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Targeted Estimation of Variable Importance
Measures with Interval-Censored Outcomes

Stephanie Sapp, Mark J. van der Laan, and Kimberly Page

Abstract

In most experimental and observational studies, participants are not followed in
continuous time. Instead, data is collected about participants only at certain mon-
itoring times. These monitoring times are random, and often participant specific.
As a result, outcomes are only known up to random time intervals, resulting in
interval-censored data. In contrast, when estimating variable importance mea-
sures on interval-censored outcomes, practitioners often ignore the presence of
interval-censoring, and instead treat the data as continuous or right-censored, ap-
plying ad-hoc approaches to mask the true interval-censoring. In this paper, we de-
scribe Targeted Minimum Loss-based Estimation methods tailored for estimation
of variable importance measures with interval-censored outcomes. We demon-
strate the performance of the interval-censored TMLE procedure through simula-
tion studies, and apply the method to analyze the effects of a variety of variables
on spontaneous hepatitis C virus clearance among injection drug users, using data
from the “International Collaboration of Incident HIV and HCV in Injecting Co-
horts” project.



1 Introduction

Determining the effect importance of a large collection of biomarkers on an out-

come is a frequent goal in applications involving epidemiology. For example, epi-

demiologists often wish to determine the effects of a variety of behavioral and bi-

ological factors on health outcomes. In practice, epidemiological data is not col-

lected in continuous time, and is rather only measured at random monitoring times,

resulting in interval-censored outcomes.

Practitioners often ignore interval-censoring when conducting their analy-

sis. One common approach involves using a misspecified parametric model and

forward imputing the outcome to the final time of interest. For example, in analyz-

ing factors associated with the interval-censored outcome of spontaneous hepatitis

C virus clearance within 2 years of incident infection, Grebely et al. (2012a) used

a logistic regression approach. Their analysis both assumed a logistic relationship

between variables and outcome, and ignored interval-censoring of clearance by for-

ward imputing the clearance outcome to the 2 year endpoint.

Another approach ignoring interval censoring involves obtaining estimates

using targeted learning methodology, but forward imputing the outcome to the final

time of interest. This approach is more principled in the sense that the estimates

obtained would be valid in the absence of interval-censoring, but nonetheless fails

to account for interval-censoring. For example, Bembom et al. (2009) estimated the

effects of a variety of biomarkers on viral load outcome under HIV treatment change

using Targeted Minimum Loss-based Estimation of variable importance measures,

but ignored interval-censoring of the viral load outcome, and instead effectively

used forward imputation.

To account for interval-censoring, nonparametric maximum likelihood es-

timators (NPMLE) for the marginal distribution of an interval-censored event time

have been studied for various types of interval-censored data. For example, Groene-

boom and Wellner (1992) study the NPMLE for “case 1” data, and Geskus and

Groeneboom (1999) study the NPMLE for “case 2” data. “Case 1”, or current sta-

tus, data is obtained when participants are only observed once, at a fixed monitoring

time. At this monitoring time, we observe an indicator of whether or not the event

has occurred. “Case 2” data involves monitoring participants twice, and at each

monitoring time, observing an indicator of whether or not the event has occurred.

However, these NPMLE approaches only estimate the marginal event time distribu-

tion, and thus do not provide estimates of covariate effects on the outcome event.

Semiparametric regression models for interval-censored data have been pro-

posed to analyze the effects of various covariates on the outcome event. Propor-

tional hazards models have been studied by, for example, Cai and Betensky (2003),

Huang and Wellner (1997), and Finkelstein (1986). Proportional odds models have

Hosted by The Berkeley Electronic Press



been studied by, for example, Rabinowitz, Betensky, and Tsiatis (2000), Rossini

and Tsiatis (1996), and Huang and Wellner (1997). Accelerated failure time mod-

els have been studied by, for example, Tian and Cai (2006), Huang and Wellner

(1997), and Rabinowitz, Tsiatis, and Aragon (1995). In these models, effect esti-

mates are given by the estimated regression coefficient, and hence still suffer from

model misspecification.

In this paper, we propose making less restrictive modeling assumptions and

clearly defining the target parameter of interest when analyzing the effects of a va-

riety of variables on an interval-censored outcome. In particular, we define variable

importance measures (VIM) as functions of the true data generating distribution,

instead of as coefficients in possibly misspecified models. We use a nonparametric

statistical model, which makes no statistical assumptions about the form of the un-

derlying true data generating distribution, and only make non-testable assumptions

about the causal model generating the data.

We develop Targeted Minimum Loss-based Estimation (TMLE) methods to

estimate VIM in the presence of interval-censored outcomes. Our interval-censored

TMLE procedure (IC-TMLE) provides consistent estimates, valid inference, and

a variety of other desirable properties under regularity conditions. We show that

ignoring interval-censoring leads to incorrect VIM estimates and inference, and

demonstrate the superior performance of IC-TMLE. We apply IC-TMLE to esti-

mate VIM of spontaneous hepatitis C virus (HCV) clearance among injection drug

users, using data from the “International Collaboration of Incident HIV and HCV

in Injecting Cohorts” (InC3) project.

The remainder of our paper is organized as follows. We formalize the ob-

served data structure in Section 2. The target VIM parameter, including two formu-

lation possibilities, are presented in Section 3. We discuss estimation of VIM and

the IC-TMLE algorithm in Section 4. Simulation study results appear in Section 5.

We use IC-TMLE to analyze data from the InC3 project in Section 6. Finally, we

conclude in Section 7.

2 Data Structure

2.1 Observed Data

We consider the following observed data structure. Observations, consisting of

time-varying covariates L(t) and time-to-event outcome process Y (t), are collected

from each participant i = 1, . . . ,n at different discrete monitoring times t. The out-

come process Y (t) indicates whether the event has been observed by time t. Moni-

toring process ∆(t) indicates whether monitoring occurs at time t. Each participant
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is observed at time t = 0: we measure baseline covariates W = L(0), and assign or

observe binary “treatment” A for which we want to estimate a VIM. Note that the

definitions of A and W depend upon the VIM being analyzed. Since our outcome

of interest is a time-to-event, we assume the event has not yet occurred at baseline,

and the outcome process Y (t) only jumps once.

Although, for simplicity, this paper only discusses the case of a single treat-

ment at time 0, the approach described in this paper can be easily extended to treat-

ments at multiple time points. Note that A does not need to be an actual treat-

ment: it may be a behavioral or biological marker observed at baseline. We label

subsequent monitoring times as t = 1,2, . . . ,τ , where τ is the monitoring time at

which we aim to measure the final outcome. Note that the t numerical labels can

be determined by bucketing the true monitoring times into τ intervals, or by sim-

ply numbering the visits. Since not every participant is observed at every moni-

toring time, we encode the measurements at every monitoring time t as the tuple
(

∆(t), ∆(t)L(t), ∆(t)Y (t)
)

=
(

∆(t), L∗(t), Y ∗(t)
)

, so that the covariates and out-

come process are defined at every t. If we do observe data at time t, the true L(t)
and Y (t) values are used, since ∆(t) = 1. Otherwise, monitoring does not occur at

time t, so ∆(t) = 0, and we use degenerate values for L(t) and Y (t). This observed

data structure can be represented, ordered in the assumed collection order, as the

random variable O =
(

W, A,
{

∆(t), L∗(t), Y ∗(t)
}τ

t=1

)

.

Since our interest is in observing the value of Y (τ), the missing indica-

tor of primary interest is ∆(τ). We view the intermediate ∆(t) indicators and

associated measurements as simply intermediate data, rather than missing indi-

cators to intervene upon. To clarify this distinction, we use the notation L′ =
{

∆(t), L∗(t), Y ∗(t)
}τ−1

t=1
as a single variable indicating all intermediate data, Y =

Y ∗(τ) as the final outcome of interest, and ∆ = ∆(τ) as the indicator of monitoring

at that final time. Using this notation, we represent the observed data structure as

O =
(

W, A, L′, ∆, Y
)

.

2.2 Statistical and Causal Model

We assume the following non-parametric structural causal model (NPSCM), as in

Pearl (2000), which encodes the non-testable causal assumptions about the time-

ordering of the observed data.

W = fW (UW )
A = fA(W,UA)
L′ = fL′(W,A,UL′)
∆ = f∆(W,A,L′,U∆)
Y = fY (W,A,L′,∆,UY )























(1)
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In equations (1), U = (UW ,UA,UL′,U∆,UY ) are unobserved exogenous random vari-

ables, while the functions f are deterministic and not restricted to any functional

form. Each endogenous variable W,A,L′,∆,Y is only a function of its parents (vari-

ables preceding it in the assumed time ordering), and its corresponding U random

variable, which captures additional randomness in each endogenous variable not

accounted for by the parents alone.

Our statistical model is indexed by the functions f and the random variable

U . We put no restrictions on their statistical distributions. We will make random-

ization assumptions in the next section, which are non-testable causal assumptions.

However, our statistical model remains semiparametric because we make no distri-

butional form assumptions. Hence, the observed data O is a random variable with

data generating distribution P, which is an element of semiparametric statistical

model M , i.e., O ∼ P ∈ M .

3 Target Parameter

3.1 Formulation Possibilities

We focus on the risk difference parameter, and consider two possible formulations

of this target parameter.

3.1.1 Static Intervention Formulation

The first possible target parameter formulation is given by:

ψF
static = E

[

Y A=1,∆=1 −Y A=0,∆=1
]

= E
[

Y 1,1
]

−E
[

Y 0,1
]

(2)

The following static intervention on the NPSCM yields the counterfactual outcome

Y a,1:

d(a,1) :

{

A = a

∆ = 1
(3)

The above intervention is straightforward to understand: we set the treatment at

baseline to the desired value, and ensure that monitoring occurs at the final time τ ,

so that we can check whether the event of interest has occurred. Using the NPSCM,

counterfactual data following the intervention (3) can be generated as follows. First,

draw U . Then, generate W = fW (UW ). Next, generate L′,a = fL′(W,a,UL′). Finally,

generate Y a,1 = fY (W,a,L′,1).
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3.1.2 Stochastic Intervention Formulation

To reflect the fact that our parameter of interest is whether the event of interest has

occurred by time τ , and hence does not necessarily depend on being monitored at

exactly time τ , we introduce the following redefinition of the data. At time t = 0,

define Y #(0) = Y ∗(0), ∆#(0) = ∆(0), and L#(0) = L∗(0). At times t > 0:

Y #(t) = Y #(t −1) if I(Y #(t −1) = 1)
∆#(t) = ∆#(t −1) if I(Y #(t −1) = 1)
L#(t) = L#(t −1) if I(Y #(t −1) = 1)

(4)

The above redefinition sets all values of the data deterministically after observing

that the event of interest has occurred. Note that Y #(t) = 1 implies that ∆#(t) = 1.

Also, note that Y #(t) and ∆#(t) will equal Y ∗(t) and ∆(t), unless ∆(t) = 0 and

Y ∗(t) = 0, respectively. This is due to the fact that the data redefinition only changes

the values of Y ∗(t) and ∆(t) if they are not already equal to one. Using these obser-

vations, we can express the data redefinition (4) equivalently as:

Y #(t) = Y ∗(t)+
(

1−Y ∗(t)
)

Y #(t −1)
∆#(t) = ∆(t)+

(

1−∆(t)
)

∆#(t −1) Y #(t −1)
L#(t) = L#(t −1) Y #(t −1)+L∗(t)

(

1−Y #(t −1)
)

(5)

Using redefinition (5), our observed data structure is now O# =
(

W,A,L
′#,∆#,Y #

)

,

where ∆# = ∆#(τ) and Y # = Y #(τ).
With this redefinition in hand, we now define a second possible target pa-

rameter:

ψF
stochastic = E

[

Y #,A=1,∆=δ −Y #,A=0,∆=δ

]

= E
[

Y #,1,δ
]

−E
[

Y #,0,δ
]

(6)

The following stochastic intervention on the NPSCM (involving a static in-

tervention on baseline treatment A, and stochastic intervention on the monitoring

mechanism ∆#) yields the counterfactual outcome Y #,a,δ :

d(a,δ ) :











A = a

∆# = δ =

{

1 if Y #(τ −1) = 0

∆#(τ −1) if Y #(τ −1) = 1

(7)

The stochastic intervention on the monitoring process ∆# ensures that we

enforce monitoring at time τ if we have not yet observed the event of interest, and
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do not intervene on the monitoring process if the event of interest has already been

observed (in that case, ∆# = ∆#(τ −1) already, by the redefinition of the data).

As in the static intervention case, we can use the NPSCM to generate coun-

terfactual data following the intervention (7). We begin by drawing U . Then, we

generate W = fW (UW ). Next, we generate L′ = fL′(W,a,UL′). Finally, we compute

the value δ from L′, and generate Y = fY (W,a,L′,δ ).

3.1.3 Equivalence of Proposed Intervention Formulations

While the stochastic intervention formulation might seem more desirable, since it

does not require intervention when the event of interest is already known to have

occurred, both formulations result in the same statistical parameter. For a proof, see

Appendix C. In the remainder of this paper, we use the simpler static intervention

representation of the parameter. Hence, we our target VIM parameter is:

ψ = EW

[

EL′

[

E
[

Y |W,A = 1,L′,∆ = 1
]

]]

−EW

[

EL′

[

E
[

Y |W,A = 0,L′,∆ = 1
]

]]

= ψ1 −ψ0

(8)

In principle, the two formulations possibilities would require two sets of

identifiability assumptions, as discussed in Appendix A and Appendix B. However,

we show in Appendix C that the identifiability assumptions are equivalent.

The causal assumptions needed for (8) to be identifiable from the distribu-

tion of the observed data are: consistency, randomization, and positivity. The con-

sistency assumption requires that intervening on treatment to set A= a and interven-

ing on monitoring to set ∆ = 1 in the NPSCM yields the observed outcome Y if the

observed treatment and monitoring values equal a and 1, respectively. The random-

ization assumption requires that, given the observed past, treatment and monitoring

are independent of counterfactual outcomes. The positivity assumption requires

that, given the observed past, the conditional probability of treatment A = a, and

monitoring ∆ = 1, are positive.

Note that even in the case that the causal assumptions fail to hold, the pa-

rameter (8) still remains an interesting variable importance measure of the effect of

A on the outcome Y . In that case, (8) represents the effect of A on Y , controlling for

the measured confounders W , and ensuring that monitoring occurs at the final time

of interest.

3.2 Representation as Function of Iterated Conditional Means

Observe that the VIM ψ is a function of the density P(O), since, if P(O) were

known, we could calculate (8) exactly: first compute conditional distributions from
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the full joint distribution, then perform integrations.

Although ψ depends on P, we do not need to know all of P in order to

calculate ψ . This can be seen by factorizing P(O) as follows:

P(O) = PW (W ) PA(A|W ) PL′(L′|A,W ) P∆(∆|W,A,L′) PY (Y |W,A,L′
,∆)

= QW gA QL′ g∆ QY (9)

Now, observe that our VIM parameter (8) only depends on the distribution P through

its Q factors in (9), and hence may be represented as ψ(Q). Furthermore, observe

that ψ(Q) may be represented as an iterative conditional expectation: first con-

ditioning on {L′,W}, then on only {W}. This can be seen as follows. We first

introduce some additional notation:

Q̄
a,1
Y = E

[

Y |W,A = a,L′,∆ = 1

]

Q̄
a,1
L′ = EL′

[

Q̄
a,1
Y |W,A = a

]

Q̄
a,1
W = EW

[

Q̄
a,1
L′

]































(10)

Using the conditional mean notation (10), we can re-express the components of our

target parameter as follows:

ψa = EW

[

EL′

[

E
[

Y |W,A = a,L′
,∆ = 1

]

]]

= EW

[

EL′

[

Q̄
a,1
Y

]

]

= EW

[

Q̄
a,1
L′

]

= Q̄
a,1
W (11)

4 Estimation

4.1 Targeted Minimum Loss-based Estimation (TMLE) Overview

Targeted Minimum Loss-based Estimation (TMLE) is a general framework for con-

structing estimators of a statistical parameter ψ under a semiparametric model. The

procedure consists of two steps. The first step involves obtaining an initial estimate

Q̂ of the portion Q of the data-generating distribution P that is needed to calculate

ψ . The second step obtains an update Q̂∗ of Q̂ through a fluctuation that is targeted
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toward optimizing the bias-variance trade-off for ψ . Finally, the TMLE estimate of

ψ is given by the substitution (plug-in) estimate ψ̂ = ψ(Q̂∗).
We recommend using Super Learning to obtain the initial estimate of Q.

Super Learning is a machine learning algorithm which involves proposing a library

of candidates estimators, and using cross-validation to data-adaptively select the

weighted combination of the candidates that minimizes the cross-validated risk.

Through this process, Super Learning does not make any parametric assumptions

about the form of density estimated. We refer to van der Laan, Polley, and Hubbard

(2007) and van der Laan and Rose (2011) for additional discussion.

Since Super Learning (and any other density estimation procedure) is tai-

lored for the estimation of Q, its bias-variance trade-off is not optimal for ψ . This

explains the need for the updating step in TMLE. In the updating step, we use the

initial estimate as a fixed offset, and fluctuate it by performing parametric regres-

sion with a so-called “clever covariate”, implied by the efficient influence curve,

that is constructed for optimal bias-variance trade-off with respect to ψ . For addi-

tional details, we refer the reader to van der Laan and Rubin (2006) and van der

Laan and Rose (2011).

Under regularity conditions, the resulting TMLE estimator ψ̂ has the prop-

erty that

ψ̂ −ψ0 ≈
1

n

n

∑
i=1

D∗(Oi) (12)

where ψ0 is the true parameter value, and D∗ is the efficient influence curve. Sat-

isfying (12) results in many desirable properties. In particular, such an estimator

is asymptotically linear, consistent, and efficient. Asymptotic linearity refers to the

empirical mean representation, which allows us to make use of the Central Limit

Theorem and obtain valid inference. Consistency means our estimate is asymptoti-

cally unbiasedness, in the sense that ψ̂ approaches the true value ψ0 as sample size

increases. Efficiency means that ψ̂ has the minimum asymptotic variance (implied

by the efficient influence curve) among all asymptotically linear unbiased estima-

tors. Furthermore, a TMLE estimator is well-defined, in the sense that it does not

suffer from multiple solutions. It is a substitution estimator, and thus respects global

constrains (for example, if ψ is a probability, the TMLE procedure will result in an

estimate between 0 and 1). The TMLE procedure is also double robust, and has

good performance for finite samples. For a additional details, we refer the reader to

van der Laan and Rubin (2006) and van der Laan and Rose (2011).
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4.2 Efficient Influence Curve

In order to proceed with the TMLE procedure, we need to determine the efficient

influence curve (also known as the canonical gradient) of ψ , which will allow us to

construct the clever covariate needed for the updating step of TMLE, as described

in Section 4.1.

As shown in Section 3.2, our VIM parameter of interest, ψ , only depends

on P through Q. As a result, we may derive the canonical gradient for ψ by first

finding any gradient D in a model in which g is known, and then projecting that

gradient into the tangent space of Q to obtain the canonical gradient.

Furthermore, from Section 3.2, ψ may be represented as an iterative con-

ditional expectation. As a result, van der Laan and Gruber (2011) show that the

efficient influence curve for ψ is: D∗ = D∗
Y + D∗

L′ + D∗
W . We use the notation

D∗
Z = Π(D|TZ) to represent the projection of D onto the tangent space TZ of QZ ,

for an arbitrary random variable Z. The D∗ components are given by:

D∗
Y =

I(A = a,∆ = 1)

gA(a|W ) g∆(1|W,a,L′)

(

Y − Q̄
a,1
Y

)

D∗
L′ =

I(A = a)

gA(a|W )

(

Q̄
a,1
Y − Q̄

a,1
L′

)

D∗
W = Q̄

a,1
L′ −ψ(Q̄a,1

W )































(13)

4.3 Interval-Censored TMLE of Variable Importance Measures

Following the general interval-censored TMLE development of Carone, Petersen,

and van der Laan (2012) and the TMLE of an intervention specific mean outcome

described in van der Laan and Gruber (2011), we estimate variable importance mea-

sures in the presence of interval-censored outcomes using the following IC-TMLE

algorithm. Note that, although the parametric fluctuation could take different forms,

the logistic regression model used below ensures that the fluctuations respect the

characteristics of the observed data. For further discussion, see Gruber and van der

Laan (2010).

We begin by obtaining an initial estimate Q̄
a,1
Y,n of the first conditional mean

outcome Q̄
a,1
Y = E[Y |W,A= a,L′,∆= 1] by regressing Y onto {W,A= a,L′,∆= 1}.

This initial estimate can be obtained using, for example, parametric logistic regres-

sion or data-adaptive Super Learning. Second, we fluctuate this initial estimate to

obtain an updated estimate Q̄
a,1,∗
Y,n . To do the update, we use the initial estimate as

a fixed offset, and perform a univariate regression of Y onto the clever covariate
I(A=a,∆=1)

gAg∆
.
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Next, we obtain an initial estimate Q̄
a,1
L′,n

of the second conditional mean

outcome Q̄
a,1
L′ = E

[

Q̄
a,1
Y |W,A= a

]

by regressing the TMLE Q̄
a,1,∗
Y,n from the previous

step onto {W,A = a}. As before, this initial estimate is then fluctuated to obtain an

updated estimate Q̄
a,1,∗
L′,n

. The update is obtained by using the initial estimate as a

fixed offset in a univariate regression of the TMLE Q̄
a,1,∗
Y,n onto the clever covariate

I(A=a)
gA

.

Finally, we estimate Q̄
a,1
W = E

[

Q̄
a,1
L′

]

as the empirical mean of the TMLE

from the previous step: Q̄
a,1,∗
W,n = 1

n ∑n
i=1 Q̄

a,1,∗
L′,n

(Wi). This same estimate also gives the

TMLE of ψ , since ψ
(

Q̄a,1
)

= Q̄
a,1
W . Hence, the TMLE of ψ is ψ∗= 1

n ∑n
i=1 Q̄

a,1,∗
L′,n

(Wi).
In Appendix D we provide a concrete description of how to implement the

IC-TMLE algorithm in practice.

5 Simulation Studies

In this section, we present simulations comparing our IC-TMLE procedure to sev-

eral alternative methods: a TMLE ignoring interval censoring by using forward im-

putation (F-TMLE), a TMLE ignoring interval censoring by using only complete

case data (CC-TMLE), a mean outcome within treatment groups using forward im-

putation (F-Mean), and a mean outcome within treatment groups using only com-

plete case data (CC-Mean).

In each of our simulated datasets, A ∼ Bern(0.5), and hence, mean out-

comes within treatment groups using only complete case data would be unbiased

if censoring was uninformative. Also, note that both alternative TMLE procedures

estimate well-defined effect measures for the data structure they analyze (forward

imputed data, or complete case data), but nonetheless fail to take interval-censoring

into account.

5.1 Simulated Data Structure

Our simulated data structure is as follows. Two covariates (Lt,1,Lt,2) collected over

time, a binary treatment A assigned at baseline, and a binary outcome Yt collected

over time. The outcome at baseline is zero for all observations: Y0 = 0. The co-

variates and outcome are collected at baseline t = 0, and at each of two subsequent

follow-up times t = 1,2. There is no censoring at baseline, so ∆0 = 1, but each

subsequent follow-up time is subject to censoring. The outcome of interest is the

outcome value at the final follow-up time τ = 2.
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5.2 Motivating Example: Inadequacy of Parametric Models

To motivate our IC-TMLE approach, we begin by presenting a simulation demon-

strating the failure of common logistic modeling approaches in the presence of in-

terval censored data. Logistic regression is an example of a parametric statistical

model, and hence makes the assumption that the data generating probability dis-

tribution is known up to a finite number of parameters. However, the underlying

data generating distribution is generally always unknown in any experimental or

observational study. Additionally, estimated odds ratios obtained via logistic re-

gression are conditional on the remaining covariates in the model being held fixed.

As a result, unless the logistic regression model is forced to not include interactions

(which is not justifiable), the resulting odds ratios are functions of these remaining

covariates, and hence are not well-defined effect measures. Furthermore, logis-

tic modeling approaches commonly used by practitioners often ignore the interval

censored structure of the data. Instead, ad hoc strategies such as complete case

analysis or forward imputation are typically employed in an attempt to mask the

interval censoring.

Our simulated data is generated as follows:

W1 ∼ N(0,1)
W2 ∼ U(−0.5,0.5)
A ∼ Bern(0.5)
Y0 = 0

∆1 ∼ Bern
(

expit(2−0.2W1 −0.2W2 +0.4W1A+0.4W2A)
)

L1 = W1 +N(0.2,1)
L2 = W2 +U(−1,0.5)
Y1 = max

(

Y0, Bern
(

expit(−2−W1 −W2)
))

∆2 = max
(

Bern(0.3), Bern
(

expit(−2+2.5L1 −5.5AL1)
))

Y2 = max
(

Y1, Bern
(

expit(3L1)
))


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(14)

In the simulated data structure (14), the Yt process is a time-to-event out-

come since it begins at zero and and only jumps (at most) once to one. In the case

of Y1, this can be seen by observing that Y0 = 0, and the Bernoulli term is either 0

or 1. For Y2, the Bernoulli term is again either 0 or 1, and by taking the maximum

with Y1, we ensure that if Y1 already jumped to one, Y2 equals one.

Observe that A only affects the monitoring variables ∆1 and ∆2. As a result,

in truth, A has no effect on the outcome Y2, since Y2 is not a function of either ∆1

or ∆2. Hence, a successful logistic regression would estimate the coefficient of A to

be zero.

We generated a sample of size 1,000 from (14), and fitted two types of

logistic regression models to estimate the effect of A on Y2. In the first, we employ
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forward imputation to fill in the value of Y2 if ∆2 = 0, and regress Y2 onto A, W1,

W2. In the second, we use complete case analysis, and regress Y2 onto A, W1, W2,

but only among the observations with ∆2 = 1.

In the forward imputation approach, we obtain a coefficient estimate for A of

−0.18, with a p-value of < 0.001, and a 95% confidence interval of (−0.24,−0.12).
In the complete case analysis approach, we obtain a coefficient estimate for A of

−0.18, with a p-value of < 0.001, and a 95% confidence interval of (−0.26,−0.09).
Hence, both logistic regression approaches claim that A has a highly significant

effect on Y2, when in reality no such effect exists.

5.3 Simulation 1: No Effect of A on Y

In this simulation, we generated data from (14), as in Section 5.2. As described in

the previous section, variable A has no effect on Y . The true values of ψ1 and ψ0

are both 0.64, and the true risk difference is ψ = ψ1 −ψ0 = 0. We performed 1000

simulations on each of sample sizes n = 200, 500, 1000. Results are presented in

Table 1.

The IC-TMLE method shows strong performance. It has the lowest bias

and MSE for ψ1 and ψ0 across all sample sizes. As sample size increases, bias and

MSE decrease for all parameters. Coverage rate is high across all sample sizes, and

improves with sample size.

Each of the other methods exhibit undesirable behavior. Bias for all param-

eters tends to stay constant with increasing sample size, and coverage rates decrease

as sample size increases. Since the true value of ψ is zero, the low coverage rates

mean that the competing methods tend to claim a significant effect, when in fact no

such effect exists. At sample size 1000, each competing method has coverage rate

under 5%, meaning that each competing method claims a false significant effect

over 95% of the time.

Although F-MEAN has low bias for ψ , this is only due to the lucky fact

that the large biases in ψ1 and ψ0 cancel out in the risk difference. Alternative

parameters, e.g., relative risk, would not have bias cancellation. Even though F-

MEAN’s bias for ψ is low, coverage for ψ is poor. At sample size 200, F-MEAN

has a coverage rate of roughly 31%, and by sample size 1000, the coverage rate has

dropped to 0%.

5.4 Simulation 2: A Affects Y

In this simulation, we generated data according to the laws below. Here, the variable

A has a positive effect on Y . The true value of ψ1 is 0.80, the true value of ψ0 is
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Table 1: Simulation 1 results. The best performing method in each row is in bold.
IC-TMLE F-TMLE CC-TMLE F-MEAN CC-Mean

n = 200

BIAS

ψ -0.0670 -0.1661 -0.1475 -0.0001 -0.2216

ψ1 -0.0402 -0.3337 -0.0705 -0.3338 -0.1090

ψ0 0.0267 -0.1676 0.0770 -0.3337 0.1127

MSE

ψ 0.0160 0.0323 0.0321 0.0321 0.0588

ψ1 0.0070 0.1136 0.0105 0.1136 0.0176

ψ0 0.0062 0.0307 0.0109 0.0308 0.0164

COVER

ψ 0.856 0.305 0.647 0.309 0.364

n = 500

BIAS

ψ -0.0164 -0.1673 -0.1553 -0.0001 -0.2260

ψ1 -0.0114 -0.3344 -0.0729 -0.3345 -0.1106

ψ0 0.0051 -0.1671 0.0823 -0.3344 0.1153

MSE

ψ 0.0039 0.0300 0.0279 0.0299 0.0546

ψ1 0.0018 0.1127 0.0074 0.1128 0.0143

ψ0 0.0018 0.0289 0.0086 0.0290 0.0148

COVER

ψ 0.959 0.029 0.265 0.029 0.038

n = 1000

BIAS

ψ 0.0055 -0.1688 -0.1549 -0.0001 -0.2272

ψ1 0.0001 -0.3354 -0.0727 -0.3354 -0.1117

ψ0 -0.0046 -0.1666 0.0822 -0.3353 0.1157

MSE

ψ 0.0018 0.0295 0.0258 0.0295 0.0533

ψ1 0.0008 0.1129 0.0063 0.1129 0.0134

ψ0 0.0008 0.0282 0.0076 0.0282 0.0140

COVER

ψ 0.979 0.000 0.046 0.000 0.000

0.72, and the true risk difference is ψ = ψ1 −ψ0 = 0.08.
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W1 ∼ N(0,1)
W2 ∼ U(−0.5,0.5)
A ∼ Bern(0.5)
Y0 = 0

∆1 ∼ Bern
(

expit(−3W1A+8W2A+2W1(1−A)−2(1−A)W2)
)

L1 = W1 +0.1A+N(0.2,1)
L2 = W2 +0.1A+U(−1,0.5)
Y1 = max

(

Y0, Bern
(

expit(W1 −W2 +0.05A)
))

∆2 = max
(

Bern(0.3), Bern
(

expit(−2+10L1A−10L2A−15L1(1−A)+15L2(1−A)−0.2A)
))

Y2 = max
(

Y1, Bern
(

expit(−2L1 +2L2 +0.1A)
))




















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(15)

As in the previous simulation, we performed 1000 simulations from (15) on

each of sample sizes n = 200, 500, 1000. Results appear in Table 2.

IC-TMLE has the lowest bias and highest coverage across all sample sizes.

Bias and MSE decrease as sample increases, coverage and correctly signed confi-

dence interval rates increase with sample size, and incorrectly signed confidence

interval rate decreases as sample size increases.

Other methods show relatively constant bias with increasing sample size,

lower coverage rate and fewer correctly signed confidence intervals with increas-

ing sample size, and more incorrectly signed confidence intervals as sample size

increases. A bias comparison for ψ1 is particularly informative: across all sample

sizes, each of the competing methods retains high bias, while IC-TMLE starts out

with the lowest bias and also steadily reduces bias at each increase in sample size.

The competing methods are also particularly poor in terms of coverage: coverage

rates are low, incorrect significant effects are often claimed, and correct significant

effects are rarely found.

6 Data Analysis

6.1 InC3 Data

The “International Collaboration of Incident HIV and HCV in Injecting Cohorts”

(InC3) is a merged international multi-cohort project of pooled observational lon-

gitudinal data, both biological and behavioral, from 9 prospective cohorts of injec-

tion drug users (IDU). Hepatitis C virus (HCV) is a particularly common infection

among injection drug users, and spontaneous viral clearance of HCV is often ob-

served. However, the determinants of spontaneous viral clearance of HCV infection

among injection drug users have not been extensively studied. Understanding the
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Table 2: Simulation 2 results. The rows ψ , ✁✁0 and ��ψ , ✁✁0 indicate the fraction of 95%

confidence intervals for ψ claiming a significant result with the correct (positive)

sign and incorrect (negative) sign, respectively. The best performing method in each

row is in bold.
IC-TMLE F-TMLE CC-TMLE F-MEAN CC-Mean

n = 200

BIAS

ψ -0.0309 -0.1561 -0.0883 -0.0795 -0.0836

ψ1 -0.0190 -0.3824 -0.0624 -0.3822 -0.0605

ψ0 0.0118 -0.2263 0.0259 -0.3028 0.0231

MSE

ψ 0.0105 0.0296 0.0174 0.0298 0.0164

ψ1 0.0039 0.1488 0.0082 0.1487 0.0079

ψ0 0.0057 0.0537 0.0056 0.0536 0.0054

COVER

ψ 0.924 0.387 0.810 0.396 0.836

ψ , ✁0 0.095 0.001 0.021 0.002 0.023

�ψ , ✁0 0.012 0.229 0.043 0.217 0.031

n = 500

BIAS

ψ -0.0176 -0.1582 -0.0914 -0.0795 -0.0879

ψ1 -0.0128 -0.3838 -0.0651 -0.3837 -0.0639

ψ0 0.0048 -0.2256 0.0263 -0.3042 0.0239

MSE

ψ 0.0039 0.0270 0.0119 0.0271 0.0113

ψ1 0.0014 0.1483 0.0059 0.1482 0.0057

ψ0 0.0021 0.0518 0.0027 0.0518 0.0025

COVER

ψ 0.943 0.047 0.647 0.064 0.687

ψ , ✁0 0.155 0.000 0.017 0.000 0.017

�ψ , ✁0 0.002 0.439 0.046 0.430 0.044

n = 1000

BIAS

ψ -0.0118 -0.1591 -0.0935 -0.0795 -0.0899

ψ1 -0.0082 -0.3841 -0.0647 -0.3840 -0.0636

ψ0 0.0036 -0.2249 0.0288 -0.3045 0.0263

MSE

ψ 0.0017 0.0262 0.0105 0.0262 0.0098

ψ1 0.0006 0.1480 0.0050 0.1479 0.0049

ψ0 0.0010 0.0511 0.0018 0.0511 0.0017

COVER

ψ 0.961 0.000 0.396 0.000 0.431

ψ , ✁0 0.303 0.000 0.008 0.000 0.013

�ψ , ✁0 0.000 0.723 0.047 0.718 0.039
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factors that play a role in driving HCV clearance is of significant interest, as doing

so would aid in the identification of risk factors for chronic infection, as well as

suggest possible directions for pharmaceutical development.

Merge 1 data from the InC3 project consists of baseline and longitudinal

data collected on 522 HCV infected injection drug users across the 9 study cohorts.

Data about IDU from different cohorts are similar in several ways. For example,

each cohort aimed to schedule regularly spaced visits for follow-up (although a

scheduled visit is not the same as an actual visit!), and collected similar behavioral

and biological measurements for each IDU. However, data about IDU from differ-

ent cohorts also differs in several ways. For example, each cohort used different

follow-up intervals, and may not have collected all desired behavioral or biological

measurements. As a result, the data is interval censored and consists of missing

observations. Some IDU also received drug therapy to treat their HCV infection,

resulting in right-censoring of the spontaneous clearance outcome. We refer to Gre-

bely et al. (2012b) and the InC3 website (2013) for additional details about the InC3

cohort.

6.2 Previous Work

Grebely et al. (2012a) used logistic regression to model the binary outcome of HCV

clearance within 2 years of estimated incident infection as a function of variables of

interest to analyze factors associated with spontaneous clearance. As demonstrated

in Section 5.2, this type of forward imputation logistic regression modeling does not

account for interval censoring, and often results in incorrect estimates and inference.

6.3 Analysis

We apply IC-TMLE to estimate variable importance measures for the effects of age,

ethnicity, gender, infecting genotype, and IL28B gene on the interval-censored out-

come of spontaneous HCV clearance among injection drug users in the InC3 data.

Following Grebely et al. (2012a), we defined clearance as two consecutive HCV

RNA negative tests, and analyzed clearance within 2 years of incident infection. If

clearance was observed for an IDU, all subsequent clearance outcomes were also

set to clearance being true.

Since the focus of this paper is the interval censored nature of the clear-

ance outcome, we handled interval-censoring of the initial infection date and right-

censoring of the outcome as follows. The first time infection was observed was

used as the incident infection time t = 0. We used Inverse Probability of Censor-

ing Weighting (IPCW) prior to applying the IC-TMLE procedure to account for
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the right-censoring of spontaneous clearance for IDU who received drug therapy

to treat their HCV infection. Using IPCW to weight the original observed data

structure before applying a TMLE is sub-optimal, but still retains many desirable

efficiency and robustness properties. For additional details, we refer to van der

Laan and Rose (2011). The number of IDU not receiving HCV drug therapy is

n1 +n0 = 429.

Given our assumed Structural Causal Model, variables included in W are

different depending for each variable A we analyze. In particular, variables included

in W cannot be affected by A. To account for this, we grouped available baseline

variables into several categories (personal, date, location, gene, base-behavior, and

age) describing their general type. Personal baseline variables included unchanging

characteristics of study participants, such as gender, origin, and ethnicity. Date

baseline variables included all year or date variables, such as birth date and cohort

entry date. Location baseline variables included location-specific information, such

as site and center. Gene baseline variables included values of all measured genes.

Base-behavior variables included baseline information about injection and prison

prior to HCV infection. Age baseline variables included the ages of the IDU at

various life events, such as age at cohort entrance. Note that all of these variables

are required to have occurred prior to HCV infection. If such information was not

available (e.g., the participant was already infected with HCV upon entrance to a

cohort), the variables were treated as missing.

When A represented IL28B or age, W included personal, date, location,

gene, and age baseline variables. When A represented ethnicity or gender, W in-

cluded personal, date, location, and gene baseline variables. When A represented in-

fecting genotype, W included personal, date, location, gene, age, and base-behavior

variables.

We analyzed factors A which had at least 15 IDU with A = 1. We did not

analyze, for example, Asian ethnicity, since the number of Asian IDU was below

15. For this reason, the numbers within each variable analyzed do not necessarily

sum to the total number of IDU within the dataset.

L′ consisted of all baseline variables not included in W (and therefore is also

different depending on A), as well as the time-dependent variables collected at the

last monitoring time prior to 1 year after incident infection date. ∆ was an indicator

of being monitored between 1 year and 2 years after incident infection date. Y was

an indicator of whether clearance was observed between 1 year and 2 years after

incident infection date. Note that, due to our definition of clearance, if clearance

was observed prior to 1 year, and ∆ = 1, then Y = 1, as well. On the other hand,

if clearance was observed prior to 1 year, but ∆ = 0, recall from Section 3.1.3 that

we still effectively know that clearance has occurred, and our estimates will not be

changed.
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We selected the monitoring interval of between 1 and 2 years from incident

infection date for several reasons. First, we are able to analyze all clearance prior

to 2 years, as in Grebely et al. (2012a). Second, clearance of acute HCV infection

typically occurs within 1 year of infection, as discussed in Page et al. (2009) and

Grebely et al. (2012c). Third, using smaller intervals resulted in many fewer IDU

being observed within the interval, resulting in poorer estimates. Together, this ra-

tionale was an attempt to balance the trade-off between, on the one hand, obtaining

precise estimates through having a large enough number of IDU with ∆= 1, and, on

the other hand, obtaining results with strong interpretation by using a small window

to examine the time-to-event outcome of clearance at a specific time.

6.4 Results

The results of our analysis are presented in Table 3. Female gender, IL28B CC, and

several middle age ranges showed a significantly positive effect on HCV clearance.

Unknown gender, all other IL28B analyzed, unknown and indigenous ethnicity,

infecting genotype 2 and 3, and several younger and older age ranges showed a

significantly negative effect on HCV clearance.

It is important to note that estimates may be poor and confidence intervals

may be overly optimistic (i.e., too small) when min(n0,n1) is small, where n1 and

n0 are the number of IDU with A = 1 and A = 0, respectively. For example, when

min(n0,n1) is small, our estimate of variance may not be able to detect whether the

true variance of ψ is large. This is due to the fact that, in our case, the term gA in

the denominator of two of the influence curve components in (13) is the conditional

probability that A = a given covariates W . We might expect gA to be small, and

hence, the variance to be large. However, for factors with small min(n0,n1), we

may not observe participants where gA is small, resulting in variance estimates and

confidence intervals that are artificially small.

6.5 Considerations for Future Analyses

While this paper’s focus was on the interval censored nature of the HCV clearance

outcome in the InC3 data, several other considerations would be fruitful for further

analysis.

Future analysis should note that if the factor of interest A has a very small

number of people (e.g., 21 participants with infecting genotype 2 in the Merge 1

InC3 dataset), the VIM of A may be excessively determined by the specific indi-

viduals within that small group. As a result, factors where min(n0,n1) was very
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Table 3: InC3 analysis results. Check marks in the “95% Sig” column indicate that

the analyzed variable had a significant effect on clearance, at the 95% level, and n1

and n0 are the number of IDU with A = 1 and A = 0, respectively.
95% Sig ψ̂ 95% CI min(n0,n1)

Age

Age < 20 X -0.235 (-0.291, -0.178) 25

Age < 25 X -0.154 (-0.232, -0.075) 179

Age < 30 0.011 (-0.071, 0.094) 120

Age < 35 X 0.147 (0.082, 0.213) 63

Age < 40 X 0.218 (0.160, 0.277) 34

Age 20-40 X 0.184 (0.129, 0.239) 69

Age 20-35 X 0.088 (0.024, 0.152) 98

Age 25-35 -0.040 (-0.152, 0.072) 187

Age 25-40 X 0.093 (0.012, 0.174) 213

Gender

Male -0.081 (-0.196, 0.035) 260

Female X 0.125 (0.016, 0.233) 154

Unknown X -0.262 (-0.316, -0.208) 15

Genotype

1 -0.029 (-0.136, 0.077) 157

2 X -0.275 (-0.360, -0.190) 21

3 X -0.125 (-0.214, -0.035) 97

Not Done 0.036 (-0.072, 0.145) 127

IL28B

CC X 0.194 (0.098, 0.291) 190

CT X -0.165 (-0.260, -0.070) 146

TT X -0.181 (-0.288, -0.075) 46

Missing X -0.183 (-0.270, -0.097) 38

Ethnicity

White 0.037 (-0.062, 0.135) 104

Indigenous X -0.251 (-0.340, -0.163) 31

Other 0.168 (-0.159, 0.495) 16

Unknown X -0.254 (-0.306, -0.202) 29

small should be investigated further for a dataset with larger min(n0,n1) to estab-

lish whether or not the effect remains. Furthermore, improved variance estimation

methods for sparse data of this nature are needed.

Additional choices of the ∆ monitoring interval should also be studied. We

attempted to balance the trade-off between precise and interpretable estimates, but

additional analysis should be done to analyze the sensitivity of conclusions pre-

sented here to alternative choices of ∆.
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7 Discussion

While most experimental and observational data, particularly in genetics and epi-

demiology, is interval-censored, practitioners consistently fail to account for interval-

censored outcomes in their analyses of variable importance measures. In this paper,

we demonstrated that ignoring interval-censored outcomes leads to biased estimates

and incorrect inference. We presented a TMLE algorithm tailored for estimating

VIM in the presence of interval-censored outcomes, IC-TMLE. We discussed the

desirable statistical properties of IC-TMLE, showed its superior performance com-

pared to other methods through a series of simulation studies, and used it to estimate

VIM of spontaneous HCV clearance using the InC3 data.

The IC-TMLE procedure provides VIM estimates that can be used to deter-

mine the effects of a large collection of variables on an outcome subject to interval-

censoring. The ubiquity of interval-censored outcomes and the importance of ob-

taining valid variable importance measures indicate the wide-ranging applicability

of our novel IC-TMLE approach to estimating VIM in the presence of interval-

censored outcomes.
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Appendices

A Identifiability of Static Intervention Parameter

In an ideal (impossible) experiment, we would observe the static intervention (3) on

all participants for both a values, and the causal effect of A on Y could be estimated

by using the counterfactual outcomes to directly compute the empirical average

ψ̂F
static =

1
n ∑n

i=1(Y
1,1
i −Y

0,1
i ). Of course, in reality, we can never conduct the ideal

experiment described by (3) (which explains why the data is called counterfactual).

Instead, for (2) to be identifiable from the observed data, we need the following

causal assumptions:

(C1) Y a,1 = Y A,1|A = a

Consistency 1: Intervening on the NPSCM to set treatment to A = a yields

the observed data if the actual observed treatment is A = a.

(C2) Y A,1 = Y A,∆|∆ = 1

Consistency 2: Intervening on the NPSCM to set monitoring to ∆ = 1 yields

the observed data if the actual observed monitoring is ∆ = 1.

(R1) Y a,1 ⊥⊥ A | W

Randomization 1: No unmeasured confounders associated with both treat-

ment A and counterfactual outcome Y a,1.

(R2) Y a,1 ⊥⊥ ∆ | W,A = a,L′

Randomization 2: No unmeasured confounders associated with both moni-

toring ∆ and counterfactual outcome Y a,1.

(P1) P(A = a|W )> 0

Positivity 1: Conditional probability of treatment, for both a = 1 and a = 0,

is positive for all covariate possibilities W .

(P2) P(∆ = 1|W,A = a,L′)> 0

Positivity 2: Conditional probability of monitoring at time τ is positive for all

covariate possibilities W, A, L′.

Under the above assumptions, we may express the components of ψF
static as follows.

Note that we use the shorthand notation EL′ to indicate the expectation with respect

to the conditional distribution of L′ | W,A = a. The abbreviation TR stands for the

Hosted by The Berkeley Electronic Press



Tower Rule.

E[Y a,1]
(TR)
= EW

[

E
[

Y a,1|W
]

]

(R1), (P1)
= EW

[

E
[

Y a,1|W,A = a
]

]

(C1)
= EW

[

E
[

Y A,1|W,A = a
]

]

(TR)
= EW

[

EL′

[

E
[

Y A,1|W,A = a,L′
]

]]

(R2), (P2)
= EW

[

EL′

[

E
[

Y A,1|W,A = a,L′
,∆ = 1

]

]]

(C2)
= EW

[

EL′

[

E
[

Y A,∆|W,A = a,L′
,∆ = 1

]

]]

(16)

Equation (16) is a function of the distribution of the observed data, allowing us to

identify (2) from the observed data.

B Identifiability of Stochastic Intervention Parame-

ter

Ideally, we would observe the stochastic intervention (7) on all participants for

both a values, and the causal effect of A on Y could be estimated by using the

counterfactual outcomes to directly compute the empirical average ψ̂F
stochastic =

1
n ∑n

i=1(Y
#,1,δ
i −Y

#,0,δ
i ). Since the ideal experiment described by (7) is not possi-

ble, for (6) to be identifiable from the observed data, we need the following causal

assumptions:

(C1) Y #,a,δ = Y #,A,δ |A = a

(C2) Y #,A,δ = Y #,A,∆#
|∆# = δ

(R1) Y #,a,δ ⊥⊥ A | W

(R2) Y #,a,δ ⊥⊥ ∆# | W,A = a,L
′#

(P1) P(A = a|W )> 0

(P2) P(∆# = δ |W,A = a,L
′#)> 0
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Under the above assumptions, we may express the components of ψF
stochastic as fol-

lows:

E[Y #,a,δ ]
(TR)
= EW

[

E
[

Y #,a,δ |W
]

]

(R1), (P1)
= EW

[

E
[

Y #,a,δ |W,A = a
]

]

(C1)
= EW

[

E
[

Y #,δ |W,A = a
]

]

(TR)
= EW

[

E
L
′#

[

E
[

Y #,δ |W,A = a,L
′#
]

]]

(R2), (P2)
= EW

[

E
L
′#

[

E
[

Y #,δ |W,A = a,L
′#
,∆# = δ

]

]]

(C2)
= EW

[

E
L
′#

[

E
[

Y #|W,A = a,L
′#
,∆# = δ

]

]]

(17)

As before, the last equation above is a function of the distribution of the observed

data, allowing us to identify (6) from the observed data.

C Proof of Equivalence of Intervention Formulations

Under the stochastic intervention, from equation (17), we have that

E[Y #,a,δ ] = EW

[

E
L
′#

[

E

[

Y #

∣

∣

∣

∣

W,A = a,L
′#
,∆# = δ

]]]

= EW

[

E
L
′#

[

E

[

Y #(τ −1)+
(

1−Y #(τ −1)
)

Y ∗(τ)

∣

∣

∣

∣

W,A = a,L
′#
,∆# = δ

]]]

= EW

[

E
L
′#

[

Y #(τ −1)+(1−Y #(τ −1))E

[

Y ∗(τ)

∣

∣

∣

∣

W,A = a,L
′#
,∆# = δ

]]]

(18)

Now, since Y #(τ −1) ∈ L
′# and Y #(τ −1) is binary, we can simplify

E

[

Y ∗(τ)

∣

∣

∣

∣

W,A = a,L
′#
,∆# = δ

]

(19)

by considering the value of Y #(τ −1) and the definition of δ :
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(19) = E

[

Y ∗(τ)

∣

∣

∣

∣

W,A = a,L
′#
,∆# = (1−Y #(τ −1))+Y #(τ −1)∆#(τ −1)

]

= E

[

Y ∗(τ)

∣

∣

∣

∣

W,A = a,L
′#
,∆# = 1

]

Y #(τ −1)+E

[

Y ∗(τ)

∣

∣

∣

∣

W,A = a,L
′#
,∆# = 1

]

(1−Y #(τ −1))

= E

[

Y ∗(τ)

∣

∣

∣

∣

W,A = a,L
′#
,∆# = 1

]

(20)

The above calculations hold because, no matter the value of Y #(τ − 1), the

stochastic intervention results in ∆# = 1. This can be seen by noting that if Y #(τ −
1) = 1, then ∆#(τ−1) = 1, resulting in ∆#(τ) = 1. On the other hand, if Y #(τ−1) =
0, the stochastic intervention also tells us to set ∆#(τ) = 1. Now, using the equality

of (19) and (20), we can simplify equation (18) as:

(18) = EW

[

EL
′#

[

Y #(τ −1)+(1−Y #(τ −1))E

[

Y ∗(τ)

∣

∣

∣

∣

W,A = a,L
′#
,∆# = 1

]]]

(21)

Under the static intervention, from equation (16), we have:

E[Y a,1] = EW

[

EL′

[

E
[

Y ∗(τ)|W,A = a,L′
,∆ = 1

]]]

= EW

[

EL′

[

E
[

Y ∗(τ)|W,A = a,L′
,∆ = 1,Y #(τ −1) = 1

]

Y #(τ −1)

+ E
[

Y ∗(τ)|W,A = a,L′
,∆ = 1,Y #(τ −1) = 0

]

(1−Y #(τ −1))
]]

= EW

[

EL′

[

Y #(τ −1)+(1−Y #(τ −1))E
[

Y ∗(τ)|W,A = a,L′
,∆ = 1

]]]

(22)

To see the equivalence of (21) and (22), observe that the only difference lies

in the use of L′ versus L′#. However, L′ and L′# contain equivalent information:

L′# was constructed from L′, which shows that any information contained in L′#

is also contained in L′, and on the other hand, the data redefinition equations can

easily be used to derive L′ from L′#. Finally, since both versions of the data con-

tain identical information, the causal assumptions needed for identifiability are also

interchangeable.

D Practical IC-TMLE Algorithm Implementation

To clarify the description of IC-TMLE provided in the main article, we provide here

a more concrete and detailed description of the practical steps needed to implement

the algorithm.
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IC-TMLE algorithm

0. Obtain initial estimators gA,n(a|w) of gA(a|w) and g∆,n(1|w,a, l
′) of g∆(1|w,a, l

′)
using Super Learning.

1. Obtain initial estimator Q̄
a,1
Y,n of Q̄

a,1
Y by using Super Learning to perform lo-

gistic regression of Y onto W and L′ among the observations with A = a and

∆ = 1.

2. Fit a parametric logistic regression, among observations with A = a and ∆ =

1, of Y onto clever covariate
I(A = a)I(∆ = 1)

gA,n(a)g∆,n(1)
, offset by the fitted values

from Q̄
a,1
Y,n (making sure to set these fitted values equal to 1 for any observa-

tions with Yt = 1 for some Yt ∈ L′). Obtain Q̄
a,1,∗
Y,n .

3. Obtain initial estimator Q̄
a,1
L′,n

of Q̄
a,1
L′ by using Super Learning to perform

logistic regression of Q̄
a,1,∗
Y,n onto W , among the observations with A= a. Note

that we calculate the clever covariate of Q̄
a,1,∗
Y,n as

I(A = a) [I(∆ = 1) = 1]

gA,n(a)g∆,n(1)
, i.e.,

we calculate the clever covariate setting A = a and ∆ = 1 for all observations

with A = a. Similarly, we calculate the offset of Q̄
a,1,∗
Y,n using predictions from

Q̄
a,1
Y,n for all observations with A = a. Furthermore, if a built-in method to

obtain predictions from a glm object with offset is not available (e.g., R),

Q̄
a,1,∗
Y,n must be calculated manually.

4. Fit a parametric logistic regression, among observations with A = a, of Q̄
a,1,∗
Y,n

(calculated as described in the previous step) onto clever covariate
I(A = a)

gA,n(a)
,

offset by the fitted values from Q̄
a,1
L′,n

(note that we do not need to set any of

these fitted values equal to 1, since Y0 = 0 for all observations). Obtain Q̄
a,1,∗
L′,n

.

5. Estimate Q̄
a,1
W with the empirical mean Q̄

a,1
W,n =

1

n

n

∑
i=1

Q̄
a,1,∗
L′,n

(Wi). This is also

the TMLE Q̄
a,1,∗
W,n , as well as the TMLE of ψ(Q̄a,1,∗

n ), since Q̄
a,1,∗
W,n =ψ(Q̄a,1,∗

n ).

Note that we calculate Q̄
a,1,∗
L′,n

among all observations, and the procedure is

analogous to the procedure for calculating Q̄
a,1,∗
Y,n described above. To be

explicit, we obtain the offset using the predictions from Q̄
a,1
L′,n

for all observa-

tions, set the clever covariate to the case that A = a for all observations, and

calculate the predictions from a glm object with offset (manually, if needed).
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