

2

∥∥n−1D(β0)TE
∥∥

2

= Op

(
nJ−1/2

n

)
Op (Jn)Op

(
n−1/2

)
= Op

(
n1/2J1/2

n

)
.
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Thus
∑n

i=1

{
mi −Di(β

0)Tλ̂(β0)
}

= Op

(
n1/2J

1/2
n + nJ−qn

)
. By Proposition A.1, one has∣∣∣m (Zi,Xi)−Di(β

0)Tλ̂(β0)
∣∣∣ = Op

(
J1/2
n n−1/2 + J−qn

)
.

Therefore,

‖I1‖∞ = Op

(
J1/2
n n−1/2 + J−qn

)
Op

(
n1/2

)
= Op

(
J1/2
n + J−qn n1/2

)
= op

(
n1/2

)
,

‖I2‖∞ = Op

(
J3/2
n n−1/2 + J−1

n

)
Op

(
n1/2

)
= op

(
n1/2

)
,

‖I3‖∞ = Op

(
n1/2J1/2

n + nJ−qn

)
Op

(
J3/2
n n−1/2 + J−1

n

)
= op

(
n1/2

)
.

Thus, Lemma A.3 is proved.

Proof of Theorem 1. Under the conditions of Theorem 1, we follow similar arguments as presented

in Ichimura (1993) to show that β̂−1 is a root-n consistent estimator of β0
−1, and thus the proof is

omitted. By Lemma A.3, it is straightforward to prove that

∂Ln(β0)/∂β−1∂β
T
−1 =

∑n

i=1

[[
ṁl(Uil(β

0
l ),β

0)XilJ
T
l Z̃i

]d
l=1

]⊗2

+ op (n) .

By Taylor expansion, Lemma A.3 and the above result,

β̂−1 − β0
−1 = −

{
∂Ln(β0)/∂β−1∂β

T
−1

}−1 {
∂Ln(β0)/∂β−1

}
{1 + op (1)}

=

[
E

[{
ṁl(Uil(β

0
l ),β

0)XilJ
T
l Z̃i

}d
l=1

]⊗2
]−1

×

n−1
∑n

i=1
εi

[
ṁl(Uil(β

0
l ),β

0)XilJ
T
l Z̃i

]d
l=1

+ op

(
n−1/2

)
.

Theorem 1 can be proved by Lindeberg-Feller Central Limit Theorem.

Proof of Theorem 2. Since
∥∥∥β̂ − β0

∥∥∥
2

= Op
(
n−1/2

)
, Theorem 2 follows from this result and Propo-

sition A.1.

A.3 Proofs of Theorems 3 and 4

Following the same techniques employed in Fan and Zhang (2008), it can be proved that the oracle

estimator m̃LL,1

(
u1,β

0
)

has the asymptotic distribution and convergence rate given in Theorem

3. The detailed proof is thus omitted. Since
∥∥∥β̂ − β0

∥∥∥
2

= Op
(
n−1/2

)
, Theorem 3 is proved by

Slutsky’s theorem. We will focus on the proof of Theorem 4.
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According to (18) and (A.7),

m̂SBLL,1

(
u1,β

0
)
− m̃LL,1

(
u1,β

0
)

= − (1, 0)
{
C
(
u1,β

0
1

)T
W
(
u1,β

0
1

)
C
(
u1,β

0
1

)}−1
C
(
u1,β

0
1

)T
W
(
u1,β

0
1

)
×[∑d

l=2

{
m̂l(Uil

(
β0
)
,β0)−ml (Uil)

}
Xil

]n
i=1

= − (1, 0)
{
n−1C

(
u1,β

0
1

)T
W
(
u1,β

0
1

)
C
(
u1,β

0
1

)}−1
{(

Ψv1

(
u1,β

0
)

Ψv2

(
u1,β

0
) )+

(
Ψb1

(
u1,β

0
)

Ψb2

(
u1,β

0
) )} ,

where

Ψv1

(
u1,β

0
)

= n−1
∑n

i=1

∑d

l=2
Xi1XilKh1

(
Ui1(β0

1)− u1

)
m̂l,ε(Uil,β

0),

Ψv2

(
u1,β

0
)

= n−1
∑n

i=1

∑d

l=2

{(
Ui1(β0

1)− u1

)
/h1

}
Xi1XilKh1

(
Ui1(β0

1)− u1

)
m̂l,ε(Uil,β

0),

Ψb1

(
u1,β

0
)

= n−1
∑n

i=1

∑d

l=2
Xi1XilKh1

(
Ui1(β0

1)− u1

) {
m̂l,m(Uil,β

0)−ml (Uil)
}
,

Ψb2

(
u1,β

0
)

= n−1
∑n

i=1

∑d

l=2

{(
Ui1(β0

1)− u1

)
/h1

}
Xi1Xil ×

Kh1

(
Ui1(β0

1)− u1

) {
m̂l,m(Uil,β

0)−ml (Uil)
}
.

Lemma A.4. Under Conditions (C1), (C3), (C4) and (C6), and N → ∞ and nN−1 → ∞, as

n→∞, one has supu1∈[0,1]

∣∣Ψv1

(
u1,β

0
)∣∣+ supu1∈[0,1]

∣∣Ψv2

(
u1,β

0
)∣∣ = Op

(
n−1/2

)
.

Proof. Let

ξsl = n−1
∑n

i=1
Xi1XilKh1

(
Ui1(β0

1)− u1

)
Bs,q

(
Uil(β

0
l )
)
,

and ξ (u1) =

{(
ξ1 (u1)T , . . . , ξd (u1)T

)T
}
dJn×1

with ξl (u1) =
{
ξs,l (u1) : 1 ≤ s ≤ Jn

}T
. Then for

every u1 ∈ [0, 1], E {ξsl (u1)} � J−1
n . It can be proved by Bernstein’s inequality in de Boor (2001)

that supu1∈[0,1] sup1≤l≤d,1≤s≤Jn |ξsl (u1)− E {ξsl (u1)}| = Op

(
J
−1/2
n n−1/2

)
, and thus for Jnn

−1 =

o (1), supu1∈[0,1] ‖ξ (u1)‖2 = Op

(
J
−1/2
n

)
. By (A.8),

Ψv1

(
u1,β

0
)

=
∑d

l=2

∑Jn

s=1
ξslλ̂s,l,e(β

0) = ξTλ̂e(β
0)− ξT

l λ̂l,e(β
0).

Thus E
{
ξ (u1)T λ̂e(β

0)
}

= 0 and with probability approaching 1,

supu1∈[0,1]E
{
ξ (u1)T λ̂e(β

0) |X,Z
}2

= supu1∈[0,1] n
−2ξ (u1)T V̂(β0)−1D(β0)TE

(
EET |X,Z

)
D(β0)V̂(β0)−1ξ (u1)

≤ supu1∈[0,1] n
−1Cσ ‖ξ (u1)‖22

∥∥∥V̂(β0)−1
∥∥∥

2
= O

(
n−1

)
.
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Therefore, by the weak law of large numbers, supu1∈[0,1]

∣∣∣ξ (u1)T λ̂e(β
0)
∣∣∣ = Op

(
n−1/2

)
. Simi-

larly, we can prove that supu1∈[0,1]

∣∣∣ξl (u1)T λ̂l,e(β
0)
∣∣∣ = Op

(
n−1/2

)
. Thus supu1∈[0,1]

∣∣Ψv1

(
u1,β

0
)∣∣ =

Op
(
n−1/2

)
. Since

∣∣(Ui1(β0
1)− u1

)
/h1

∣∣ ≤ 1, following the same reasoning, it can be proved that

supu1∈[0,1]

∣∣Ψv1

(
u1,β

0
)∣∣ = Op

(
n−1/2

)
.

Lemma A.5. Under Conditions (C1), (C4) and (C6), and N → ∞, as n → ∞, one has

supu1∈[0,1]

∣∣Ψb1

(
u1,β

0
)∣∣+ supu1∈[0,1]

∣∣Ψb2

(
u1,β

0
)∣∣ = Op

(
J−qn

)
.

Proof. By (A.9) and (A.10),
∣∣m̂l,m(Uil,β

0)−ml (Uil)
∣∣ = Op

(
J−qn

)
, E
{
Xi1XilKh1

(
Ui1(β0

1)− u1

)}
�

1. It can be proved by Bernstein’s inequality in de Boor (2001) that

sup
u1∈[0,1]

∣∣∣∣n−1
∑n

i=1

∑d

l=2
Xi1XilKh1

(
Ui1(β0

1)− u1

)∣∣∣∣ = Op (1) .

Thus supu1∈[0,1]

∣∣Ψb1

(
u1,β

0
)∣∣ = Op

(
J−qn

)
. Similarly, one has supu1∈[0,1]

∣∣Ψb2

(
u1,β

0
)∣∣ = Op

(
J−qn

)
.

Proof of Theorem 4. It is straightforward to prove that

sup
u1∈[0,1]

∥∥∥∥{n−1C
(
u1,β

0
1

)T
W
(
u1,β

0
1

)
C
(
u1,β

0
1

)}−1
∥∥∥∥

2

≤ C

for some constants 0 < C <∞. Thus by Lemmas A.5 and A.4, one has

sup
u1∈[0,1]

∣∣m̂SBLL,1

(
u1,β

0
)
− m̃LL,1

(
u1,β

0
)∣∣ = Op

(
n−1/2 + J−qn

)
.

Since
∥∥∥β̂ − β0

∥∥∥
2

= Op
(
n−1/2

)
, supu1∈[0,1]

∣∣∣m̂SBLL,1

(
u1, β̂

)
− m̃LL,1

(
u1, β̂

)∣∣∣ = Op

(
n−1/2 + J−qn

)
.

Therefore, under the assumption that nN−5q/2 = o (1) and n−1N = o (1), Theorem 4 is proved.
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Table 1: The empirical coverage rates of the 95% confidence intervals for β1 = (β11, β12, β13)T,

β2 = (β21, β22, β23)T and β3 = (β31, β32, β33)T for n = 200, 500, 1000.

n β11 β12 β13 β21 β22 β23 β31 β32 β33

200 0.908 0.918 0.940 0.908 0.912 0.914 0.938 0.950 0.912

500 0.956 0.930 0.954 0.934 0.926 0.932 0.934 0.952 0.934

1000 0.950 0.946 0.946 0.956 0.956 0.950 0.940 0.946 0.942

Table 2: The average bias
(
×10−2

)
of the estimators for β1 = (β11, β12, β13)T, β2 = (β21, β22, β23)T

and β3 = (β31, β32, β33)T for n = 200, 500, 1000.

n β11 β12 β13 β21 β22 β23 β31 β32 β33

200 −0.3932 0.0942 −0.0422 −0.0896 −0.1393 0.0587 −0.0220 −0.0023 −0.1031

500 −0.1683 0.0095 0.0248 −0.0728 0.0396 0.0024 −0.1286 0.0663 0.0137

1000 0.0439 0.0327 −0.0796 0.0226 −0.0525 −0.0205 −0.0003 −0.0140 0.0218
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Table 3: The average asymptotic standard error (ASE)
(
×10−2

)
and empirical standard error (ESE)(

×10−2
)

of the estimators for β1 = (β11, β12, β13)T, β2 = (β21, β22, β23)T and β3 = (β31, β32, β33)T

for n = 200, 500, 1000.

n β11 β12 β13 β21 β22 β23 β31 β32 β33

200 ASE 3.4309 4.1912 2.4164 2.0593 2.8174 2.8519 1.5215 1.0825 1.7550

ESE 3.8157 4.7051 2.6441 2.3449 3.1650 3.2594 1.5801 1.1116 1.9398

500 ASE 2.0555 2.5270 1.4322 1.1691 1.6041 1.5767 0.8737 0.6179 1.0033

ESE 2.0411 2.7095 1.4118 1.2757 1.7195 1.6535 0.8743 0.6254 1.0983

1000 ASE 1.4330 1.7724 1.0008 0.8053 1.1102 1.0838 0.6035 0.4280 0.6943

ESE 1.4844 1.7461 1.0367 0.8019 1.0966 1.1122 0.6288 0.4593 0.7113

Table 4: The MISE values for the two-step SBLL estimator m̂SBLL,l and the oracle estimators

m̃LL,l (·) for1 ≤ l ≤ 3.

n m̂SBLL,1 m̃LL,1 m̂SBLL,2 m̃LL,2 m̂SBLL,3 m̃LL,3

200 0.16189 0.13362 0.09505 0.08161 0.07961 0.07288

500 0.07745 0.07210 0.04150 0.03945 0.03604 0.03727

1000 0.04270 0.04214 0.02078 0.02070 0.01773 0.01768
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Table 5: The estimates (EST), standard errors (SE) and lower bound (LB) and upper bound (UB)

of 95% confidence intervals of βl, 1 ≤ l ≤ 3, in model 19.

EST LB UB P-value

X1 = intercept

β11 0.469 0.318 0.621 < 0.001

β12 0.547 0.365 0.730 < 0.001

β13 0.656 0.510 0.801 < 0.001

β1 β14 0.162 −0.013 0.337 0.070

β15 0.129 0.014 0.243 0.028

β16 0.088 −0.016 0.192 0.097

X2 = age

β21 0.020 −0.145 0.186 0.812

β22 0.309 0.211 0.408 < 0.001

β23 0.001 −0.255 0.257 0.995

β2 β24 0.950 0.919 0.982 < 0.001

β25 0.018 −0.044 0.080 0.581

β26 0.013 −0.036 0.061 0.616

X3 = fat free weight

β31 0.390 0.177 0.604 < 0.001

β32 0.455 0.061 0.850 0.024

β33 0.334 −0.046 0.714 0.085

β3 β34 0.727 0.354 1.101 < 0.001

β35 0.007 −0.169 0.182 0.940

β36 0.003 −0.205 0.210 0.979
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Table 6: The indices of the components in the significant subsets of βl with no more than 3

components, the corresponding critical values (C-value) and p-values.

β1 C-value P-value β2 C-value P-value β3 C-value P-value

(2,3) 337.92 < 0.0001 (2,3) 52.30 < 0.0001 (2,3) 8.93 0.0115

(2,4) 37.20 < 0.0001 (2,4) 228094.60 < 0.0001 (2,4) 92.53 < 0.0001

(2,5) 36.43 < 0.0001 (2,5) 41.29 < 0.0001 (2,5) 6.06 < 0.0001

(2,6) 43.18 < 0.0001 (2,6) 37.76 < 0.0001 (2,6) 6.95 0.0310

(3,4) 113.5054 < 0.0001 (3,4) 4642.92 < 0.0001 (3,4) 52.59 < 0.0001

(3,5) 79.74 < 0.0001

(3,6) 64.53 < 0.0001

(4,5) 7.96 0.0187 (4,5) 3662.91 < 0.0001 (4,5) 24.30 < 0.0001

(4,6) 6.14 0.0464 (4,6) 79.44 < 0.0001 (4,6) 34.79 < 0.0001

(5,6) 13.80 0.0010

(2,3,4) 512.97 < 0.0001 (2,3,4) 980942.20 < 0.0001 (2,3,4) 360.04 < 0.0001

(2,3,5) 339.72 < 0.0001 (2,3,5) 52.39 < 0.0001 (2,3,5) 9.38 0.0247

(2,3,6) 338.85 < 0.0001 (2,3,6) 52.62 < 0.0001 (2,3,6) 13.44 0.0038

(2,4,5) 37.43 < 0.0001 (2,4,5) 476617.70 < 0.0001 (2,4,5) 92.60 < 0.0001

(2,4,6) 43.97 < 0.0001 (2,4,6) 252412.90 < 0.0001 (2,4,6) 104.57 < 0.0001

(2,5,6) 47.36 < 0.0001 (2,5,6) 43.65 < 0.0001

(3,4,5) 142.75 < 0.0001 (3,4,5) 4809.96 < 0.0001 (3,4,5) 55.27 < 0.0001

(3,4,6) 113.97 < 0.0001 (3,4,6) 4642.93 < 0.0001 (3,4,6) 60.55 < 0.0001

(3,5,6) 85.89 < 0.0001

(4,5,6) 18.28 0.0004 (4,5,6) 4270.81 < 0.0001 (4,5,6) 38.66 < 0.0001

40
Hosted by The Berkeley Electronic Press



2.5 3.0 3.5 4.0

2.
0

2.
5

3.
0

3.
5

4.
0

U

bo
dy

 fa
t p

er
ce

nt
ag

e

20 30 40 50 60 70 80

2.
6

2.
7

2.
8

2.
9

3.
0

3.
1

3.
2

3.
3

age

bo
dy

 fa
t p

er
ce

nt
ag

e

Figure 1: Plots of the fitted curves where in the left panel u is an index covariate given as a linear

combination of 6 circumference measurements. The solid curve denotes the local linear fitting, the

dotted curve stands for the conventional linear regression, and the dots are the observed response

values.
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Figure 2: Three fitted curves over the circumference index u = zTβ̂ for three age groups 22-39

(thick line), 40-60 (thin line) and 61-81 (dotted line).
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Figure 3: Plots of the two-step SBLL estimator m̂SBLL,l (·) (thick line), the upper and lower 95%

pointwise confidence intervals (upper and lower thick lines), the oracle estimator m̃LL,l (·) (thin

line) and the true function ml (·) (dashed line) for l = 1, 2, 3 based on one sample with n = 200.
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Figure 4: Plots of the SBLL estimator (middle solid line), the one-step spline estimator (middle

dashed line), and the 95% pointwise confidence intervals (lower and upper lines) of ml (·), 1 ≤ l ≤ 3,

as well as the estimates m̂θ,l = θ̂l0 (horizontal dashed lines) and m̂θ,l = θ̂l1 + θ̂l2Ul

(
β̂l

)
(straight

thin lines).
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