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THE VERTEBRATE FAUNA OF THE UPPER PERMIAN OF NIGER—III,  
MORPHOLOGY AND ONTOGENY OF THE HINDLIMB OF MORADISAURUS GRANDIS 

(REPTILIA, CAPTORHINIDAE) 

 

F. Robin O’Keefe 
Christian A. Sidor 
Hans C. E. Larsson 
Abdoulaye Maga 
Oumarou Ide 
 
ABSTRACT—We describe hindlimb elements of the large captorhinid Moradisaurus grandis (Reptilia: 
Captorhinidae) recently collected from the Upper Permian Moradi Formation of north-central Niger. This 
description is based primarily on an associated partial skeleton comprising a hemimandible, vertebral 
column, and partial left and nearly complete right hindlimb. Additionally, we report on a well-preserved, 
articulated, and essentially complete juvenile pes that provides important information on the ontogeny of 
the captorhinid tarsus. The hindlimb of Moradisaurus is stout and more massively built than in any other 
known captorhinid. The femur displays several features interpreted as adaptations to the demands of large 
body size, and the tibia and fibula have short, wide shafts and hypertrophied condyles and epicondyles. 
The astragalus is very derived, possessing two accessory ossifications and a relatively horizontal tibial 
articulation, indicating that the tibia was held more vertically than in other captorhinids. The calcaneum is 
co-ossified with distal tarsal five. The juvenile pes indicates that the captorhinid centrale arose from the 
fusion of two ossification centers, and that the captorhinid astragalus arose from the fusion of at least 
three ossification centers. 
 
 

INTRODUCTION 
 

The large, morphologically derived captorhinid Moradisaurus grandis was named by 
Taquet (1969) on the basis of a mandible collected from the Upper Permian Moradi Formation of  
north-central Niger. The remainder of the skull of this specimen was later described by de 
Ricqlès and Taquet (1982), who remarked on the great size of the animal compared to other 
captorhinids (skull length approximately 45 cm), as well as the large number of mandibular and 
maxillary tooth rows (10–12) present. Although the skull of Moradisaurus is well known, no 
postcranial elements have been described. In this paper we therefore describe the hindlimb of 
this taxon, based on new material collected in the spring of 2003 (Fig. 1; Sidor et al., 2005). 
Description of the new material adds to our knowledge of this derived captorhinid taxon, and 
demonstrates the influence of increased body size on captorhinid limb morphology. We also 
describe juvenile material that sheds light on the ossification pattern of the captorhinid tarsus. 
 
Background 
 
          Moradisaurus grandis is a derived captorhinid, a member of the subfamily Moradisaurinae 
of de Ricqlès and Taquet (1982; a similar clade was termed ‘group 6’ by Gaffney and McKenna 
[1979]; see also de Ricqlès [1984] for a discussion of captorhinid systematics). The large body 
size and high tooth row counts in Moradisaurus are the culmination of trends apparent in 



geologically older captorhinids. The dental morphology of Moradisaurus and other large 
captorhinids has been interpreted as an adaptation to increasingly efficient herbivory (Dodick 
and Modesto, 1995; Hotton et al., 1997; Reisz and Sues, 2000). 
 

Captorhinids are known from the Permo–Carboniferous boundary to the uppermost 
Permian, corresponding to a temporal range of about 50 million years. Species in the genus 
Captorhinus, from the Lower Permian of North America, have skull lengths less than 10 cm, and 
several have single tooth rows on the maxilla and mandible (C. laticeps, Heaton, 1979; C. 
magnus, Kissel et al., 2002; see also Berman and Reisz, 1986, for the small, single-rowed 
Rhiodenticulatus from New Mexico). However, Captorhinus aguti possesses two or three tooth 
rows (Bolt and DeMar, 1975; de Ricqlès and Bolt, 1983), and the genus Labidosaurus is com-
paratively large, although still possessing single tooth rows (Williston, 1910). The Lower 
Permian forms Captorhinikos (Olson, 1962a) and Labidosaurikos (Dodick and Modesto, 1995) 
are relatively derived, possessing skull lengths much longer than 10 cm and five or six tooth 
rows on both maxilla and mandible. 

 
Also from North America are the poorly known Guadalupian (middle Permian) forms 

Kahneria and Rothianiscus (Olson, 1962b). Both taxa have about five tooth rows in the upper 
and lower jaws, and their skull lengths are comparable to that of Captorhinikos. The Russian 
form Hecatogomphius is likewise comparable in size and tooth row number, and is also middle 
Permian in age (Olson, 1962b). No captorhinids are known from the Upper Permian of North 
America, but sedimentary rocks of this age are lacking on that continent. 
 

The Upper Permian of Africa has so far yielded four captorhinid taxa, divisible into two 
groups. The first group of two genera is morphologically conservative, consisting of small 
animals with single tooth rows: ‘Protocaptorhinus’ from the middle Madumabisa mudstones 
(Upper Permian) of Zimbabwe (Gaffney and McKenna, 1979; regarded as Captorhinidae 
incertae sedis by Modesto, 1996) and Saurorictus from the Tropidostoma Assemblage Zone of 
South Africa (Modesto and Smith, 2001). Both taxa are morphologically primitive and their 
presence in the Upper Permian is surprising; for a discussion of the phylogenetic and biogeo-
graphic implications of these taxa, see Modesto and Smith (2001). 

 
The second group of Upper Permian captorhinids comprises Moradisaurus, as well as an 

unnamed moradisaurine from the Argana Formation of Morocco, which is based on isolated 
tooth plates and postcranial fragments described by Jalil and Dutuit (1996). These authors also 
described an enigmatic maxilla possessing three rows of pointed, acrodont teeth; this element 
was designated the holotype of Acrodenta irerhi by Dutuit (1976), although Jalil and Dutuit 
(1996) refer to this taxon as Acrodonta (sic). The status of the Moroccan material is unclear due 
to the fragmentary nature of the material, but there is at least one, and possibly two, moradi-
saurines present in this fauna. It should also be noted that pareiasaur vertebrae were mistakenly 
included by Jalil and Dutuit (1996) in their discussion of moradisaurine remains from Morocco 
(Sidor et al., 2003). 
 

Institutional Abbreviations—AMNH, American Museum of Natural History, New 
York; FMNH, Field Museum, Chicago; MNHN, Muséum national d’Histoire naturelle, Paris; 
MNN, Musée National du Niger, Niamey. 



 
FIGURE 1. Stratigraphic column and geological setting of the Moradi Formation in the vicinity of Arlit, 
Niger. Specimens discussed in this paper are labeled near the approximate location of their discovery 
during the spring of 2003. 
_____________________________________________________________________________________ 
 
 

MATERIAL 
 

We describe material from three individuals in this paper. The first (MNN MOR78) is a 
sub-adult with essentially complete right and fragmentary left hindlimb. The second (MNN 
MOR79) is a complete, articulated juvenile pes with associated fragments, and the third speci-
men (MNN MOR80) is an isolated right fibula. 

 
The sub-adult specimen (specimen number MNN MOR78, Fig. 1) is an associated partial 

skeleton, comprising an articulated but badly weathered series of vertebrae, several disarticulated 
vertebrae and neural arches, a complete right hemimandible, fragments of the pelvic girdle, and 
various hindlimb elements. The limb elements were not articulated but were closely associated, 
occurring in a disorganized mass just beneath the hemimandible. Recovered hindlimb elements 
include a wellpreserved right femur, the distal portion of the left tibia, a complete right tibia, 
most of the right fibula, and weathered pieces of the left fibula. Also recovered was an essenti-
ally complete right pes, comprising astragalus, calcaneum, centrale, three loose distal tarsals, five 
metatarsals, and 11 phalanges. This specimen is referred to Moradisaurus grandis based on the 
lower jaw, which is very similar to the holotype mandible described by de Ricqlès and Taquet 
(1982). The hemimandible of MNN MOR78 differs from the latter only in size, being approxi-



mately 33 cm long, or 75% of the length of the type specimen. Full description of this jaw is 
deferred to a future paper on Moradisaurus cranial morphology. The tarsus of MNN MOR78 is 
fully ossified (see below), but the neural arches are not fused to the vertebral centra; these facts 
plus the relatively small size of the hemimandible lead us to believe that this animal had not 
grown to full adult size when it died. 
 

The juvenile specimen consists of an articulated, well-preserved juvenile left pes 
(specimen number MNN MOR79) found about one km east of the adult specimen at the same 
stratigraphic level. The juvenile pes was found in articulation with a small, extremely weathered 
skeleton consisting of skull, axial column, ribs, and limbs; this skeleton was probably complete 
and articulated at one point but is not preserved. Additional collected elements include badly 
eroded moradisaurine tooth plates, several vertebrae and neural arches, the proximal ends of both 
humeri, the distal ends of both ulnae, two complete radii, the proximal end of the left tibia, the 
proximal ends of both femora, the right calcaneum, and numerous unidentifiable fragments. We 
restrict our discussion here to the pes, and to some comparative comments concerning the long 
bones of the hindlimb; these latter elements are very poorly ossified and carry little condyle 
morphology. Referral of this specimen to Moradisaurus was made on the basis of the tooth 
plates and other fragmentary skull elements, as well as similarities between the recovered 
limb elements and the sub-adult hindlimb of MNN MOR78. 

 
The isolated right fibula (MNN MOR80) was found at a separate locality, about 20 km 

west of Arlit (Fig. 1). This locality is very rich and has yielded abundant pareiasaur and amphi-
bian material. Moradisaurus material is rare at this location, but the fibula was found there, along 
with the distal end of a right femur. We tentatively refer these elements to Moradisaurus on the 
basis of their morphological similarity to elements preserved in MNN MOR78. The right fibula 
is largely complete and large, probably from an adult animal. 

 
SYSTEMATIC PALEONTOLOGY 

 
CAPTORHINIDAE Case, 1911 

 
MORADISAURINAE de Ricqlès and Taquet, 1982 

 
MORADISAURUS GRANDIS Taquet, 1969 

 
Holotype—MNHN MRD1, comprising a skull and mandible. 
Referred Material—MNN MOR78, partial subadult skeleton comprising right hemi-

mandible, right hindlimb, and other postcranial elements; MNN MOR79, complete articulated 
juvenile left pes with associated limb and skull fragments; MNN MOR80, complete right fibula. 

Locality and Age—The Moradisaurus specimens described in this paper were found in 
the spring of 2003 in the vicinity of the type locality, in almost flat-lying outcrops of the Moradi 
Formation about 25 km south-southeast of the mining town of Arlit (Fig. 1). The Moradi  Forma-
tion is characterized by thick, friable, dark reddish-brown mudrocks, interspersed with beds of an 
indurated, matrix-supported conglomerate. The specimens were found in poorly-bedded mud-
rock directly beneath the ledgeforming conglomerate. The Moradi Formation is the uppermost 



unit of the Izegouandane Group, and uncomformably underlies the Triassic Teloua Formation. 
The exact age of the Moradi Formation is currently unknown, but is currently considered to 
be latest Permian (Taquet, 1972, 1976) 

Revised Diagnosis—Derived captorhinid characterized by large (length approximately 
45 cm), triangular skull with heavy ornamentation; occipital region enlarged; jaw articulation 
posteriorly placed; pterygoids and parasphenoid edentulous; mandible wide medio-laterally, with 
strongly developed coronoid process; maxilla and mandible with autapomorphic tooth batteries 
comprised of 10–12 rows of conical teeth, these batteries partially carried on wide flanges of 
bone extending lingually from maxilla and mandible. Distinctive characteristics of hindlimb 
include: very robust femur with reduced internal trochanter; hypertrophied intertrochanteric 
fossa, fourth trochanter, and adductor ridge; horizontally oriented proximal condyle; tibial 
plateau making acute angle with shaft of tibia; astragalus foreshortened with hypertrophied 
articulations for tibia, fibula, and calcaneum; tibial articulation large, making relatively shallow 
angle with body of astragalus, and extended medially by accessory ossification; calcaneum co-
ossified with distal tarsal five; both astragalus and calcaneum possessing irregular accessory 
ossifications on their ventral surfaces; notch for perforating artery confined to astragalus only; 
metatarsals and phalanges stout and foreshortened. 
 
 

DESCRIPTION 
 
Femur 
 

The right femur of MNN MOR78 (Fig. 2) was recovered from underneath the hemi-
mandible and was broken into several pieces when found. The shaft and proximal articulation are 
well preserved, whereas the distal condyles are somewhat fragmentary, although the condylar 
surfaces for the epipodial bones are preserved. The length of the femur (proximal face to end of 
posterior condyle) is 159 mm, the antero-posterior length of the proximal articulation is 79 mm, 
and the antero-posterior width of the shaft is 28 mm at its narrowest point. 
 

The femur is a stout and heavily built element, much more robust than the femur of 
Labidosaurus (Sumida, 1989) or even Captorhinikos (Olson, 1962a), with a relatively short shaft 
and hypertrophied condyles and processes. The proximal face comprises a well-defined aceta-
bular articulation rimmed by a low ridge of bone. The articular surface is widest near its anterior 
margin, narrows posteriorly, and is oriented horizontally, unlike the articular surfaces of smaller 
captorhinids, which are angled antero-dorsally to postero-ventrally. The articular surface is also 
oriented at a right angle to the femoral shaft and therefore faces medially, rather than postero-
medially as is the case in Labidosaurus (Sumida, 1989) and most pelycosaur-grade synapsids 
(although the femur of Edaphosaurus is very similar in this regard; Romer and Price, 1940). The 
fragmentary proximal femur from the second specimen (MNN MOR79) indicates that the 
proximal articulation was comparatively short antero-posteriorly in the juvenile. 
 

Distal to the proximal face of the femur, the bone narrows and deepens as the shaft 
becomes more cylindrical. The posterodorsal surface of the femoral head carries a low boss or 
tubercle; we interpret this feature as the attachment site of the ischiotrochantericus, following 
Holmes’ work on Captorhinus aguti (2003). The ventral portion of the femoral head is  dominat-



ed by the intertrochanteric fossa, which is surrounded by a raised rim of bone, and is much 
deeper than the fossae of Labidosaurus or other captorhinids. The Moradisaurus femur is 
remarkable in that the internal trochanter is not well developed, consisting only of a thickened 
area in the anterior part of the rim of bone surrounding the intertrochanteric fossa. The femur of 
Labidosaurus has a large, well-developed internal trochanter (Sumida, 1989), as does the femur 
of Captorhinus (C. aguti and C. magnus, Kissel et al., 2002; Holmes, 2003). In contrast, the 
Moradisaurus fourth trochanter is extremely robust, consisting of a heavy, anteroposteriorly
expanded block of bone projecting ventrally from the underside of the femur. The fourth 
trochanter is also more proximally placed than in other captorhinids, occurring at the base of
the intertrochanteric fossa rather than farther distally on the shaft as it is in Labidosaurus
(Sumida, 1989) or Captorhinus (Holmes, 2003). The femur of Moradisaurus possesses a sharp,

FIGURE 2. Right femur of Moradisaurus grandis (MNN MOR78); top, photographs, bottom, interpretive 
drawings. Views are: A, dorsal; B, posterior; C, ventral; D, anterior; E, proximal; F, distal. Scale bar 
equals 5 cm. Abbreviations: 4tr, fourth trochanter; addr, adductor ridge; intf, intertrochanteric fossa; 
inttr, internal trochanter; ischtr, attachment for ischiotrochantericus m.



 
 

well-developed adductor ridge that trends distally and posteriorly from the distal face of the 
fourth trochanter onto the posterior condyle. This ridge is similar to those observed in other 
captorhinids, but is larger and more robust than in any other captorhinid taxon. 

 
The popliteal fossa is short proximo-distally and rather shallow, whereas the intercom-

dylar groove on the dorsal side of the femur is wide and deep, producing a wide separation of the 
distal condyles. The distal condyles are damaged, although both preserve well-defined articular 
surfaces for the tibia. In addition, the posterior femoral condyle possesses a shallow groove on its 
posterior face for articulation with the fibula. The anterior condyle projects antero-laterally and is 
the shorter of the two condyles; the posterior condyle projects postero-laterally as in other 
captorhinids. 
 
Tibia 
 

The tibia of Moradisaurus (Fig. 3) measures 114 mm from the top of the intercondylar 
tubercles to the tip of the distal articulation with the astragalus. The tibial plateau measures 60 
mm long antero-posteriorly, and 54 mm medio-laterally. The length of the astragalus articulation 
is 59 mm. The tibia is a massive bone with heavily reinforced articulations and a relatively short 
shaft, and its most distinctive characteristic is the angle that the proximal articulation makes with 
the shaft. In other captorhinids and in tetrapods generally, the plane of the tibial plateau makes 
a right angle with the axis of the shaft (Romer, 1956). In Moradisaurus, however, the plateau 
makes an acute angle with the shaft proximally, so that in a standing position the tibial shaft is 
directed toward the body as well as toward the ground. This shaft/condyle angle is repeated at 
the distal (astragalus) articulation. 
 

The articulation for the posterior femoral condyle is similar to that in Captorhinus 
(Holmes, 2003), being a flat, lunate surface that is tilted somewhat posteriorly. The anterior tibial 
condyle is large, extending from the medial edge of the tibial plateau laterally out onto the top of 
the cnemial crest on the extensor surface. The cnemial crest is very well developed and possesses 
a ridged knob; this knob was probably the insertion of the triceps femoris following Holmes 
(2003). Holmes also noted a ‘swelling’ on the flexor surface of the tibia just distal to the tibial 
plateau in Captorhinus; he interpreted this as the common insertion of the flexor tibialis, puboi-
schiotibialis, and pubotibialis. In Moradisaurus this feature is hypertrophied into a heavy boss 
that extends above the level of the tibial plateau, and then extends laterally between the femoral 
articulations to a confluence with the intercondylar eminences. Both condylar eminences are 
present as raised rims of bone surrounding a deep fossa at the center of the tibial plateau. The 
lateral edge of this fossa carries a clear insertion for the anterior cruciate ligament. The shaft of 
the tibia carries a faint, low ridge for the origination of the tibialis anterior on its medial face, and 
a prominent ridge on the lateral face for the insertion of the interosseous membrane. The origina-
tion of the tibialis anterior is poorly developed in Moradisaurus compared to that of Captorhinus 
(Holmes, 2003). The distal end of the tibia is expanded and globate, and carries a prominent 
articular surface that contacted the body of the astragalus. This articular surface proper is slightly 
smaller than the end of the tibial shaft and is rimmed by a low ridge. 



FIGURE 3. Right epipodium of Moradisaurus grandis. Top, right tibia, MNN MOR78. Views are: A,
posterior; B, lateral; C, anterior; D, medial; E, proximal; F, distal. Scale bar for tibia equals 5 cm. 
Bottom, right fibulae, MNN MOR78 (G, I) and MNN MOR80 (H, J), in posterior (G, H) and anterior (I,
J) views. Scale bar for fibulae equals 3 cm



Fibula 
 

The right fibula of MNN MOR78 is significantly weathered, but does preserve the 
proximal condyle and the shaft. The head of the left fibula is well preserved, allowing 
reconstruction of the complete fibula down to the distal articulation with the tarsus. This region 
is not preserved on the right fibula, and is present but heavily weathered on the distal fragment of 
the left fibula. The proximal condyle of the fibula is a well-demarcated, crescentshaped surface 
that opens anteriorly and dorsally to accept the femur. Just posterior to the femoral articulation, 
on the extensor surface of the fibula, is a large tuberosity for the insertion of the iliofibularis. 
This tuberosity is larger in Moradisaurus than in either Labidosaurus (Sumida, 1989) or 
Captorhinus (Holmes, 2003). The shaft of the fibula of Moradisaurus is also more strongly 
curved than in either of the aforementioned taxa, although some larger members of the 
diadectomorph genus Limnoscelis display a similar degree of curvature (Berman and Sumida, 
1990; Sumida, 1997), as does the diadectid Orobates (Berman et al., 2004). 
 

The distal end of the fibula is preserved on the isolated right fibula (MNN MOR80; Fig. 
3). This element is larger (length 156 mm) and much more robust than the fibula of MNN 
MOR80, but in all other details is identical to it. The shaft of the fibula is remarkable in the 
degree of antero-lateral curvature; the fibulae of all captorhinids are curved in this way, but the 
curve in Moradi-saurus is more pronounced than in any other taxon. The distal end of the fibula 
is expanded and ends in a long articulation for the tarsus; this articulation faces almost directly 
anteriorly, rather than antero-ventrally as is the case in other captorhinids (Sumida, 1989; 
Holmes, 2003) or pelycosaur-grade synapsids (Romer and Price, 1940). The distal articular 
surface is divided into two clear surfaces, the antero-proximal of which was for the astragalus. 
The shape of this articu-lar surface is a close match for the fibular articulation on the astragalus 
of MNN MOR78. The second, postero-distal articulation was presumably for the calcaneum. 
This articulation extends onto the posterolateral face of the posterior epicondyle, and may 
indicate that the calcaneum rode up over the end of the fibula at some point in the step cycle. 
 
Adult Pes 
 

The essentially complete right pes of MNN MOR78 is illustrated in Figure 4. The pes 
was disarticulated but closely associated when found, and we are reasonably certain that all of 
the elements belong to the right pes. However, the assignment of positions to some of the bones 
is questionable. Our assignments of the astragalus, the calcaneum, the centrale, and metatarsals 
1–5 seem secure, although the identities and positions of the remaining elements—the distal 
tarsals and individual phalanges—is more subjective. One distal tarsal is certainly missing, and 
the positions of the others were determined via comparison with the distal tarsals of Captorhinus 
illustrated by Holmes (2003); hence their identities should be taken as provisional. The proximal 
phalanges are slightly longer than the other phalanges and possess a diagnostic proximal articula-
tion for the metatarsals. However, their position in digits 1–5 is subjective, as is the position of 
the remaining phalanges. The phalangeal formula is reconstructed as 2-3-4-5-4, and was deter-
mined with certainty from the juvenile pes. All elements of the Moradisaurus pes are foreshort-
ened and extremely robust relative to those of other captorhinids. These traits are the culmination 
of trends observable in smaller and less derived members of the clade (Peabody, 1951:343); 
Sumida (1989) notes that the distal pedal phalanges of Labidosaurus and Captorhinikos are short  



FIGURE 4. Reconstructed adult right pes of Moradisaurus grandis (MNN MOR78) in dorsal view. 
Abbreviations: ast, astragalus; c, centrale; cal, calcaneum; dt, distal tarsal. Scale bar equals 3 cm.
_____________________________________________________________________________________

and stubby relative to those of Captorhinus, resulting in a pes that is relatively short and wide. 
However the astragalus, the calcaneum, the metatarsals, and the proximal phalanges of the 
former taxa are proportioned similarly to corresponding elements of Captorhinus. In Moradi-
saurus, however, all phalanges and metatarsals are extremely foreshortened and stubby, and 
possess heavily reinforced condyles and epicondyles. This foreshortened and robust build also 
characterizes the proximal tarsals, yielding an astragalus that is derived relative to that of other 
reptiles.

As in other amniotes, the proximal tarsal row of Moradisaurus comprises two elements, 
the astragalus and the calcaneum (Fig. 5). The astragalus of Moradisaurus is a massive bone, 
foreshortened proximo-distally, with a stout and short fibular process. This process carries a 
deep, rimmed cup on its proximal surface for articulation with the fibula. Distal to the fibular 
process is the body of the astragalus, which carries a prominent area for articulation with the 
tibia on its dorsal surface. The tibial surface of the astragalus in Moradisaurus is relatively larger 
than that in other captorhinids, and makes a shallow angle (about 30 degrees) with the body of 
the astragalus. In other captorhinids the tibial surface makes a steep angle (greater than 45
degrees) with the body of the astragalus. In addition, the tibial surface of Moradisaurus is 
extended by a novel ossification (Fig. 5:ao). Extending medially from the edge of the astragalus, 
this feature is an irregular, discoid process of poorly finished bone. Together with the tibial 
surface, this excrescence produces a platform for articulation with the tibia that is circular in
dorsal view and makes a shallow angle with the body of the astragalus. This circular surface
differs radically from the steeply angled, trapezoidal tibial articulation found in Captorhinus 
(Holmes, 2003) and Labidosaurus (Sumida, 1989).



FIGURE 5. Detail drawings of the right astragalus and calcaneum of Moradisaurus grandis (MNN 
MOR78). Left element is the calcaneum, in medial (left), dorsal (top), and ventral (bottom) views. Right 
element is the astragalus, in dorsal (top), ventral (bottom), lateral (top right), and medial (bottom right) 
views. Abbreviations: ao, accessory ossification; asft, facet for astragalus; calf, facet for calcaneum; 
cenf, facet for centrale; cpa, canal for perforating artery; dt4f, facet for distal tarsal 4; dt5, distal tarsal 
five; ff, facet for fibula; lp, ligament process; tf, facet for tibia.
_____________________________________________________________________________________

The lateral edge of the astragalus is complex, carrying two distinct processes for articula-
tion with other tarsal elements. The proximal of these processes is surmounted by an articular 
surface for the calcaneum; the curvature of this surface closely matches the corresponding, 
medial, face of the calcaneum. The calcaneal articulation of the astragalus is separated from the 
fibular process by a deep furrow. In other captorhinids the calcaneal and fibular articular surfaces 
are confluent, and this is also the case in pelycosaur-grade synapsids (Romer and Price, 1940). 
The second, distal process carries an articular surface for distal tarsal four. This articular surface 
is domed and appears to have been very mobile. Between the proximal and distal processes on 
the lateral edge of the astragalus is a deep groove trending from distal dorsal to proximal ventral, 
interpreted by us as a canal for the perforating artery. This canal is deep and carried entirely on
the astragalus; there is no corresponding notch on the anteromedial corner of the calcaneum, as is 
the case in other captorhinids. The distal margin of the astragalus carries a broad, sigmoid
articulation for the centrale.



The ventral surface of the astragalus is dominated by a second accessory ossification, 
comprising a rugose and poorly finished mass of bone applied to the ventral face of the element. 
This ossification blends laterally into a robust boss just proximal to the process for distal tarsal 
four; we interpret this feature as a ligament attachment similar to the one noted by Berman and 
Henrici (2003) on the ventral face of the diadectid astragalus. This boss overhangs the continua-
tion of the canal for the perforating artery, which crosses the ventral face of the astragalus from 
lateral to medial, and is incompletely roofed by the irregular edge of the accessory ossification. 
 

The calcaneum of Moradisaurus is also derived compared to that of other captorhinids, 
mostly obviously at its distal margin. Here the calcaneum bears a large, pointed process laterally 
that we interpret as the fifth distal tarsal, which has co-ossified with the body of the calcaneum. 
We believe that this condition is unknown in any other amniote (see Sumida, 1997, for partial 
review). There is no obvious line or demarcation to indicate the seam of co-ossification with 
distal tarsal five. As in other amniotes, the medial face of the calcaneum bears an articular sur-
face for the astragalus; this surface is shorter proximo-distally and deeper dorso-ventrally than in 
other captorhinids, and is gently saddle-shaped. This face is a close match with the correspond-
ing articular process on the astragalus. The calcaneum has no articular facet for distal tarsal four, 
and does not carry a groove for the perforating artery. The proximal edge of the calcaneum is 
very thin, and bears ventrally a small, ovoid depression that is probably the articular facet for the 
fibula. This feature is also unknown in other amniotes. Lastly, the ventral surface of the calca-
neum bears a low keel of poorly finished bone, analogous to the accessory ossification on the 
ventral face of the astragalus, but more poorly developed. 
 

The distal tarsals of Moradisaurus (Fig. 4) are much more similar to those of other 
captorhinids than are the astragalus and the calcaneum. The centrale is a bilobate, peanut-shaped 
element whose proximal face articulates with the distal face of the astragalus. If the hypothesis 
that distal tarsal five is fused with the calcaneum is correct, then four of the (presumably) five 
distal tarsals are present in MNN MOR78; two of the three loose elements are poorly preserved 
and bear little informative morphology. The last, largest distal tarsal (here interpreted as distal 
tarsal four, but possibly distal tarsal three) bears three distinct articular facets, one for a meta-
tarsal, one for the neighboring distal tarsal, and one for the astragalus and the calcaneum. The 
metatarsals and the phalanges are also similar to those of other captorhinids except for their 
extreme heaviness of build and proximo-distal compression. 
 
Juvenile Pes 
 

The juvenile pes of Moradisaurus grandis is represented here by the essentially com-
plete, articulated foot (MNN MOR79; Fig. 6). This specimen is the most complete and best-
preserved moradisaurine pes known, and also represents a very early ontogenetic stage in the 
growth of the animal. If one accepts that MNN MOR78 is a subadult based on the length of the 
jaw (i.e., 75% of the holotype jaw) and well-ossified tarsus, then MNN MOR79 must be much 
younger based on the poor ossification of the tarsus and its small size. A rough idea of the size 
difference between the subadult and juvenile pedes was calculated as the geometric mean of the 
lengths of the four measurable metatarsals in each foot (the proximal end of metatarsal 3 is 
crushed in the juvenile, prohibiting accurate measurement). This mean for the subadult is 
(31*31*40*38).25 _ 47.8 mm, whereas the mean for the juvenile is (42*45*54*51).25 _ 34.8 



mm, or about 73% of the size of the subadult. This figure is similar to those obtained when limb 
bone measurements are compared between the two specimens. We estimate that the juvenile 
would have been about half the size of the holotype animal. 
 

The metatarsals and the phalanges of the juvenile pes are more lightly built than those of 
the subadult, and their condyles are poorly ossified; however, these elements are still very squat 
and robust compared to those of other captorhinids. All phalanges are present save the terminal 
of digit five, and so the phalangeal formula was most probably 2-3-4-5-4. The terminal phalang-
es of digits one and two are large and expanded at their tips, indicating that claws on these two 
digits were broad and flat. In contrast, the ungual phalanges of digits three, four, and five are 
tiny, and their claws would have been inconsequential. The pes also preserves at least three 
sesamoid bones. These poorly ossified elements were found at the base of the more proximal 
phalanges of digits two and three and were probably embedded within the flexor tendons of the 
animal in life. 
 

The calcaneum is a very poorly ossified disc with areas of finished bone on its dorsal and 
ventral surfaces, separated by a wide zone of unfinished bone. The medial face of the calcaneum 
is fragmented and carries no indication of the astragalar articulation; the calcaneum also lacks the 
co-ossified distal tarsal five observed in the subadult specimen, and distal tarsal five could not be 
identified with certainty. Distal tarsal four is in life position but poorly ossified, as are the two 
other distal tarsals, whose numbers are indeterminate. Two additional ossifications are identified 
here as components of the centrale (Figs. 6, 7) and are near life position. These elements are not 
co-ossified, and we hypothesize that they represent centralia one and two of Peabody (1951). 
Peabody, and authors after him (e.g., Kissel et al., 2002), have considered the centrale proper of 
amniotes to be homologous to co-ossified centralia one and two in the amphibian condition. Our 
data directly support this hypothesis, as the two ossifications in the juvenile of Moradisaurus 
give rise to a single, peanut-shaped centrale in the adult (see Fig. 4). 
 
 The juvenile astragalus of Moradisaurus is represented in dorsal view in Figure 7. The 
astragalus is incompletely prepared, because the ossification of the elements is so poor that there 
is little differentiation between the bone and the matrix. The two ossifications representing the 
centrale are still attached to the distal end of the astragalus by matrix. As preserved, the astra-
galus is in two pieces, the more proximal of which is an unremarkable mass of unfinished bone 
that we interpret as the proximal fragment of the intermedium. The more distal of the two pieces 
is complex, consisting of three masses separated by deep grooves. This element has small areas 
of finished bone on its dorsal and ventral surface, as well as a deep notch on its ventral surface 
indicating the position of the perforating artery. We therefore hypothesize that this mass is the 
distal fragment of the intermedium. The larger of the two distal masses is clearly the tibiale, as it 
is the most medial of the elements, and possesses a surface for articulation with the tibia. The last 
mass is identified as the proximal centrale based on its position. Overall this astragalus is very 
similar to the immature astragalus of C. magnus figured by Kissel et al. (2002:fig. 7), being 
clearly comprised of at least three elements, the only difference being a comparative lack of 
ossification. The significance of the division of the intermedium into two pieces is a topic of 
current research. 
 
 



FIGURE 6. Juvenile left pes of Moradisaurus grandis (MNN MOR79) in ventral view. Abbreviations:
ast, astragalus; c1, first centrale; c2, second centrale; cal, calcaneum; dt, distal tarsal, mt, metatarsal; pc,
proximal centrale; s, sesamoid; ti, tibale; tib f, fragments of tibia. Labels in bold in the figure refer to 
separate juvenile portions of the adult astragalus. Nomenclature of the astragalus ossifications follows 
Peabody (1951). Scale bar equals 2 cm.
____________________________________________________________________________________

DISCUSSION

Effects of Body Size

The limb morphology of Moradisaurus is elephantine, stubby, and massive, comparable 
to that of a pareiasaur rather than the more gracile Captorhinus. This morphology is the culmina-
tion of trends expressed throughout the history of the Captorhinidae. The simplest of these trends 
is an increase in body size; Moradisaurus is not only one of the latest captorhinids but is also the
largest known captorhinid. Concomitant with this body size increase is a trend toward dental 
specialization, as small animals with single tooth rows give way to larger taxa with dental
batteries comprised of many tooth rows. This derived dentition has been interpreted as an adapt-
ation to a herbivorous diet, and the Captorhinidae are one of the first tetrapod groups to evolve
herbivorous members (Hotton et al., 1997). In these animals the head is strikingly large compar-
ed to the size of the rest of the body (Olson, 1962a; in Moradisaurus the length the jaw greatly



exceeds the lengths of the femur and tibia combined). In discussing the morphology of the 
Moradisaurus hindlimb we must, therefore, consider at least two factors that might influence the 
structure of the locomotor system: scaling responses to body size increase, and responses to the 
demands of an increasingly herbivorous lifestyle. 
 

It is tempting to assume that the robust build of Moradisaurus is simply a response to 
large body size. However, there are several lines of evidence that suggest this may not be the 
only factor involved. In his review of limb scaling in terrestrial animals, Biewener (2000) points 
out that the skeletal system tends to scale isometrically up to a body mass of about 300 kg. He 
explains this somewhat counterintuitive finding with the observation that larger animals pro-
gressively limit limb posture to maintain adequate safety factors on long bones. Increases in 
body mass are, therefore, accommodated by changes in posture and associated kinematics rather 
than positive allometries in skeletal elements. We do not currently have sufficient data to con-
strain a body mass estimate for Moradisaurus, but believe that adult body mass was probably 
less than 300 kg. Moradisaurus is huge for a captorhinid, but is really not an extremely large 
animal; the femur is only 16 cm long in an animal with a jaw length of 33 cm. Given this modest 
body size there does not seem to be an a priori reason to expect a great increase in Moradisaurus 
limb robusticity based on scaling effects alone. 
 

This impression is reinforced by the femora of pelycosaurgrade synapsids. Animals such 
as Ophiacodon, Sphenacodon, and Dimetrodon (Romer and Price, 1940) have femora as long as 
or longer than Moradisaurus, but their construction is much more gracile, thereby demonstrating 
that primitive amniotes of comparable size do not require the degree of robusticity seen in 
Moradisaurus. Body-mass estimates for the genus Dimetrodon reach about 250 kg in an animal 
with a femur 25 cm long, whereas those for Edaphosaurus reach about 190 kg in an animal with 
a femur 21.5 cm long (Romer and Price, 1940:470–471). 
 

Biewener’s work does suggest, however, that it might be fruitful to look for evidence of 
postural changes between Moradisaurus and a much smaller animal such as Captorhinus, and we 
do see some evidence of this. The articular surface on the head of the femur is oriented horizon-
tally in Moradisaurus, whereas in Captorhinus this surface is oriented at an angle of about 45  
degrees to a (horizontal) plane described by the shaft and distal condyles, trending from antero-
dorsal to postero-ventral (Holmes, 2003). Labidosaurus is intermediate in this regard, its  
articular surface making a plane of about 30 degrees to the horizontal (Sumida, 1989). The 
significance of this change in angle is unknown, although it may indicate that the femur of 
Moradisaurus was restricted to antero-posterior movement and underwent less rotation during 
the step cycle than proposed for Captorhinus by Holmes (2003). Such a limiting of the move-
ment of the femur would result in a slower, plodding gait. 
 

The intertrochanteric fossa and adductor ridge are very well developed in Moradisaurus, 
as indeed they are in Labidosaurus and in other basal amniotes. Sumida (1989, 1997) describes 
these features as the points of attachment for the main limb adductors (puboischiofemoralis 
externus and adductor femoris, respectively). In an animal with a sprawling gait these muscles 
would be important for keeping the trunk clear of the ground when walking, and their very 
robust development in Moradisaurus is, therefore, not surprising. The most obvious difference in 



this region between Moradisaurus and other captorhinids is the very reduced internal trochanter. 
The small size of this feature may imply a lack of development of the more anterior fibers of the
puboishiofemoralis externus and a limiting of anterior limb excursion. It is also possible that a 
decrease in femur rotation at the end of the step cycle, hypothesized above, obviated the need for
strong limb protraction. Another marked difference between Moradisaurus and other captor-
hinids is the great size of the fourth trochanter. This feature is believed to be the insertion of
the caudifemoralis (Sumida, 1989; coccygeofemoralis of Holmes, 2003), the principal retractor 
of the hindlimb. The large size of this feature may indicate corresponding development of the 
caudifemoralis for more powerful retraction, and this would be a logical response to body-size 
increase.

Features of the epipodium also seem to indicate a change in posture relative to other 
captorhinids. These features include the tilting of the tibial articulations—both proximal and 
distal—away from a 90 degree angle to the shaft, and a corresponding re-orientation of the distal 
end of the fibula so that its articulations for the proximal tarsals point anteriorly rather than 
anteroventrally. If one considers the limb standing with the femur held directly away from the 
body axis, the tilting of the tibial articulations implies that the epipodium would slant back 
toward the body as well as downward. The changes to the orientation of the distal head of the 
fibula are more difficult to interpret, but may indicate a difference in the relative positions of the 
astragalus and calcaneum.

FIGURE 7. Detail of the juvenile astragalus of Moradisaurus grandis (MNN MOR79) in dorsal view. 
Abbreviations: c1, first centrale; c2, second centrale; in, intermedium fragments; pc, proximal centrale; 
tib, tibiale. Labels in bold in the figure refer to separate juvenile portions of the adult astragalus. 
Nomenclature of the astragalus ossifications follows Peabody (1951). Scale bar equals 2 cm.



The most obvious indicator of postural change between Moradisaurus and other captor-
hinids is found in the tarsus. In the astragalus we find a clear indication that the tibia was held 
more vertically than in other captorhinids, based on the relatively shallow angle between the 
tibial articulation and the body of the astragalus. The development of the accessory ossification 
that extends this surface medially also implies that forces from the tibia were exerted much more 
vertically than in smaller animals. This suggests that the Moradisaurus pes may have been held 
in a more horizontal posture (plantigrade) than the more digitigrade posture proposed for 
Captorhinus (2002). Such a posture may have resulted in the proximal tarsals contacting the 
ground, either directly or via a cartilaginous pad, and may help to explain the accessory ossify-
cations on the ventral surfaces of the astragalus and calcaneum. A change in limb posture of this 
type is a logical response to body size increase. 
 

We examined the astragali of other captorhinids in an attempt to find indications of some 
of the distinctive features displayed by Moradisaurus. Examination of the astragali of  Captor-
hinus (Fort Sill material at the AMNH and FMNH), Labidosaurus (FMNH UC634), and 
Rothianiscus (FMNH UR967) revealed that all were very similar; they were not foreshortened, 
the fibular process was long, the tibial articulation made a steep angle with the body, and no 
accessory ossifications were found. This is especially remarkable for the astragalus of Rothian-
iscus, whose length of about 5 cm approaches that of Moradisaurus (about 7 cm). Therefore, no 
indications of a response to increasing body size were found in the Labidosaurus or Rothianiscus 
astragali, and these features are truly autapomorphic for Moradisaurus. 
 

The evolution of an herbivorous lifestyle may also account for the great robusticity of the 
Moradisaurus hindlimb. Testing this hypothesis is difficult, however, because work on this topic 
in early amniotes has been qualitative (e.g., Hotton et al., 1997). It is worth noting that other 
primitive amniote taxa with tooth batteries similar to those of Moradisaurus also have squat and 
massively built bodies with heavy limbs (i.e., rhynchosaurs, Carroll, 1988; edaphosaurids, 
Romer and Price, 1940), and this body type is also shared by the herbivorous pareiasaurs and 
dicynodonts. The convergent evolution of this body type in different clades may imply a 
common constraint or set of causal mechanisms of the kind advanced by Hotton et al. (1997), 
although the cautions of Gould and Lewontin (1979) concerning the attribution of adaptive 
significance to morphology must be born in mind. These animals may have been slow simply 
because they had no reason to be fast. Yet the convergent evolution of the robust body type in 
concert with herbivory is suggestive, and might be open to further investigation given a robust 
phylogeny and morphometric data. 
 
Astragalar Ossification 
 

The poorly ossified juvenile astragalus described above offers data bearing on the origin 
of the amniote astragalus. The homologies of this element have been debated, but the prevailing 
wisdom during the later half of the twentieth century was based on that of Peabody (1951), who 
hypothesized that the amniote astragalus arose through the co-ossification of three originally 
separate elements found in amphibian-grade tetrapods. Rieppel (1993) questioned this view 
based on his re-examination of Peabody’s material of Captorhinus aguti, and posited that the 
amniote astragalus was a neomorph arising from a single ossification center. However, recent 
work by Kissel et al. (2002) on the captorhinids C. magnus and Labidosaurus has documented 



convincing new evidence in support of Peabody’s original hypothesis of a tripartite astragalus. 
Berman and Henrici (2003) report a similar condition in a diadectid (later christened Orobates 
pabsti by Berman et al., 2004), thus extending this ossification pattern to the common ancestor of 
Diadectomorpha and Amniota. 
 

The poorly ossified juvenile astragalus of Moradisaurus presented here is further 
evidence in support of Peabody (1951). This astragalus is composed of at least three ossified 
masses that are poorly co-ossified, a condition very similar to that reported by Kissel et al. 
(2002). We identify these three masses as homologues of the intermedium, the tibiale, and the 
proximal central following Peabody (1951) and Kissel et al. (2002). Direct evidence in support 
of the hypothesis of a tripartite origin of the amniote astragalus has thus been found in three 
captorhinid genera as well as in the Diadectidae; this implies that tripartite ossification was the 
plesiomorphic condition in basal amniotes (i.e., from outside Amniota to Eureptilia; taxonomy 
follows Laurin and Reisz, 1995). The novel ossification pattern observed in the astragali of 
extant diapsids and turtles is, therefore, phylogenetically more recent than supposed by Rieppel 
(1993). 
 
Summary 
 

In summary, the hindlimb of Moradisaurus gives the overall impression of a slow and 
heavy animal whose step kinematics may have differed significantly from those inferred for 
other captorhinids. Inferred changes in posture and kinematics are logically interpreted as a 
response to large body size. However, body size increase alone is probably not a sufficient 
explanation for the overall limb robusticity of Moradisaurus. Adaptation to an herbivorous 
lifestyle may have made a contribution, but this has not been demonstrated, and possible causal 
links are tenuous. Lastly, the juvenile astragalus of Moradisaurus adds convincing evidence to 
an emerging consensus on the homologies of the amniote astragalus; this consensus is essentially 
that first articulated by Peabody (1951), and supported recently by Kissel et al. (2002). 
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