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Abstract
Using a rate-equation model we numerically evaluate the carrier concentration and photon
number in an integrated two-section semiconductor laser, and analyse its dynamics in
three-dimensional phase space. The simulation comprises compact model descriptions extracted
from a commercially-available generic InP technology platform, allowing us to model an applied
reverse-bias voltage to the saturable absorber. We use the model to study the influence of the
injected gain current, reverse-bias voltage, and cavity mirror reflectivity on the excitable operation
state, which is the operation mode desired for the laser to act as an all-optical integrated neuron.
We show in phase-space that our model is capable of demonstrating four different operation
modes, i.e. cw, self-pulsating and an on-set and excitable mode under optical pulse injection. In
addition, we show that lowering the reflectivity of one of the cavity mirrors greatly enhances the
control parameter space for excitable operation, enabling more relaxed operation parameter
control and lower power consumption of an integrated two-section laser neuron.

1. Introduction

Electronic processors in form of CPUs and GPUs are widely used today to implement powerful machine
learning systems based on artificial neural networks (ANN). Since these processors are based on the
Von-Neumann computer architecture, data are processed sequentially. Inspired by the human brain, an ANN
in contrast consists of a large amount of parallel artificial neurons and a large number of weighted
interconnections representing biological synapses. The vector-matrix multiplication performed in ANNs is a
parallel computational process, which limits the efficiency of ANNs implemented on traditional electronic
processors. In addition, the computational power needed for novel ANNs currently outgrows the
computational power delivered by traditional hardware [1, 2]. Thus, novel hardware designed specifically to
implement ANNs on a chip has been the subject of research for a while.

A specific type of ANN that mimics the dynamics observed in biological neurons is the spiking neural
network (SNN). In the human brain, neurons are connected using dendrites and axons. An axon conveys the
action potential generated by a neuron to consecutive neurons, which is essentially an all-or-nothing spiking
signal. With the condition that a spike is sufficiently strong, the next neuron is triggered to generate a
response spike [3–5]. The feature of a neuron to generate a single response after being triggered by an input
of sufficient energy is referred to as ‘excitability’. In addition to single spike excitation, biological neurons
exhibit other dynamical features, such as periodic spiking and bursting. A detailed analysis of the dynamics
of biological neurons can be found in [6].

The rich dynamics observed in biological neurons has been exploited in SNNs to tackle various machine
learning tasks [7, 8]. Due to the potential lower energy consumption, large bandwidth, low crosstalk and
extremely fast spiking rates, integrated photonics is a promising candidate to explore the implementation of
ANN [9]. The excitable spiking mechanism can be implemented in photonics using two-section lasers. For
example, by adding a Thulium-doped fibre saturable absorber in an Erbium-doped fibre laser, an excitable
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laser was demonstrated [10]. Similarly, integrated lasers such as vertical-cavity surface emitting lasers [4, 11]
and distributed feedback [12] lasers have shown great potential as optical neurons.

The dynamics of two-section lasers under optical pulse [13] or noise injection [14] as well as subject to
perturbations in gain pump power [15] have been studied before. Previously, we have modelled the statistics
of noise-triggered events in two-section lasers based on a first-passage-time analysis extensively [16].
Excitable lasers with delayed optical feedback have been another topic of interest [17–19]. These studies focus
on identifying stability regions, period orbits in phase space and triggering. However, these extensive
mathematical studies are based on the dimensionless Yamada model [20] and thus do not allow to directly
study the influence of design and control parameters such as injection current, absorber voltage, and mirror
reflectivities on the operation of a concrete laser design that can be realised in a photonic integration process.
Secondly, the Yamada model is too simple with regard to certain aspects of gain and absorption. For example,
device and technology specific parameters such as reverse-voltage operation and a voltage dependent carrier
lifetime in the absorber are not considered in the Yamada model but are present in real laser devices.

Previously, we have studied the laser operation regimes of a two-section laser under optical pulse
injection. Based on laser design parameter changes [21] and different absorber carrier lifetimes [22], the laser
operation regimes have been identified. Another study discusses the excitability of two-section lasers using a
lumped-cavity description [23]. Due to the rich carrier dynamics, two-section lasers exhibit different
operation modes such as a self-pulsating, cw, on-set and excitable mode. So far, these studies are based on
time-trace simulations without dynamical analysis in phase space, the rich dynamics exhibited by these lasers
is still to be explored.

In this work, we are using the material and platform-specific rate-equation model reported in [23] and
combine time-trace analysis with phase space investigation in order to study the effects of design and control
parameters on the excitable laser neuron. This model has been matched to the gain building block
performance on the commercial InP platform [24] using compact models for a voltage dependent absorber
carrier lifetime and transparency carrier density. The main advantage of the compact model descriptions is
that these models reflect more accurately the underlying technology platform and effects, in contrast to
purely mathematical formulas.

The model has proven to yield qualitative results that agree with experimental observations, such as a
hysteresis and bistable operation [23]. This allows us to study the behaviour of gain and absorber carrier
densities and photon number concentrations of realistic devices that could be taped-out to fabrication.
Specifically, we will show how laser control parameters, i.e. the forward gain current and a reverse-bias
absorber voltage change the dynamical state of the laser. In addition, we will study how the mirror reflectivity
influences the excitable state.

The rate-equation model and underlying compact models will be explained first. The model will then be
used to present the evolution of gain and absorber carrier densities and photon concentrations in phase
portraits. Subsequently, we will show how for four different combinations of gain current and reverse-bias
voltage the laser shows qualitatively very different dynamical states. Furthermore, we will use the model to
determine for which mirror reflectivity values, the excitable control parameter space is largest.

2. Laser structure

The modelled laser structure is a two-section laser comprising a saturable absorber (SA), semiconductor
optical amplifier (SOA), and passive elements formed by mirrors R1 and R2 as depicted in figure 1 (bottom).
Such a modular approach is compatible with the commercially available multi-project wafer InP platform
discussed in [25]. The optical cavity is formed by combining various building blocks such as a broadband
multimode interference reflector [26] (MIR) and a distributed Bragg reflector [27] (DBR). As indicated in
figure 1, an external perturbation in the form of an optical trigger pulse can be injected into the cavity from
the MIR side of the laser, while the photon number in the cavity can be related to the optical output on the
DBR side. The active regions of both SOA and SA consist of four multi-quantum wells to provide optical
absorption and gain by applying either a reverse-bias voltage or forward current, respectively. The different
building blocks are connected using ridge waveguides with the cross-section shown in figure 1 (top) with a
total length indicated by the passive element in figure 1 (bottom). Electrical contacts are deposited on the top
and bottom of the layer stack for electrical probing.

The spectral absorption [28] and gain parametrisation [29, 30] of the SA and SOA building blocks were
studied before, and experimental data are used in this work to obtain functional relations for the
rate-equation model.

2



Neuromorph. Comput. Eng. 4 (2024) 024017 L Puts et al

Figure 1. Top: Ridge waveguide cross-section in the generic platform [25]. Bottom: Two-section laser comprising two mirrors, a
saturable absorber (SA), semiconductor optical amplifier (SOA), passive elements, and in- and output.

3. Method

3.1. Spiking laser model
The model under investigation is a lumped-cavity description [23, 31] comprising three coupled differential
equations to describe the gain and absorber carrier densities NG and NQ and the total photon number S in
the cavity. The mathematical descriptions of the gain and absorber region are based on parametrisations of
the gain, carrier lifetime and other parameters of the InP platform using compact models

dS

dt
= vggnetS+ vgαsatS−

S

τph
+ Ssp +κs(t) (1)

dNQ

dt
=−vgαsat

S

VSA
− NQ

τQ
(2)

dNG

dt
=

I

eVSOA
− vggnet

S

VSOA
− NG

τG
. (3)

It should be noted that the absorber carrier lifetime and the transparency carrier density are voltage
dependent parameters. The compact model descriptions and their dependency on the applied reverse bias
voltage is described in the next section. For a listing of the parameter names and values, we refer the reader to
table 1. Equation (1) describes the rate at which photons are generated. The terms in the right-hand side
correspond, in the order of appearance, to the SOA gain gnet (stimulated emission), the absorption in the SA
αsat, the cavity loss expressed as the photon lifetime τph, the spontaneous emission Ssp in the cavity and the
injection of external photons in the cavity through κs(t). Equation (2) describes the absorber carrier density
rate of change, in which the first term gives the photon-induced change in the absorber volume VSA and the
last gives the carrier-density loss expressed in the absorber carrier lifetime τQ. Equation (3) models the gain
carrier density, where the first term describes the carrier injection. Note that, in general, the externally
injected current is reduced by the injection efficiency through I= ηiIinj, but in our modelling we consider
I/(eVSOA) to be the effective number of injected carriers that arrive in the gain volume VSOA. The second
term describes reduction of the carrier density due to optical gain, and the last term models the gain carrier
recombination rate of the gain through lifetime τG.

In (1), the net gain gnet is based on a logarithmic expression in the gain carrier density NG [32] with
respect to the gain transparency carrier density NG0, and takes into account the material gain and passive loss
per unit length

gnet = Γ

[
angNG0 log

NG

NG0

]
−

[
c1

(
NG

NG0

)2

+ c2
NG

NG0
+ c3

]
. (4)

Here, Γ is the optical confinement factor, and ang the gain cross-section for stimulated emission, both of
which contribute to the material gain. The passive loss was previously measured on the generic platform for
current densities ranging between 1.0–10.0 kA cm−2 and modelled using a quadratic function with fitting
parameters ci (i= 1,2,3) of the carrier density ratio NG/NG0 [33].

The absorption includes a saturation effect as shown in equation (5), where αsat is proportional to the
differential absorption anq and the absorber carrier density NQ with respect to the absorber transparency
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carrier density NQ0. The saturation of the absorption is accounted for by the saturation photon number Ssat,
which corresponds to a saturation energy of 1 pJ, assumed to be valid for quantum well-based absorbers
[34].

αsat =
Γ
[
anq (NQ −NQ0)

]
1+ S

Ssat

. (5)

The photon lifetime τph is mainly determined by the mirror losses and is defined by [35]:

τph =
1

vgαmirror
(6)

where mirror losses αmirror are influenced by the structural parameters of the laser, namely the mirror
reflectivities R1 and R2 and the total cavity length [36]:

αmirror =
ln
(

1
R1R2

)
LSA + LSOA + Lpass

. (7)

Note that, in this model, the photon lifetime depends only on the mirror losses. Since the mirror losses are
substantially larger compared to the intrinsic losses on this technology platform for the laser cavity of interest
[25], and they do not change with changes in mirror reflectivity, its influence is considered as negligible.

The spontaneous emission rate Ssp depends on the gain carrier density NG, as well as the bimolecular
recombination rate B, and the spontaneous emission factor β, which relates the number of spontaneously
generated photons coupled into the lasing mode [4]:

Ssp = VgainβBN
2
G. (8)

The photon number S in the cavity translates to the optical power via [4]:

Popt =
Shc0ηc
τphλ

(9)

in which hc0/λ is the single-photon energy, and ηc an outcoupling efficiency which depends on the mirror
reflectivity. Vice versa, an estimation of the number of photons in an external pulse injected into the cavity
can be calculated from equation (9):

Sinj =
Poptτphλ

hc0ηc
. (10)

3.2. Compact models
In the rate-equation formula that describes the absorber (equation (2)), the voltage dependency is modelled
using a voltage-dependent absorber carrier lifetime τQ and saturation factor αsat via a voltage dependent
absorber transparency carrier density NQ0. The model that estimates the absorber carrier lifetime τQ is based
on previously measured carrier sweep-out times in an electro-absorption modulator on the same technology
platform with an almost identical layerstack [37]. The results are in good accordance with values presented in
[34], which yields a carrier lifetime of 5 ps at a reverse bias voltage of 5 V. The carrier lifetime follows an
exponential function depending on the applied reverse-bias voltage, as depicted in figure 2:

τQ = a · eb·Vrb . (11)

Since the absorber transparency carrier density is voltage dependent [38], data obtained previously from
small-signal absorption measurements Q0 for different reverse-bias voltages of a saturable absorber are used
[34] to create a compact model for the transparency-versus-voltage relationship. Analytically, the
small-signal absorption can be expressed as [39]:

Q0 = Γanq

(
NQ0 −

IAτQ
eV

)
(12)
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Figure 2. Extracted absorber carrier lifetime as a function of the applied reverse-bias voltage for a= 1.086 · 10−10 s, and
b=− 1.626 V−1.

Figure 3. Reverse-bias voltage Vrb as a function of transparency carrier concentration NQ0 at 1550 nm. Black squares: estimated
values of NQ0 at 1550 nm. Solid line: linear fit.

where IA is an applied direct injection current. Thus, any variation in NQ0 changes the small-signal
absorption. Without additional current injection, i.e. IA = 0 mA, the small-signal absorption is reduced to
(see also [34, 40]):

Q0 = ΓanqNQ0. (13)

Measurements of the optical transmission through a 90 µm saturable absorber under different reverse
biases at a wavelength range from 1530–1560 nm were used to determine the relation between Q0 and Vrb.
Equation (13) was then used to match NQ0 to the different reverse biases, assuming the absorber
transparency carrier density at V rb = 0 V and λ= 1560 nm is 0.05·1024m−3. This value was obtained before
in pulse-transmission measurements and matching carrier density simulations of a saturable absorber on a
similar InP-based technology platform [34]. Then, equation (13), yields the linear relationship between
absorber transparency carrier density and reverse-bias voltage at 1550 nm, which is depicted in figure 3.

3.3. Solving the rate-equationmodel numerically
The rate-equation model equations (1)–(3), logarithmic and linear gain and absorber models equations (4)
and (5), and underlying compact models equations (6)–(11) were solved numerically using the
Adams–Bashforth integration method implemented in Python to find solutions for S, NQ and NG. Unless
stated otherwise, for all simulations the values mentioned in table 1 are used. The injected pulse has a
Gaussian profile, peak optical power of 5 mW and a full width half maximum of 50 ps. These pulse shape is
chosen such that the input pulse resembles an externally generated optical pulse.

4. Results

Since the model at hand defines a three-dimensional system of equations, the numerical solutions can be
visualized as a trajectory in phase space. Depending on the initial conditions at t = 0, laser parameters and
external optical perturbation condition, the solution can evolve, but need not, to a stable limit cycle,
representing a steady state of the system. In 3D, there is also a possibility that no limit cycle exists, i.e. the
cycle period is infinite in time. A chaotic attractor is an example of the latter.
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Table 1. Simulation parameters. Var. indicates the actual parameter value is based on other control or design parameters.

Photon lifetime τ ph var. ps
Gain carrier lifetime τG 300 ps [29]
Absorber carrier lifetime τQ var. ps
Group velocity vg 8.2·107 ms−1 [41]
Spontaneous emission rate Ssp var. s−1

Gain cross-section ang 1.75·10−19 m2 [42]
Differential absorption anq 4.00·10−19 m2 [34]
Gain transparency carrier density NG0 5.00·1023 m−3 [42]
Absorber transparency carrier density NQ0 var. m−3 [34]
Confinement factor Γ 0.053 [−] [42]
Gain medium volume VSOA 1·10−16 m3

Absorber medium volume VSA 1·10−17 m3

Bias current I var. A
Optical injection rate κS(t) var. s−1

Coupling efficiency ηc 0.6 [−]
Lasing wavelength λ 1550 nm
Absorber reverse-bias voltage V rb var. V
Spontaneous emission factor β 1·10−4 [−] [35]
Bimolecular recombination rate B 1·10−16 m3s−1 [35]
DBR mirror reflectivity R1 var. [−] [27]
MIR mirror reflectivity R2 0.632 [−] [26]
Absorber section length LSA 50 µm
Gain section length LSOA 500 µm
Passive section length Lpass 1000 µm

Figure 4. Numerical solutions of an excitable laser under optical injection in three dimensional phase space (top, solid black line).
The grey lines are projections of the 3D solution onto 2D phase planes. • simulation start point,■ simulation end point, ▲ pulse
injection. Bottom: corresponding time trace.

First, a laser with the parameters given in table 1, a gain current of 40.5 mA and reverse-bias voltage of
0.6 V is simulated for a time period from 0 to 3 ns. To investigate the excitatory response to an external input
pulse (κS in figure 1), an optical pulse is injected at t = 1 ns. The pulse properties result in a total injected
pulse energy of approximately 0.265 pJ. Figure 4 shows the evolution (solid black line) as a trajectory in 3D
phase space. The three light-grey lines are the projections onto the (NG,S), (NQ,S), and (NG,NQ) 2D phase
planes. The black dot and square denote the initial condition (simulation starting value), and simulation end
point, respectively. The moment at which the optical pulse is injected is highlighted with a black triangle.
From the simulation starting point, the solution slowly drifts towards a higher value for S and NQ, and a
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I II

III IV

I II

III IV

I II

III IV

I II

III IV

Figure 5. Transients in four operation regimes of the simulated laser. Figure (a): from off to self-pulsating, figures (b) and (c):
from off to cw, figure (c): trigger-induced switch on, figure (d): excitability. In figures (a) and (b), the gain current is fixed at
87.1 mA, while in figure (a), the reverse-bias voltage is 1.800 V, and in Fig. (b) 1.797 V. In figures (c), (d) the current is lowered to
55.0 mA, while the voltage is 1.000 V and 1.500 V, respectively. In these cases, an optical pulse with width of 50 ps, and a peak
power of 5 mW is injected at t= 1.1 ns.

lower value in NG. A large excursion of S follows, before the solution moves towards the steady state with a
very small value for S. When the external optical pulse is injected, a rapid increase in S and decrease in NG

follows. The result is a second but slightly larger excursion in phase space. The difference between the two
excursions originates from the different triggering mechanisms. The first excursion is the result of the initial
conditions, whereas the second excursions is the result of a larger number of photons injected into the
simulated cavity. After further inspection of the response pulse and using equation (9), the maximum output
power of the response pulse is calculated to be approximately 20 mW, while the pulse duration is estimated to
be 90 ps. This results in an estimated pulse energy of 1.91 pJ, much higher than the injected pulse energy.
This is an important comparison when considering the cascadability of the integrated laser neuron.

4.1. Tuning laser control parameters
In the previous examples, the laser was biased in a specific operation point to show its dynamics and
excitable behaviour. However, depending on the combination of different gain currents, reverse biasing
voltages and optical pulse injection, the laser can show different operation modes. Figures 5(a)–(d) show
four different operation regimes and corresponding two dimensional phase space plots when laser control
parameters (gain current and reverse-bias voltage) are changed.

First, in figure 5, the laser is operated at a gain current of 87.1 mA and reverse-bias voltage of 1.800 V and
no optical pulse is injected. From the simulated time trace (figure 5(a, IV)) clearly the laser shows a periodic,
self-elicited pulsed output with a fixed repetition rate. In (S,NG) and (NG,NQ) phase space, this is visible as
an asymptotic stable limit cycle: for every generated pulse, the same closed loop is followed. From a
dynamical perspective, this behaviour represents a periodically spiking neuron [6]. A further analysis of this
regime gives insight into the power requirement for spiking behaviour. For example, based on measured IV
characteristics of an integrated two-section laser on the generic platform as presented in [43] the series
resistance for such devices is determined to be approximately 12.48 Ω. Then, based on Ohm’s law and the

7
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Figure 6. Simulation results of two different laser designs. Top figures (a), (c) show the trajectories in 3D phase space for reverse
bias voltages of 0, 1, 3, and 4 V. Bottom figures (b), and (d): simulated time traces showing the injected pulse at t= 1.0 ns
(dash-dotted line) and laser response (solid line) Left case: mirror reflectivity 0.866, right case: mirror reflectivity 0.400.

Figure 7. (a)–(d): Simulation results of four different laser designs. The reflectivity of the DBR mirror is swept from 0.3 (a) to 0.9
(d). Reflectivity of the MIR is fixed at 0.6. Other simulation parameters remain as described in table 1. (e)–(f): area of excitable
operation for V rb = 0.14 V (e) and 1.0 V (f). The colour bars indicate the total optical output power of the excited pulse.

gain current of 87.1 mA, the power required for a spiking output is estimated to be around 95 mW, or, taking
into account the repetition rate of 900 MHz (figure 5(a, IV)), a power of 0.105 nW/spike.

Close to the self-pulsating operation point exists a dynamically very different state. When the reverse-bias
voltage is changed by only 3 mV while the gain current remains the same, the laser suddenly loses the
capability to sustain a pulsed output, instead it shows damped oscillations before reaching a stable optical cw
output (figure 5(b)). These relaxation oscillations are fast, since their frequency is determined by the fast
photon lifetime and the resonant energy exchange between the optical field and population inversion [19,
23]. In phase space, the limit cycle has disappeared and is replaced by a spiral into a stable fixed point
(figures 5(b, I-II)).

Next, the gain current is lowered to 55.0 mA, the reverse-bias voltage is changed to 1.000 V, and an
optical trigger pulse is injected at t = 1.1 ns. From figure 5(c, IV) it is clear that the trigger caused the system
to start lasing in cw mode. At the moment the pulse is injected, the output is raised to a steady state.

8
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Apparently, the system is bistable, i.e. on or off. Qualitatively, the dynamical behaviour is similar to that
presented in figure 5(b), albeit with a different relaxation oscillation frequency, consistent with the smaller
photon number. In this operation regime, injecting a second pulse after the first pulse does not alter the state
of the system, i.e. the laser remains in cw.

Lastly, the gain is kept at 55.0 mA, but the reverse-bias voltage is set at 1.500 V. Figure 5(d, IV) shows the
laser is now excitable, since the optical pulse now triggers the laser to generate a single pulse. The observed
dynamics of this excitable laser neuron is analogous to excitability observed in biological neurons [6, 44].
Note that, in this region of operation optical noise might also trigger the laser to generate a response,
provided that the intensity is crossing the excitability threshold [16, 45].

4.2. Tuning laser design parameters
The four cases described previously validate that our model is capable of generating different laser operation
states. Another key aspect to investigate is the influence of laser design parameters on the dynamical states of
the laser neuron. One design parameter of interest is the reflectivity of one of the cavity mirrors, which can
be chosen when designing a two-section laser for tape-out. The reflectivity of the MIR mirror is fixed by
design, however, the reflectivity of the DBR mirror in figure 1 can be altered by changing its length [27].
Changing the reflectivity of a mirror in an optical cavity has several implications effects. The cavity loss,
which influences the photon lifetime as indicated by equations (6) and (7), increases when the reflection is
lowered. Also, due to a short photon lifetime the optical output increases, as indicated by equation (9). In
addition, a higher mirror loss results in a higher threshold gain current, which effectively increases the gain
current needed for excitable behaviour. In order to investigate the effect of different reflectivities on the laser
operation states, we first use the model to calculate trajectories at a fixed gain current and four different
reverse-bias voltages. In figure 6(a), and (c), the simulation results of two different laser designs are depicted
in 3D phase space. The trajectory starting and end points are indicated by the black circle and square,
respectively. The corresponding time traces are depicted in figures 6(b) and (d). In both simulations, the gain
current was set to 50 mA, while the reverse-bias voltage was swept from 0 to 3 V in increments of 1 V. An
external optical trigger pulse with a pulse width of 50 ps and peak power of 5 mW is applied at t = 1.0 ns,
indicated by the dash-dotted lines in figures 7(b) and (d).

In the first case, figures 7(a)–(b), the structure of the laser is the same as in the previous simulations,
which means that the DBR-mirror reflectivity is set to be 0.866. At a reverse-bias voltage of 3 V (black lines),
the laser response is below the excitable threshold. In figure 6(a), this is clear from the small loops and the
low value for S. At this reverse-bias voltage, the absorption is high. When the reverse-bias voltage is lowered
to 1 and 0 V, absorption decreases and large excursions in phase space and pulses in the time traces due to the
injected pulse are observed, indicating the laser is excited. This is indicated by the red lines in figures 6(a),
and (b). Moreover, for the case where the reverse-bias voltage is 0 V (blue), the laser does not follow a closed
trajectory, but moves to a stable fixed point, resulting in the cw operation mode. In figure 6(c), and (d), the
reflectivity of the DBR mirror was lowered to 0.400. Consequently, the dynamical states change for the same
applied reverse-bias voltage as in the previous case. By inspecting figures 6(c) and (d), it is observed that at a
reverse-bias voltage of 3 V, the laser trajectory shows the same small excursions (black line). However, at a
reverse-bias voltage of 2 and 1 V a large excursion is observed (red). Also, at a reverse bias voltage of 0 V, the
laser is now excitable. In the previous example, the laser was in the on-set regime for these parameter settings.

The two cases discussed in figure 6 indicate qualitatively that the laser control and design parameters
influence the dynamical state the laser operates in. Depending on the mirror reflectivity, the laser may or may
not be excitable under optical-pulse injection. Next, we perform a control and parameter sweep in order to
get qualitative results on the excitable regime. More precisely, we investigate the dependency of the gain
current, reverse-bias voltage and the mirror reflectivity on the excitable operation regime.

First, In figures 7(a)–(d), the simulation results of four different laser designs with DBR reflectivity values
of 0.3, 0.5, 0.7, and 0.9 are shown, which could be achieved by changing the DBR length to 0.15, 0.20, 0.30
and 0.35 mm [27]. In these simulations, the gain current was swept from 30 to 90 mA, and for every value for
the gain current, the reverse-bias voltage was swept from−1 to 4 V. An external optical trigger pulse with a
pulse width of 50 ps and peak power of 5 mW is applied at t = 4.0 ns. For every simulation point, the average
optical output power is calculated over a simulation window of 25 ns. Based on the calculated optical output,
the operation mode of the laser was determined. The parameter space for excitable operation is depicted in
figures 7(a)–(d).

By comparing the four individual maps, it is clear when the laser is biased at a fixed gain current, the
largest excitability parameter space is obtained if the mirror reflectivity is low. Gradually increasing the
reflectivity from R= 0.3 to R= 0.9 (figures 7(a)–(d)) results in a reduction of the parameter space for
excitable operation. For example, for a reflectivity of R= 0.3 excitable operation at a gain current of 50.0 mA
was observed between a reverse-bias voltage of−0.175 and 1.17 V (∆Vrb = 1.34 V), whereas changing the
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mirror reflectivity to R= 0.9 results in excitable operation between 1.00 and 1.83 V (∆Vrb = 0.830 V). This is
highlighted with the red vertical line in figures 7(a) and (d). Similar results are observed when considering a
the gain current. At a fixed reverse-bias voltage of 1.00 V, excitability is observed between 48.0 and 73.6 mA
(∆I = 25.6 mA) for the case where R= 0.3, whereas increasing the reflectivity to R= 0.9 results in excitable
operation between 38.0 and 53.3 mA (∆I = 15.3 mA), as indicated by the horizontal red line. Decreasing the
reverse-bias voltage to 0.140 V reduces the excitable operation space to∆I = 13.7 mA and∆I = 4.02 for
R= 0.3 and R= 0.9, respectively.

To further quantify this observation, two simulations at reverse-bias voltages of 0.140 V and 1.00 V for
mirror reflectivities swept from near 0–1 and gain currents between 20.0 and 90.0 mA were performed. In
figures 7(e) and (f), the parameter space for excitable operation for different values of the reflectivity and
gain currents are depicted. By comparing the area of excitable operation in these two maps, it is clear that the
largest parameter space for excitable operation exists for relatively low reflectivity values (i.e. R< 0.5). At
higher reflectivity values, the excitability parameter space decreases, which is consistent with the observation
in figures 7(a)–(d). Also, when the reflectivity approaches zero, excitability vanishes, due to the cavity losses.
In figures 7(e) and (f), in addition to the area of excitability, the average optical output power, which is the
calculated average optical output power over the simulation time window of the excited response, is mapped
onto a colour scale. In both cases, it is clear that at the left and right boundary of excitability, the optical
output power is lowest and highest, respectively. Figures 7(e) and (f) are especially of interest when the total
laser energy consumption is considered. By operating the laser at the lowest possible gain current, while
ensuring a relatively large window of excitable operation is achieved, static power consumption is minimal.

5. Conclusion

In this work, we used a rate-equation model and compact models based on the generic InP technology
platform to numerically calculate the evolution of gain and absorber carrier densities and photon
concentration. This allowed us to study the dynamics of an integrated two-section laser under optical pulse
injection. Using these models, the operation mode and evolution of the dynamics for two control
parameters, i.e. the gain current and reverse-bias voltage, can be determined.

From the phase-portrait analysis, a classification of the laser operation modes is presented. First, at a gain
injection current and reverse-bias voltage of 87.1 mA and 1.8 V, respectively, the model shows a self-spiking
mode where the solution follows a limit cycle in (S,NG, NQ) phase space with sustained oscillations in the
calculated time-trace. The limit cycle is replaced by a stable spiral when the reverse-bias voltage is changed by
only 3 mV, indicating the laser pulses are replaced by fast relaxation oscillations before cw mode is reached.
When the gain injection current is lowered to 55.0 mA and an optical trigger pulse is injected, the on-set
mode and excitable mode are predicted.

Besides the control-parameter dependent dynamical state, we further demonstrated that depending on
the value for the cavity-mirror reflectivity, the laser shows different trajectories in three dimensional phase
space. The main reason for this are the mirror-reflectivity dependent cavity losses and photon lifetime,
indicating that, in order to operate the laser as an excitable integrated laser neuron, the value for the
reflectivity should be carefully chosen. We presented simulation results where the mirror reflectivity was
swept from near 0–1 for two different reverse-bias voltages of 0.140 V and 1.00 V. In addition, the optical
output of the excited pulse was recorded. The results demonstrate that the largest parameter space for
excitable operation is obtained for relatively low reflectivity values. Moreover, output-pulse energies are
lower at smaller gain currents. This observation is of great importance when considering low energy
consumption, i.e. a low gain current operation.
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