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Abstract

We propose a general framework for smooth regression of a functional response on

one or multiple functional predictors. Using the mixed model representation of penal-

ized regression expands the scope of function on function regression to many realistic

scenarios. In particular, the approach can accommodate a densely or sparsely sam-

pled functional response as well as multiple functional predictors that are observed:

1) on the same or different domains than the functional response; 2) on a dense or

sparse grid; and 3) with or without noise. It also allows for seamless integration of

continuous or categorical covariates and provides approximate confidence intervals as

a by-product of the mixed model inference. The proposed methods are accompanied

by easy to use and robust software implemented in the pffr function of the R package

refund. Methodological developments are general, but were inspired by and applied

to a Diffusion Tensor Imaging (DTI) brain tractography dataset.

Keywords: functional data analysis; functional regression model; mixed model; multiple

functional predictors; penalized splines; tractography data.

1 Introduction

We study the relationship between a functional response and one or multiple functional

predictors. While the approach is general, the presentation is focused on the case of two

functional predictors. Let Yi(tij) be the functional outcome for subject i measured at tij ∈ T ,

an interval on the real line, 1 ≤ i ≤ n, 1 ≤ j ≤ mi, where n is the number of curves or subjects
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and mi is the number of observations for curve i. We assume that the observed data for the

ith subject are [{Yi(tij)}j, {Xi1(sik)}k, {Xi2(riq)}q,W i], where {Xi1(sik) : 1 ≤ k ≤ Ki} and

{Xi2(riq) : 1 ≤ q ≤ Qi} are functional predictors andW i is a p×1 vector of scalar covariates.

Furthermore, it is assumed that {Xi1(sik)} and {Xi2(riq)} are square-integrable, finite sample

realizations of some underlying stochastic processes {X1(s) : s ∈ S} and {X2(r) : r ∈ R}

respectively, where S and R are intervals on the real line. We start with the following model

for Yi(tij):

Yi(tij) = W iγ + β0(tij) +

∫
S
β1(tij, s)Xi1(s) ds+

∫
R
β2(tij, r)Xi2(r) dr + εi(tij), (1)

where the mean function is modeled semiparametrically (Ruppert, Wand and Carroll 2003;

Wood 2006) and consists of two components: a linear parametric functionW iγ to account for

the scalar covariates W i and an overall nonparametric function β0(t). The effect of the func-

tional predictors is captured by the component
∫
S β1(tij, s)Xi1(s) ds+

∫
R β2(tij, r)Xi2(r) dr.

The regression parameter functions, β1(·, ·) and β2(·, ·), are assumed to be smooth and

square-integrable over their domains. The errors εi are mean zero random processes and

are uncorrelated with the functional predictors and scalar covariates. The model will be

extended in several different ways in Section 3, but for now we keep the presentation simple.

Function on function regression models are well known; see, for example, Ramsay and

Silverman 2005, ch 12. Most of the work in this area (e.g. Yao, Müller and Wang 2005b; He,

Müller, Wang and Wang 2010; Wu, Fan and Müller 2010) has concentrated on functional

regression with one functional predictor and principal component expansions for both the

functional predictor and the corresponding functional coefficient. While these approaches

are intuitive, they are also subject to two subtly dangerous problems. First, estimating

the number of components used for the expansion of the functional predictors is known

to be difficult but relatively unimportant if the focus is on predicting the outcome, see

Goldsmith, Bobb, Crainiceanu, Caffo and Reich (2011). However, as noticed in Crainiceanu,

Staicu and Di (2009), the shape and interpretation of the functional parameter can change
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dramatically when one includes one or two additional principal components. This problem is

exacerbated by the fact that eigenfunctions corresponding to smaller eigenvalues tend to be

much wigglier in applications. Second, the smoothness of the functional parameter is induced

by the choice of basis dimension of the functional predictor. This may lead to strong under-

smoothing when the functional parameter is much smoother than the higher order principal

components. We found this to be the norm rather than the exception in applications.

Furthermore, principal component-based function-on-function regression methods are not

currently extended to incorporate several functional predictors and multiple scalar covariates.

A second common approach assumes a concurrent relationship between predictor and

response. This is a simpler model that is additionally restricted to the case of both variables

being observed over the same domain (e.g. Ramsay and Silverman, 2005, ch 14; Jiang and

Wang, 2011, consider a single index model for the concurrent model).

In this paper we provide a novel solution that addresses these problems using a philo-

sophically and practically different approach to smoothing. Our approach is inspired by the

penalized functional regression (PFR) in Goldsmith et al. (2011), developed for the simpler

case of scalar on function regression. Smoothing of the functional coefficient is controlled

by only one parameter, which is estimated using restricted maximum likelihood (REML)

in an associated mixed model. We choose a similar approach for the more complex case of

function on function regression involving multiple functional predictors.

The lack of methods for regression of functional outcomes on functional predictors in

wider generality, such as functional predictors observed on the same or different domains

than the functional response, and in various realistic scenarios, such as multiple functional

predictors or functional responses that are observed on a dense or sparse grid, is a serious

methodological and computational gap in the literature. We propose a functional linear

regression framework able to accommodate these complications, by introducing penalized

function-on-function regression (PFFR) and the associated software: the pffr function of

the R package refund (Crainiceanu, Reiss, Goldsmith, Greven, Huang and Scheipl 2012).

The paper is organized as follows. Our PFFR method is introduced in Section 2 and then
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extended to accommodate various realistic scenarios in Section 3. The performance of PFFR

in a simulation experiment is presented in Section 4. Section 5 presents an application to a

Diffusion Tensor Imaging (DTI) tractography dataset. Section 6 provides our discussion.

2 Mixed model representation of function on function

regression

In this section we introduce a representation of model (1) that allows us to estimate the

model as a mixed model using available software. To begin, we discuss first the case when the

predictor curves, Xi1(·) and Xi2(·), are measured densely and without noise. For simplicity

of presentation, we consider the case when Ki = K, sik = sk, Qi = Q and riq = rq for every

i, k and q. Also, we assume that the outcome curves are measured on the same common

grid, that is mi = m and tij = tj for every i and j. Section 3 presents extensions to other

realistic designs.

2.1 A penalized criterion for function on function regression

The functional intercept we expand as β0(t) ≈
∑κ0

l=1A0,l(t)β0,l, where A0,l(·) is a known uni-

variate basis and β0,l are the corresponding coefficients. For the linear function-on-function

term, we approximate
∫
S β1(t, s)Xi1(s)ds using Riemann sums on a fine grid. More pre-

cisely,
∫
S β1(t, s)Xi1(s)ds ≈

∑K
k=1 ∆kβ1(t, sk)Xi1(sk), where sk, k = 1, . . . , K, forms a grid of

points in S and ∆k are the lengths of the corresponding intervals. The next step is to expand

β1(t, s) ≈
∑κ1

l=1 a1,l(t, s)β1,l, where a1,l(·, ·) is a bivariate basis and β1,l are the corresponding

coefficients. Thus,
∫
S β1(t, s)Xi1(s)ds can be approximated arbitrarily closely by

κ1∑
l=1

{
K∑
k=1

a1,l(t, sk){∆kXi1(sk)}

}
β1,l =

κ1∑
l=1

{
K∑
k=1

a1,l(t, sk)X̃i1(sk)

}
β1,l,

where X̃i1(sk) = ∆kXi1(sk), by increasing the density of the grid {sk : k = 1, . . . , K}. Using
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similar notation,
∫
R β2(t, r)Xi2(r)dr can be approximated arbitrarily closely by

κ2∑
l=1

{
Q∑
q=1

a2,l(t, rq)X̃i2(rq)

}
β2,l.

Thus, we approximate model (1) by the additive model:

Yi(t) = W iγ +

κ0∑
l=1

A0,l(t)β0,l +

κ1∑
l=1

A1,l,i(t)β1,l +

κ2∑
l=1

A2,l,i(t)β2,l + εi(t), (2)

where A1,l,i(t) =
∑K

k=1 a1,l(t, sk)X̃i1(sk) and A2,l,i(t) =
∑Q

q=1 a2,l(t, rq)X̃i2(rq) are known

because the predictor functions are observed without noise.

While the presentation was provided in full generality, the various choices involved are

crucial when one develops practical software. Our philosophical approach to smoothing is to

use rich bases that reasonably exceed the maximum complexity of the parameter functions

to be estimated and then penalize the roughness of these functions. This translates into

choosing a large number of basis functions, κ0, κ1, κ2, and introducing the penalties λ0P0(β0),

λ1P1(β1), and λ2P2(β2), where βd is the vector of all parameters βd,l for d = 0, 1, 2. Thus, if

we denote by µi(t;γ,β0,β1,β2) the mean of Yi(t), our penalized criterion to be minimized

is ∑
i,j

||Yi(tj)− µi(tj;γ,β0,β1,β2)||2 + λ0P0(β0) + λ1P1(β1) + λ2P2(β2). (3)

A least squares criterion as in the first summand of (3) seems like a natural criterion for

the model fit of continuous functional responses; see Ramsay and Silverman 2005, equation

(16.2). For the criterion defined in (3) we choose to employ a fitting procedure with a fast

and well established smoothness selection approach.

Penalties, P0(β0), P1(β1), and P2(β2) are of known functional form with the amount of

shrinkage being controlled by the three scalar smoothing parameters λ0, λ1, and λ2. We em-

ploy quadratic penalties, P0(β0) = βt0D0β0, P1(β1) = βt1D1β1, P2(β2) = βt2D2β2, where

D0, D1, D2 are known penalty matrices associated with the chosen basis. Among the possi-

ble criteria for selection of the smoothing parameters, (Generalized) Cross Validation (GCV),
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AIC and Restricted Maximum Likelihood (REML) are most popular. In this paper we favor

REML (Reiss and Ogden 2009; Wood 2011) in a particular mixed model; our preference is

also motivated by theoretical results that a restricted maximum likelihood-based selection

of the smoothing parameters is more robust to moderate violations of the independent error

assumption, see Krivobokova and Kauermann (2007). Estimation of smoothing parameters

and model parameters are described next.

2.2 Mixed model representation of function on function regression

We note that the penalized criterion (3) with the quadratic penalty choices described in the

previous section becomes

1

σ2
ε

∑
i,j

||Yi(tj)− µi(tj;γ,β0,β1,β2)||2 +
λ0

σ2
ε

βt0D0β0 +
λ1

σ2
ε

βt1D1β1 +
λ2

σ2
ε

βt2D2β2,

where σ2
ε is the variance of the errors εi(t) in model (1). By denoting σ2

0 = σ2
ε/λ0, σ

2
1 = σ2

ε/λ1,

σ2
2 = σ2

ε/λ2 and following arguments identical to those in Ruppert et al. (2003, sec 4.9) we

conclude that the solution to the penalized criterion (3) is the best linear unbiased predictor

in the mixed model

Yi(t) ∼ N{µi(t;γ,β0,β1,β2), σ
2
ε};

β0 ∼ N(0, σ2
0D
−1
0 ); β1 ∼ N(0, σ2

1D
−1
1 ); β2 ∼ N(0, σ2

2D
−1
2 ),

(4)

where D0, D1, and D2 are known, and shrinkage of the functional parameters is controlled

by σ2
0, σ2

1, and σ2
2, respectively. There is a slight abuse of notation in model (4), as matrices

D0, D1, and D2 are typically not invertible. Indeed, in many cases, only a subset of the

coefficients are being penalized or the penalty matrix is rank deficient. These are well known

problems in penalized regression and the standard solution (Wood 2006, ch 6.6) is to either

replace the inverse with a particular generalized inverse or separate the coefficients that are

penalized from the ones that are not.

Replacing the penalized approach with the mixed model (4) has many favorable intended
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consequences. First, models can naturally be extended in a likelihood framework to adapt

to different levels of data complexity, such as the addition of smooth effects of scalar covari-

ates. This enables us to expand the scope of function-on-function regression substantially.

Second, inferential methods originally developed for mixed models transfer to function-on-

function regression. In particular, approximate confidence intervals (Wahba 1983; Nychka

1988; Ruppert et al. 2003) can be obtained as a by-product of the fitting algorithm. This

provides a statistically sound solution to an important problem that is currently unaddressed

in function-on-function regression. We discuss in this paper implementation of this inferen-

tial tool when independent identically distributed (i.i.d.) errors in model (1) are assumed.

Appendix A discusses first steps towards related inference tools for settings with non-i.i.d.

errors. Moreover, tests on the shape of the association between responses and covariates are

available as well. For suitably chosen bases and penalties, likelihood ratio tests of linearity

versus non-linearity, or constancy versus non-constancy, of the coefficient surfaces along the

lines described in Crainiceanu and Ruppert (2004), Greven, Crainiceanu, Küchenhoff, and

Peters (2008) can be performed with the R package RLRsim (Scheipl, Greven and Küchenhoff,

2008).

We propose to fit model (4) using frequentist model software based on REML estimation

of the variance components. We decided to use the robust mgcv package (Wood 2012) in

R (R Development Core Team 2012), which is designed for penalized regression and has a

built-in capability to construct the penalty matrices that are appropriate for the specified

spline bases. We describe the fitting implementation in the next section.

2.3 Function-on-function regression via mixed models software

We now turn our attention to implementation. In particular, we explain how model (4)

can be fit using the mgcv package (Wood 2012) in R. Note that our representation of the

function on function regression model (2) and (3) is a penalized additive model where the

original basis functions are re-weighted via the expressions A1,l,i(t) =
∑K

k=1 a1,l(t, sk)X̃i1(sk)

and A2,l,i(t) =
∑Q

q=1 a2,l(t, rq)X̃i2(rq). If a0,l(·), a1,l(·, ·), and a2,l(·, ·) are, for example, thin
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plate spline bases, then the mgcv fit can simply be expressed as

fit <- gam(Y ~ W + s(t_0) + s(t_1, s, by=DX1) + s(t_2, r, by=DX2), method="REML").

This very short software line deserves an in-depth explanation to illustrate its direct con-

nection to our mixed model representation of function on function regression. In order to

fit the model, the outcome functions Yi(t) are stacked in an nm × 1 dimensional vector

Y = {Y1(t1), . . . , Y1(tm), Y2(t1), . . . , Yn(tm)}t, where n is the number of curves (or subjects)

and m is the number of observations per curve. This vector is labeled Y. The p × 1 dimen-

sional vectors of covariates W i are also stacked using the same rules used for Yi(t). More

precisely, for every subject i the vector W i is repeated m times and rows are row-stacked in

an m × p dimensional matrix W̃ i. These subject specific matrices are further row-stacked

across subjects to form an mn × p dimensional matrix W . This matrix is labeled W. The

next step is to define a grid of points for the smooth function β0(t) in model (1). The grid

corresponds exactly to the stacking of the outcome functions and is defined as the mn × 1

dimensional vector t0 = (t1, . . . , tm, . . . , t1, . . . , tm)t obtained by stacking n repetitions of

the grid vector (t1, . . . , tm)t. This vector is labeled t_0. The expression s(t_0) thus fits a

penalized univariate thin-plate spline at the grid points in the vector t0.

So far, data manipulation and labeling have been quite straightforward. However, fitting

the functional part of the model requires some degree of software customization. We focus on

the first functional component and build three nm×K dimensional matrices: 1) t1, obtained

by column-binding K copies of the nm× 1 dimensional vector t0; this matrix is labeled t_1;

2) s obtained by row-binding nm copies of the 1 ×K dimensional vector (s1, . . . , sK); this
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matrix is labeled s; and 3) X̃1 the nm×K dimensional matrix



X̃11(s1), X̃11(s2), . . . , X̃11(sK)

X̃11(s1), X̃11(s2), . . . , X̃11(sK)

. . .

X̃11(s1), X̃11(s2), . . . , X̃11(sK)

X̃21(s1), X̃21(s2), . . . , X̃21(sK)

. . .

X̃n1(s1), X̃n1(s2), . . . , X̃n1(sK)



,

where each row {X̃i1(s1), . . . , X̃i1(sK)} is repeated m times, for i = 1, . . . , n; this matrix is

labeled DX1. With these notations, the expression s(t_1,s,by=DX1) is essentially building∑
lA1,l,i(t)β1,l(t), where A1,l,i(t) =

∑K
k=1 a1,l(t, sk)X̃i1(sk). Without the option by=DX1 the

expression s(t_1,s) would build the bivariate thin-plate spline basis a1,l(t, sk), whereas

adding by=DX1 is averaging these bivariate bases along the second dimension using the

weights X̃i1(sk) derived from the first functional predictor. A similar construction is done

for the second functional predictor. Smoothing for all three penalized splines is done via

REML, as indicated by the option method=”REML”.

The implementation presented above is simple, but the great flexibility of the gam func-

tion allows multiple useful extensions. First, it is obvious that the methods and software can

be adapted to a larger number of functional predictors. The number of basis functions used

for each smooth can be adjusted. For example, requiring k0 = 10 basis functions for a uni-

variate thin-plate penalized spline for the β0(·) function can be obtained by replacing s(t_0)

with s(t_0,k=10). Moreover, the implementation can accommodate unevenly sampled grid

points both for the functional response and predictors. Indeed, nothing in the modeling or

implementation requires equally spaced grids. Changing from (isotropic) bivariate thin-plate

splines to (anisotropic) tensor product splines based on two univariate bases can be done

by replacing s(t_1,s,by=DX1) with te(t_1,s,by=DX1). This changes criterion (3) only

slightly, such that β1 then has two additive penalties in s and t direction, respectively. We
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can also easily incorporate linear effects of scalar covariates allowed to vary smoothly along

t (varying coefficients), that is ziβ3(t), using expressions of the type s(t_0,by=Z), where Z

is obtained using a strategy similar to the one for functional predictors. For large datasets

the function bam is more computationally efficient than gam.

In practice, it is useful to have a dedicated, user-friendly interface that automatically

takes care of the stacking, concatenation and multiplication operations described here, calls

the appropriate estimation routines in mgcv, and returns a rich model object that can easily

be summarized, visualized, and validated. pffr offers a formula-based interface that accepts

functional predictors and responses in standard matrix form, i.e., the ith row contains the

function evaluations for subject i on an index vector like t0 or s. It returns a model object

whose fit can be summarized, plotted and compared with other model formulations without

any programming effort by the user through the convenient and fully documented functions

summary, plot and predict. The model formula syntax used to specify models is very

similar to the established formula syntax to lower the barrier to entry for users familiar with

the mgcv-package, i.e. to specify model (2), we use

fit.pffr <- pffr(Ymat ~ c(W) + ff(X1mat, yind=t) + ff(X2mat, yind=t))

where Ymat, X1mat, X2mat are matrices containing the function evaluations and ff(X, yind=t)

denotes a linear function-on-function term
∫
X(s)β(t, s)ds. A functional intercept β0(t) is

included by default. The term c(W) corresponds to a constant effect of the covariates in W ,

i.e.,Wγ. By default, pffr associates scalar covariates with an effect varying smoothly on the

domain of the response, i.e., ~W yields an effect Wγ(t). Our implementation also supports

non-linear effects of scalar covariates zi that may or may not be constant over the domain

of the response, i.e., f(zi, t) or f(zi), specified as s(z) or c(s(z)), respectively, as well as

multivariate non-linear effects of scalar covariates z1i, z2i that may or may not be constant

over the domain of the response, i.e., f(z1i, z2i, t) or f(z1i, z2i), specified as te(z_1, z_2) or

c(te(z1, z2)), respectively.

Prior to applying our pffr procedure, we recommend to center the functional predictors.

For each functional predictor, the mean function is estimated (e.g. Ramsay, Hooker and
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Graves 2009, sec 6.1; Bunea, Ivanescu and Wegkamp 2011) and subtracted from curve i.

When the functional predictors are centered, the functional intercept has the interpretation of

the overall mean outcome for observations with functional predictor values at the respective

mean values.

3 Extensions

We have already seen in Section 2.3 that the class of models we can cover in our framework is

much broader than model (1), including additional functional predictors, varying coefficients,

non-linear effects of one or multiple scalar covariates. Here we present extensions to a few

other realistic settings.

3.1 Sparsely observed functional response

Our approach is able to accommodate sparseness of the observed response trajectories.

This work is the first, to the best of our knowledge, to consider a sparsely observed func-

tional response and the general setting of multiple functional and scalar predictors. Let

{tij : j = 1, . . . ,mi} be the set of time points at which the response for curve i is ob-

served such that ∪ni=1[{tij}
mi
j=1] is dense in T . PFFR can easily accommodate such a sce-

nario with only few modifications. First, the vector of responses, labeled Y, has the form

Y = {Y1(t11), . . . , Y1(t1m1), Y2(t21), . . . , Y2(t2m2), . . . , Yn(tnmn))}t to accommodate subject-

responses observed at different time points. Second, the vector labeled t_0 has the form

t0 = (t11, . . . , t1m1 , . . . , tnmn)t. Third, the matrix of covariates, labeled W, is obtained by

taking mi copies of the 1 × p row vector of covariates W i for subject i, column-stacking

these into a mi × p-dimensional matrix W̃ i, and then further column-stacking these matri-

ces across subjects. The functional components labeled DX1 and DX2 are constructed using

a similar logic. There is no modification in the definitions of the vectors labeled t1 and s.

With these adjustments, the fitting procedure can proceed with gam as described in

Section 2.3. Section 4.2 provides simulation results obtained in this setting.
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3.2 Corruptly observed functional predictors

When the functional predictors are not observed uncorrupted on a fine grid, the underlying

smooth curves need to be estimated first. If data are not too sparse, pre-smoothing the

trajectories using spline-based methods (Ramsay and Silverman 2005; Ramsay, Hooker and

Graves 2009, ch 5) can produce good approximations for the smooth profiles. If data are

sparse, it may be necessary to pool information across curves. We follow an approach similar

to Yao et al. (2005a), which is built on sharing information across curves to estimate the

common covariance function and uses smoothing of this covariance to take out measurement

error, which induces an offset on the diagonal of the covariance. We use smoothing based

on penalized splines, as previously used by Goldsmith et al. (2011), to obtain centered and

reconstructed functional predictors X̂i1(s) and X̂i2(r), and use them as input values for our

PFFR procedure. We present numerical results for our implementations in Section 4.3.

4 Simulation study

We conducted a simulation study to evaluate the performance of PFFR in realistic scenarios

including both densely and sparsely observed functional predictors, and for a functional

response that is densely or sparsely sampled.

To the best of our knowledge, there is no publicly available software for fitting the

function-on-function regression with two functional predictors and scalar covariates as in

model (1) other than our pffr function. The fda package (Ramsay, Wickham, Graves and

Hooker 2011) in R includes the function linmod, see Ramsay, Hooker and Graves (2009,

sec. 10.3), which cannot handle multiple functional predictors or effects of scalar covariates,

however. Also, the fRegress function in the fda package is restricted to the concurrent

model.

We thus compare PFFR to a sequence of scalar on function regressions. More precisely,

for every fixed t, the function on function regression model (1) becomes a scalar on function

regression that can be fit using, for example, PFR (Goldsmith et al. 2011), as implemented in
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the R function pfr from the refund package. We only compare our approach to PFR because,

to the best of our knowledge, there is no other implemented method available that can handle

our general model, which incorporates multiple functional predictors and multiple scalar

covariates. Thus, function on function regression can be done using a sequence of scalar on

function regressions at every t. PFR provides estimates of the functional parameters β1(t, s)

and β2(t, r) for every fixed t. Aggregating these functions over t leads to surface estimators

that are then smoothed using a bivariate penalized spline smoother. This approach is labeled

modified-PFR in the remainder of the paper. Without bivariate smoothing the modified-

PFR was found not to be competitive.

4.1 Densely sampled functional predictors

The curves Yi(t) were observed on an equally spaced grid t ∈ {j/10 : j = 1, 2, ..., 60} and

the functional predictors were observed on equally spaced grids, but in different domains:

Xi1(s) on s ∈ {k/10 : k = 1, 2, ..., 50} and Xi2(r) on r ∈ {q/10 : q = 1, 2, ..., 70}. The

bivariate functional parameters β1(t, s) = cos(tπ/3)sin(sπ/5) and β2(t, r) =
√
tr/4.2 have

comparable range and are displayed in the left panels of Figure 2. The functional intercept

is β0(t) = 2e−(t−2.5)2 and the random errors εi(tj) were simulated i.i.d. N(0, σ2
ε ).

We generated n functional outcomes Yi(t) from model (1) by approximating the integrals

via Riemann sums with a dense grid for each domain S and R. For the first functional

predictor we considered the following mean zero process Vi1(s) = Xi1(s) + δi1(s), where

Xi1(s) =
∑Es

k=1{vik1sin(kπs/5) + vik2cos(kπs/5)} with Es = 10, and where vik1 , vik2 ∼

N(0,1/k4) are independent across subjects i. For the second functional predictor we consid-

ered Vi2(r) = Xi2(r) + δi2(r), where Xi2(r) =
∑Er

k=1(2
√

2/(kπ))Uiksin(kπr/7) with Er = 40,

and where Uik ∼ N(0,1), and δi1(s), δi2(r) ∼ N(0, σ2
X) are mutually independent. More

precisely, Xi1(s) and Xi2(r) were the true underlying processes used to generate Yi(t) from

model (1) and Vi1(s) and Vi2(r) were the actually observed functional predictors. The choice

of Xi1(s), β1(·, ·) and β2(·, ·) is similar to the choices in Goldsmith et al. (2011), whereas

Xi2(r) is a modification of a Brownian bridge. For the scalar covariates, we considered a
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binary variable W1 = 1{Unif[0, 1] ≥ .75}, and a continuous variable W2 ∼ N(10, 52). A

univariate cubic B-spline basis with κ0 = 10 basis functions with second-order difference

penalty was used to fit β0(·). Tensor products of cubic B-splines with κ1 = κ2 = 25 basis

functions and second-order difference penalties in both directions were used to fit β1(·, ·) and

β2(·, ·). However, for more complex functional parameters, increasing the number of basis

functions may be necessary to capture the increased complexity. Increasing the number of

basis functions for the bivariate smoothers from 25 to 100 did not significantly affect the fit

or computation times.

We considered all possible combinations of the following choices:

1. Number of subjects: (a) n = 100 and (b) n = 200.

2. Functional predictors: (a) noiseless σX = 0 and (b) noisy σX = 0.2.

3. Standard deviation for the error: σε = 1.

4. Effects of the scalar covariates:

(a) no scalar covariates, and

(b) scalar covariates W1 and W2 with γ1 = 1 and γ2 = −0.5.

For illustration, Figure 1 displays one simulated data set for scenario 4(a). Curves for

three subjects are highlighted in color, with each color representing one subject across the

three panels.

The combination of the various choices provides eight different scenarios and for each

scenario we simulated 500 data sets. PFFR uses two steps for case 2(b). First, the functional

predictors were estimated as X̂i1(s) and X̂i2(r) using the smoothing approach previously used

in Goldsmith et al. (2011). Second, these estimated functions were used instead of Xi1(s)

and Xi2(r) when fitting model (1).

We computed the integrated mean squared error (IMSE), integrated squared bias (IBIAS2),

and integrated variance (IVAR), where IMSE{β̂(t, s)} =
∫
T

∫
S E[{β̂(t, s) − β(t, s)}2]dtds,

IBIAS2{β̂(t, s)} =
∫
T

∫
S [E{β̂(t, s)}−β(t, s)]2dtds, and IVAR{β̂(t, s)} =

∫
T

∫
S Var{β̂(t, s)}dtds.
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Figure 1: The left panel displays a sample of 200 simulated functional responses Yi(t) with
σε = 1. The middle and right panels display 200 simulated functions from Xi1(s) and Xi2(r),
respectively, highlighting three examples of the functional predictors with no error (solid)
and with measurement error σX = 0.2 (dashed).
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Here E{β̂(t, s)} and Var{β̂(t, s)} were estimated by the empirical mean and variance of

β̂(t, s) in 500 simulations. To characterize the properties of the pointwise confidence in-

tervals we report the integrated actual pointwise coverage (IAC) and integrated actual

width (IAW), where IAC = E[
∫
T

∫
S 1{β(t, s) ∈ CIp(t, s)}dtds], where CIp is the point-

wise approximate confidence interval for the model parameter β(t, s). For example, an ap-

proximate 95% pointwise confidence interval CIp(t0, s0) for β1(t0, s0) can be constructed

as β̂1(t0, s0) ± 1.96 ŝd{β̂1(t0, s0)}. As β̂1(t0, s0) =
∑κ1

l=1 a1,l(t0, s0)β̂1,l, for every (t0, s0),

ŝd{β̂1(t0, s0)} =
√
a1(t0, s0)Σ̂1a

t
1(t0, s0), where Σ̂1 is the estimated covariance matrix

of β̂1, and a1(t0, s0) = {a1,l(t0, s0)}l. We use the Bayesian posterior covariance matrix,

see Ruppert et al. (2003). The length of this confidence interval is 3.92 ŝd{β̂1(t0, s0)}

and IAW = E[3.92
∫
T

∫
S ŝd{β̂1(t, s)}dtds]. As a measure of accuracy of the fit we pro-

vide the functional R2, denoted by fR2, and computed as fR2 = 1 − {
∑

i

∑
j[Yi(tj) −

Ŷi(tj)]
2}/{

∑
i

∑
j[Yi(tj) − µ̂Y (tj)]

2}, where µ̂Y (tj) =
∑n

i=1 Yi(tj)/n, and Ŷi(tj) are the pre-

dicted Yi(tj) using the fitted model. Table 1 compares the average of these measures over

simulations, whereas Appendix B displays boxplots of these measures for the bivariate func-

tional parameters calculated for each data set. Overall, our results indicate that PFFR

outperforms the modified-PFR. To provide the intuition behind these results, Figure 2 dis-

plays the fits using PFFR and PFR obtained in one simulation for the setting n = 200,

σε = 1, σX = 0 and case 4(a). Both methods capture the general features of the true pa-

rameter surfaces well, but the modified-PFR method does not borrow strength between the

neighboring values of the functional outcomes since it is derived from PFR. As our results

show, this causes unnecessary roughness of the estimates along the t dimension. In contrast,

PFFR provides a much smoother surface that better approximates the shape of the true

underlying functions.

Results in Table 1 can be summarized as follows. PFFR performs better than modified-

PFR in terms of IMSE for all the estimated parameters irrespective of the noise level in

the functional predictors and the presence of additional non-functional covariates; see the
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Figure 2: Displayed are the bivariate functional parameters β1(t, s) (top panels) and β2(t, r)
(bottom panels): true values (gray, left panels), estimates via PFFR (blue, middle panels),
and estimates via PFR (blue, right panels). Scenario: n = 200, σε = 1, σX = 0 and case
4(a).
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Table 1: Results for function-on-function regression with densely sampled functional predictors,
based on 500 simulations.

σX = 0 σX = 0.2

(×103) (×103)

Method
√
IMSE

√
IV AR

√
IBIAS2 IAC IAW fR2 √

IMSE
√
IV AR

√
IBIAS2 IAC IAW fR2

Scenario 4(a)

n=100
β0(t)

PFFR 39.20 35.80 15.97 0.92 0.14 42.12 38.97 15.99 0.90 0.14
modified-PFR 40.43 40.06 5.46 1.00 0.40 43.86 43.47 5.78 0.99 0.40

β1(t, s)
PFFR 42.54 41.64 8.70 0.98 0.17 92.55% 49.49 48.72 8.71 0.96 0.18 92.40%

modified-PFR 134.68 26.13 132.12 0.77 0.28 92.34% 137.56 27.95 134.69 0.76 0.28 92.19%
β2(t, r)

PFFR 37.34 25.07 27.67 0.88 0.08 41.63 31.82 26.84 0.83 0.09
modified-PFR 65.00 28.59 58.37 0.97 0.35 68.18 31.38 60.53 0.96 0.35

n=200
β0(t)

PFFR 29.49 25.53 14.76 0.90 0.10 31.29 27.62 14.69 0.88 0.10
modified-PFR 27.69 27.46 3.58 1.00 0.28 29.84 29.64 3.45 0.99 0.28

β1(t, s)
PFFR 32.92 32.08 7.38 0.97 0.13 92.59% 37.89 37.17 7.34 0.96 0.14 92.44%

modified-PFR 99.40 23.51 96.58 0.83 0.25 92.45% 103.25 25.14 100.14 0.82 0.25 92.29%
β2(t, r)

PFFR 30.22 18.50 23.89 0.89 0.06 34.46 24.60 24.14 0.83 0.07
modified-PFR 46.30 22.62 40.39 0.98 0.30 49.03 25.16 42.08 0.98 0.30

Scenario 4(b)

n=100
γ1

PFFR 30.40 30.40 0.21 0.96 0.12 42.95 42.93 1.18 0.85 0.12
modified-PFR 33.90 33.90 0.27 1.00 0.94 44.45 44.42 1.49 1.00 0.95

γ2
PFFR 2.81 2.80 0.12 0.92 0.01 3.78 3.77 0.27 0.85 0.01

modified-PFR 3.10 3.10 0.05 1.00 0.08 3.96 3.95 0.35 1.00 0.08
β0(t)

PFFR 53.93 51.43 16.23 0.79 0.14 94.94% 65.21 63.06 16.58 0.70 0.14 94.84%
modified-PFR 115.68 112.44 27.17 0.99 1.15 94.75% 122.83 119.73 27.43 0.99 1.17 94.64%

β1(t, s)
PFFR 43.42 42.40 9.33 0.97 0.17 51.31 50.53 8.87 0.95 0.18

modified-PFR 135.36 26.70 132.70 0.77 0.28 138.43 28.72 135.42 0.76 0.28
β2(t, r)

PFFR 36.54 24.59 27.02 0.89 0.08 42.70 32.64 27.53 0.82 0.08
modified-PFR 65.72 29.16 58.89 0.97 0.35 68.74 31.66 61.02 0.96 0.35

n=200
γ1

PFFR 21.41 21.40 0.34 0.94 0.08 29.83 29.78 1.59 0.86 0.08
modified-PFR 23.25 23.25 0.56 1.00 0.65 30.15 30.10 1.74 1.00 0.66

γ2
PFFR 1.83 1.83 0.08 0.95 0.01 2.57 2.57 0.05 0.85 0.01

modified-PFR 1.94 1.94 0.10 1.00 0.05 2.65 2.65 0.03 1.00 0.05
β0(t)

PFFR 38.42 35.45 14.81 0.80 0.10 94.97% 47.04 44.60 14.96 0.71 0.10 94.86%
modified-PFR 80.07 78.79 14.25 1.00 0.80 94.84% 84.52 83.03 15.78 0.99 0.81 94.74%

β1(t, s)
PFFR 33.00 32.22 7.10 0.97 0.13 39.09 38.34 7.65 0.95 0.14

modified-PFR 100.16 23.09 97.46 0.82 0.25 103.74 25.79 100.49 0.82 0.25
β2(t, r)

PFFR 30.39 18.91 23.79 0.89 0.06 34.45 25.33 23.35 0.84 0.07
modified-PFR 46.65 22.85 40.67 0.98 0.30 49.86 25.62 42.77 0.98 0.30
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columns labeled IMSE. Appendix B shows that, for the bivariate functional parameters, the

variability of the MSEs of PFFR and modified-PFR is comparable, and that the median MSE

of PFFR is smaller than that of modified-PFR. As the number of subjects increases, IMSE for

both methods decreases, confirming that in the settings considered, the methodology yields

consistent estimators; this is expected to hold more generally, see, for example Claeskens,

Krivobokova, and Opsomer (2009), for the asymptotics of penalized splines. In terms of

the performance of the pointwise approximate confidence intervals, the PFFR intervals are

reasonably narrow and have a coverage probability that is relatively close to the nominal

level; see the columns corresponding to IAW and IAC in Table 1. For PFFR confidence

intervals, as the number of subjects increases, IAW decreases, as expected, while maintaining

IAC close to the nominal level. Overall, when functional predictors are measured with error,

the estimation of parameters tends to deteriorate slightly. However, PFFR continues to

outperform modified-PFR. The accuracy of the fit seems similar for PFFR and modified-

PFR, as illustrated by fR2.

The only available alternative to PFFR yields inferior results. First, fit results tend

to be rougher and may require additional and specialized smoothing. Second, running a

large number of scalar on function regressions leads to longer computation times. Third,

confidence intervals are not easy to obtain, which may further affect computation times. For

these reasons, studying their properties via simulations is computationally hard.

4.2 Sparsely sampled functional response

Consider again scenario 4(a) described in Section 4.1 and assume that for each subject

i, the functional response is observed at randomly sampled mi points from t ∈ {j/10, j =

1, 2, ..., 60}. Estimation of the parameter functions was carried out using our PFFR approach

with κ0 = 10 basis functions for the univariate spline basis, and κ1 = κ2 = 25 for the bivariate

spline bases. The estimates were then evaluated using the same measures as described in

Section 4.1. In the situation of sparsely sampled functional response, our method does not

have any competitors.
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Table 2 shows the results for two sparsity levels, mi = 20 and mi = 6. As expected, the

sparsity of the functional response affects both the bias and the variance of the parameter

estimators, as well as the width of the confidence intervals; compare Table 2 with the PFFR

results of Table 1 corresponding to scenario 4(a) and n = 200. Nevertheless PFFR continues

to show very good performance for many levels of missingness on the functional response

with coverage of the confidence intervals similar to before.

Table 2: Results for function-on-function regression with sparsely sampled functional response and
densely sampled functional predictors, based on 500 simulations.

σX = 0 σX = 0.2

(×103) (×103)

Method
√
IMSE

√
IV AR

√
IBIAS2 IAC IAW

√
IMSE

√
IV AR

√
IBIAS2 IAC IAW

Scenario 4(a)

n=200
mi = 20

β0(t) PFFR 48.00 44.76 17.31 0.91 0.17 49.07 45.87 17.42 0.91 0.17
β1(t, s) PFFR 49.06 47.83 10.90 0.97 0.20 52.47 51.33 10.91 0.97 0.20
β2(t, r) PFFR 40.49 28.91 28.35 0.89 0.10 43.78 31.68 30.21 0.85 0.10

mi = 6

β0(t) PFFR 83.77 79.32 26.92 0.92 0.29 85.13 80.71 27.06 0.92 0.30
β1(t, s) PFFR 79.39 75.62 24.15 0.97 0.29 81.99 78.20 24.63 0.97 0.30
β2(t, r) PFFR 55.93 43.67 34.93 0.88 0.15 57.81 44.68 36.68 0.87 0.15

4.3 Functional predictors sampled with moderate sparsity

The sparse design for the functional predictors was generated by starting with the scenario

4(a) described in Section 4.1 with few changes. The number of eigenfunctions for the two

functional predictors was set to Es = 2 and Er = 4 respectively. For each functional predictor

curve i, 1 ≤ i ≤ n, we randomly sampled Ki points from s ∈ {k/10, k = 1, 2, ..., 50} and

Qi points from r ∈ {q/10, q = 1, 2, ..., 70}. We apply the same smoothing approach used

in Goldsmith et al. (2011) to reconstruct the trajectories of each functional predictor, by

making use of the R code supplied with the paper.

For illustration, Figure 3 displays the simulated data and predicted values for 4 curves, 2

for process Xi1(s) displayed in the two leftmost columns, and 2 for process Xi2(r) displayed

in the two rightmost columns. The true underlying data are the black dotted lines, the actual

observed data are the red dots and the predicted curves are the solid red lines. The visual

inspection of these plots indicates that the smoothing procedure recovers the underlying
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signal quite well. This is one of the main reasons PFFR continues to perform well for these

scenarios.
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Figure 3: Prediction of trajectories for functional predictors in simulation settings with
Ki = 12, Qi = 25 points per curve, and σX = 0.20. Shown are: Xi1(sik) for two subjects
(left two panels) and Xi2(riq) for the same subjects (right two panels). For each panel we
have the true signal (black, dotted lines), the observed signal (red points), and the predicted
signal (red, solid lines).

Table 3 displays the results for our model parameters for the case of functional predictors

observed with moderate sparsity, n = 200 subjects and different sparsity levels. Both the

IMSE and the coverage performance of the PFFR are affected by the sparsity of the predictor

function. Due to the sparsity of the functional predictors, a reduced number of basis functions

is used for estimating the bivariate parameters. Throughout this simulation exercise we used

κ0 = 10 basis functions for the univariate basis, and κ1 = κ2 = 20 basis functions for the

two bivariate bases.

5 Application to DTI-MRI tractography

We consider a brain tractography study of multiple sclerosis (MS) patients. White matter

tracts consist of axons that connect nerve cells and transmit information via electrical nerve
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Table 3: Results for function-on-function regression with densely sampled functional response and
functional predictors sampled with moderate sparsity, based on 500 simulations.

Ki = 15, Qi = 30 Ki = 12, Qi = 25

(×103) (×103)

Method
√
IMSE

√
IV AR

√
IBIAS2 IAC IAW fR2 √

IMSE
√
IV AR

√
IBIAS2 IAC IAW fR2

Scenario 4(a)

n=200
β0(t)

PFFR 35.67 32.46 14.78 0.84 0.10 38.42 35.43 14.83 0.82 0.11
modified-PFR 33.93 33.73 3.65 0.99 0.29 36.61 36.42 3.74 0.99 0.29

β1(t, s)
PFFR 69.83 68.32 14.44 0.88 0.18 92.13% 80.75 79.38 14.80 0.86 0.19 91.96%

modified-PFR 123.87 35.44 118.69 0.78 0.27 91.97% 131.04 38.28 125.33 0.76 0.27 91.81%
β2(t, r)

PFFR 51.51 49.71 13.48 0.72 0.08 55.99 54.48 12.94 0.70 0.08
modified-PFR 61.97 33.82 51.93 0.97 0.32 64.94 35.41 54.43 0.97 0.32

impulses. Axons are covered with a white fatty coating called myelin, which facilitates the

transmission of neuronal signals. Multiple sclerosis is a demyelinating autoimmune-mediated

disease that is associated with brain lesions and results in severe disability. Little is known

about in-vivo demyelination including whether it is a global or local phenomenon, whether

certain areas of the brain demyelinate faster, or whether lesion formation in certain areas is

associated with demyelination in other areas of the brain. Here we attempt to provide an

answer to some of these questions using function on function regression.

Diffusion tensor imaging (DTI) is one way to measure proxies of demyelination by quan-

tifying the water diffusion. Changes in water diffusion in the brain could potentially be

associated with demyelination. DTI is a magnetic resonance imaging (MRI) technique that,

at some level of output complexity, estimates the water diffusion at every voxel using its first

three directions of variation (Basser, Mattiello and LeBihan 1994; Basser, Pajevic, Pierpaoli

and Duda 2000). This information is then collected and integrated with biological knowledge

to produce tracts, or bundles of axons thought to serve a similar purpose. Various water dif-

fusion properties along these tracts are then estimated and are thought to provide localized

information about changes in water diffusion and, implicitly, of demyelination processes.

Some measures of diffusion are fractional anisotropy, parallel diffusivity, and perpendicu-

lar diffusivity. For example, fractional anisotropy is a function of the three eigenvalues of

the estimated diffusion process that is equal to zero if water diffuses perfectly isotropically

(Brownian motion) and to one if water diffuses anisotropically (perfectly organized and syn-

chronized movement of all water molecules in one direction). In our study we focus on the
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water diffusion properties along three major and well identified white matter tracts: corti-

cospinal, corpus callosum, and optical radiation. Tracts are registered within and between

subjects using biological landmarks identified by an experienced neuroradiologist. For the

purpose of this application we consider averages of water diffusion measurements along two

of the dimensions, which results in a functional observation with scalar argument.

Very little is known about the microstructure changes in the white matter of people who

suffer from MS. We focus on the corpus callosum (CCA), corticospinal (CTS) and optical

radiation (OPR) tracts because they are all major tracts that are easy to recognize and

identify on the MRI scans. Thus, our approaches are less prone to location and replication

errors typically associated with brain tractography based on diffusion tensor images (DTI-

MRI).

Our goal here is mainly exploratory, as we are trying to further understand the spatial

and temporal course of the disease. Indeed, MS is typically associated with lesions and

axon demyelination in the corpus callosum. In advanced stages of MS, there is evidence

for significant neuronal loss in the corpus callosum (Evangelou et al. 2000). Following

Tievsky et al. (1999) and Song et al. (2002), we use fractional anisotropy (FA) as our proxy

variable for demyelination of the white matter tracts, and assume larger FA values are closely

associated with less demyelination and fewer lesions. Thus, in our first regression model we

are investigating whether spatial associations between demyelination along the CTS, OPR

and CCA are observed. For example, an association between the inferior CTS and the

posterior CCA (splenium) may indicate specific spatial propagation of the disease. Such

findings could generate a new set of targeted, well-defined spatial associations hypotheses.

We also explore the potential temporal associations between fractional anisotropy at different

visits.

Our study comprises of 160 MS patients and 42 healthy controls, who are observed at

multiple visits; see Greven, Crainiceanu, Caffo and Reich (2010), Goldsmith at el. (2011),

Staicu, Crainiceanu, Ruppert and Reich (2011). The work in Goldsmith at el. (2011) used

parallel diffusivity within left intracranial CTS tracts to predict MS cases and controls. In

23



this paper we consider fractional anisotropy (FA) for several tracts, observed at the first

two visits. For illustration, the top panels in Figure 4 display the FA in the MS group for

three tracts - CCA tract (left), CTS tract (middle) and OPR tract (right) - at the baseline

visit. Depicted in red/blue/green are the FA measurements corresponding to three subjects

(subjects are color coded). Our first objective is to regress the FA for the CCA tract (e.g.

the red curve in the left panel) onto the FA for the CTS tract (e.g. the red curve in the

middle panel) and the FA for the OPR tract (e.g. the red curve in the right panel). This

will allow us to estimate the local associations between FA of the various tracts. Our second

objective is to study how the FA for one tract, at a current visit, relates to the FA for the

same tract and for a different tract at the previous visit. By way of example, we focus on

the MS group and consider regression models of the FA for the left CTS tract at a second

visit on the FA for the left CTS tract and the FA for the left OPR tract at the baseline visit;

see Figure 6.

Consider first the situation when the outcome of interest is the FA for the CCA tract,

and the functional predictors are the FA for the left CTS and left OPR tracts. The first

step is to de-noise and deal with missing data in the functional predictors, which is discussed

in Section 3. Following the notation in Section 2, Yi(t) denotes the FA for the CCA tract

at location t, Xi1(s) and Xi2(r) denote the centered de-noised FA for the left CTS tract

at location s, and for the left OPR tract at location r, respectively, of subject i. We use

regression model (1), where W i is the vector of the covariates age and gender of subject i.

To obtain the estimates of the regression functions β0(·), β1(·, ·) and β2(·, ·) as well as the

regression parameters γ we use the methodology described in Section 2.

Figure 5 shows the regression function estimates along with information on their pointwise

95% confidence intervals for each of the two groups: MS subjects (top row) and controls

(bottom row). We begin with β̂0(t), which accounts for a relative R2 of 28.9% for the MS

group and 38% for the control group. For the MS group, the estimated overall mean of the

FA for the CCA tract has a wavy shape, with two main peaks, one near the beginning of
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Figure 4: FA in the CCA tract (left panels), FA in the left CTS tract (middle) and FA
in the left OPR tract (right panels) for the MS patients (top panels) and controls (bottom
panels) observed at the baseline visit. In each of the top and bottom panels, depicted with
red/green/blue are the FA measurements for three subjects, with each color representing a
subject.

25



0 20 40 60 80

0.
4

0.
5

0.
6

0.
7

CCA distance (visit 1)

F
ra

ct
io

na
l A

ni
so

tr
op

y

Le
ft 

C
TS

 d
is

ta
nc

e 
(v

is
it 

1)10

20

30

40

50

CCA distance (visit 1)

20

40

60

80

0.00

0.05

0.10

Le
ft 

O
P

R
 d

is
ta

nc
e 

(v
is

it 
1)

10

20

30

40

50

CCA distance (visit 1)

20

40

60

80

0.00

0.05

0.10

0 20 40 60 80

0.
4

0.
5

0.
6

0.
7

CCA distance (visit 1)

F
ra

ct
io

na
l A

ni
so

tr
op

y

Le
ft 

C
TS

 d
is

ta
nc

e 
(v

is
it 

1)10

20

30

40

50

CCA distance (visit 1)

20

40

60

80

−0.10

−0.05

0.00

0.05

Le
ft 

O
P

R
 d

is
ta

nc
e 

(v
is

it 
1)

10

20

30

40

50

CCA distance (visit 1)

20

40

60

80

−0.06
−0.04

−0.02

0.00

0.02

Figure 5: Estimates of the regression functions β̂0 (left colum), β̂1 (middle column) and
β̂2 (right colum) corresponding to the MS group (top row) and the control group (bottom
row). The dashed lines (left column) correspond to the pointwise 95% confidence intervals.
Also displayed are different colors of the facets of the surface mesh: red/blue for more
than approximately two standard errors above/below zero, and light red/blue for less than
approximately two standard errors above/below zero.
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the tract, around location 10, and one at the end, around 90. For the control group, the

estimated mean function shows similar patterns and we observe lower FA values for the MS

group than for the control; this is biologically plausible, as FA values tend to decrease in

MS-affected subjects due to lesions or demyelination. Next, we consider the effect of the

FA for the left CTS tract; the relative R2 corresponding to this predictor is 10.8% for the

MS group and 15.9% for the control group. The estimated function β̂1(t, s), displayed in

the middle column of Figure 5, shows the association between the FA for the CTS tract at

location s and the FA of the CCA tract at location t.

We display information on the pointwise 95% confidence intervals under independence

assumption of the residuals by using different colors of the facets of the surface mesh. Specifi-

cally, ‘red’ represents positive values, β̂1(t, s) > 0, that are found significant, ‘blue’ represents

significant negatives, β̂1(t, s) < 0; ‘light red’ and ‘light blue’ correspond to the remaining

positive and negative values, respectively. These effects provide guidance concerning the

strength of the association for exploratory purposes.

We can see that, for the control group, most of the CTS (locations below 40) FA values

are positively associated with FA values in the CCA, indicating that demyelination, e.g. due

to age might occur simultaneously in those tracts. The coefficient surface for the control

group is mostly constant, indicating a spatially homogeneous association for most regions of

these two tracts. In MS patients, on the other hand, there are areas (30 to 45, and around

10) of the CTS for which FA measures show negative associations with the FA values in

the CCA. This might indicate regions of those tracts where demyelination due to lesions

typically occurs only in one tract at a time, while stronger positive associations may suggest

that lesions often occur simultaneously in those areas. Our results support the expected

pattern that the pathological demyelination in MS patients is a more localized phenomenon

than demyelination in control patients.

These findings, while exploratory, may yield new insights into the motivating question

of whether lesion formation in certain areas of the brain is associated with demyelination in

other areas of the brain and can lead to hypotheses for further studies.
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We examine the effect of the FA for the left OPR tract, as estimated by β̂2(t, r). The

profile of the left OPR tract seems to be less predictive for the response for the control group

(relative R2 is 12.6%) and more predictive for the MS group (relative R2 is 25.7%). Here, the

associations between the FA for the OPR and the FA for the CCA seem somewhat similar

between the two groups, but more pronounced for the MS patients, especially for the inferior

OPR; see Figure 5, right panel.

The estimates of the additional covariates, age and gender (reference group: female),

are 0.0002∗(0.00004) and 0.0008(0.0009), for the MS group, and −0.0003∗(0.00005) and

−0.0052∗(0.0018) for the control group, respectively, where the asterisks indicate signifi-

cance at level 0.01. Standard errors are displayed within brackets. Negative age effects as

seen in the controls are expected, as myelination and FA values tend to decrease with age

even in healthy subjects.

We further consider the situation when the outcome of interest is the FA for the left CTS

at the current visit, and the functional predictors are the FA for the same tract and the FA

for the left OPR tract, measured at the previous visit. We focus on the MS group of 106

patients with at least two visits, due to the lack of longitudinal data in the control group.

As an initial step, the functional predictors are de-noised as discussed earlier. The second

step is to apply function on function regression. The overall mean function, β̂0(t) accounts

for 61.4% of the variability in the response. The FA measurement in the CTS is predictive

of the FA measurement at the next visit to some extent (12.0% relative R2), while the FA

in the OPR doesn’t seem to contain much additional information (1.5% relative R2). Figure

7 shows the estimates of the three regression functions, and information on the pointwise

95% confidence intervals under independence assumption of the residuals by using different

colors. The estimated regression function β̂1(t, s) looks relatively flat with the diagonal ends

pulled upward. As expected, high values in the CTS’s FA at the previous visit are associated

with high values in the CTS’s FA at the current visit for the tract locations that are close to

one another. The effect of the OPR’s FA at the previous visit on the CTS’s FA at the current

visit is considerably smaller; see the right plot of Figure 7. The estimates of the additional
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covariates, age and gender, are −0.0001(0.0001) and −0.0063∗(0.0016) respectively, where

the asterisk indicates significance at level 0.01.
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Figure 6: FA in the left CTS tract at the second visit (left panel), FA in the left CTS tract
at the first visit (middle panel) and FA in the left OPR at the first visit (right panel) for the
MS patients.

6 Discussion

Relating a functional predictor to the functional response through a bivariate parameter

function implies a cumulative effect. There are some special cases when such an assumption

is not warranted. For example, suppose that both the outcome, Y (t), and a predictor process,

X(s), are observed on the same time domain [0, T ]. In such a case, one can reasonably assume

that the value of the outcome process Y (t) depends on the past values of the predictor

process X(s), s ≤ t, see, for example Malfait and Ramsay (2003). However, it may not be

reasonable to argue that Y (t) is predicted by the future values X(s), s > t. This case is
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Figure 7: Estimates of the regression functions β̂0 (left), β̂1 (middle) and β̂2 (right), when the
outcome is FA for the left CTS tract on the second visit, and the predictors are FA for the left
CTS and FA for the left OPR at the baseline visit. The dashed lines (left panel) correspond
to the pointwise 95% confidence intervals. Also displayed are different colors of the facets of
the surface mesh: red/blue for more than approximately two standard errors above/below
zero, and light red/blue for less than approximately two standard errors above/below zero.

special, because both processes are observed on the same scale, time, which is inherently

irreversible. In many cases, including the one considered in this paper, the processes are

observed on different domains and the arguments of the processes are reversible. Thus, we

consider the association between any FA value on the corpus callosum and any value on the

corticospinal tract or optical radiations tract. In simpler contexts, this cumulative model

has been considered before, see, for example, Ramsay and Silverman (2005, ch 16) and Yao,

Müller and Wang (2005b).

We would like to emphasize that our approach can easily be adapted to cases where time-

irreversibility-like problems occur. Indeed, we have already developed and implemented

models that accommodate limited integration ranges, e.g. to allow for cumulative effects

up to the current index value
∫
s≤tij β1(tij, s)Xi1(s) ds. Such extensions allow for temporal

covariates and responses observed on the same domain where features of the responses cannot

be influenced by future covariate values. An implementation of this extension will be included

in a future version of pffr.

This paper develops a novel method for function-on-function regression that: 1) applies
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to one or multiple functional predictors observed on the same or different domains as the

functional response; 2) incorporates scalar predictors; 3) is fitted automatically using existing

software; 4) produces likelihood-based approximate confidence intervals as a by-product of

the mixed model framework; 5) allows likelihood-based testing; 6) applies to sparsely and/or

noisily observed functional predictors; and 7) accommodates a sparsely sampled functional

response. Our approach to function-on-function regression provides a framework to further

consider other settings than the ones considered in this paper. For example, resampling

methods applied in the context of our proposed methodology, discussed in Appendix A,

provide inference tools for non-i.i.d. errors scenarios.

PFFR was applied and tested in a variety of scenarios and showed good results in both

simulations and a medical application. Equally important PFFR is an easy to use automatic

fitting procedure implemented in the pffr function of the R package refund.
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Appendix A

For function-on-function regression scenarios with not independently identically distributed

errors, pointwise approximate confidence intervals can be constructed using a resampling

procedure. We provide boot-PFFR, a bootstrap procedure applied in the framework of PFFR.

Our bootstrap approach resamples subject indices and estimates PFFR model parameters

for each such resampled dataset, followed by extracting the pointwise bootstrap confidence

intervals for the coefficient surface estimates from the bootstrap samples. This procedure is

made available via the bootpffr function in the refund package.

Table 4: Results for function-on-function regression with densely sampled functional predictors,
based on 50 simulations.

AR(1) heteroscedastic
n = 100 n = 50 n = 100 n = 50

Method IAC IAW IAC IAW IAC IAW IAC IAW

Scenario 4(a)
β0(t)

boot-PFFR 0.92 0.25 0.90 0.36 0.90 0.13 0.92 0.19
modified-PFR 0.99 0.40 0.98 0.58 1.00 0.38 1.00 0.54

β1(t, s)
boot-PFFR 0.99 0.59 0.99 0.86 0.94 0.13 0.94 0.17

modified-PFR 0.77 0.29 0.77 0.34 0.80 0.28 0.82 0.33
β2(t, r)

boot-PFFR 0.98 0.33 0.98 0.50 0.85 0.07 0.87 0.10
modified-PFR 0.97 0.35 0.95 0.42 0.97 0.33 0.97 0.41

We tested bootpffr with B = 200 bootstrap samples for data generated using two

different settings, AR(1) and heteroscedastic, for the error terms in the context of case 4(a)

and σX = 0 in Section 4.1. In the AR(1) setting, residual vectors were generated from an

AR(1) process with auto-correlation parameter 0.6. In the heteroscedastic setting, residuals

were generated with a variance that increases linearly in t, i.e. εi(t) ∼ N(0, 10t), followed

by scaling to obtain unit average variance for the errors. The nominal level is set to 0.95

and results show that, for sample sizes n = 50 and n = 100, and for the AR(1) scenario,

the coverage of the boot-PFFR confidence intervals for our model parameters approached or

exceeded the nominal level; see columns IAC in Table 4. For the heteroscedastic scenario

the width of the boot-PFFR confidence intervals were narrow and coverage was close to the

nominal level. The bootpffr procedure is especially useful for smaller sample sizes n, as

computation time increases in n (per dataset: compare 919 seconds for n = 50, to 1756

seconds for n = 100).
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Appendix B
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Figure 8: Displayed are box plots of the root-mean-squared errors (top), and box plots of
coverage (middle) and width (bottom) of 95% pointwise approximate confidence intervals
for β1(t, s) (left panels) and β2(t, r) (right panels) for all 8 scenarios in Section 4.1. Results
are based on 500 simulated datasets. 37


