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A B S T R A C T   

In response to the absence of demographics in increasingly emerging big data sets, we propose a novel method 
for inferring the missing demographic information based on similarity in people’s daily multi-dimensional ac-
tivity-travel patterns as well as the characteristics of the area they move about. Instead of using isolated activity- 
travel attributes to infer social demographic features, our proposed method first calculates the similarity of 
people’s multidimensional daily activities and travels as well as characteristics of their visiting locations, be-
tween those for whom the social demographics are to be imputed (target) and those with known demographics 
(base) using a polynomial function. The weights of the function are determined using the permutation feature 
importance method, and then dynamic time warping is used to align the multidimensional activity sequences of 
the base and target sample and measure their similarities. For each person in the target database, a matched list is 
created consisting of those with the most similar activity-travel sequences in the base sample. A support vector 
machine is then trained using the base sample as input to impute the demographics of the target sample. The 
proposed model is trained using a national travel survey and validated by applying it to a GPS dataset. The results 
show that the proposed method outperforms existing methods in predicting four selected demographics: gender, 
age, education level, and work status, with an accuracy range between 91% and 94% for the national dataset and 
88% to 91% for the GPS data. This study highlights the importance of considering the multidimensional and 
sequential nature of peoples’ daily activity-travel patterns in the imputation of demographic features.   

1. Introduction 

With the development of information and communication technol-
ogy, a substantial amount of data related to human mobility, such as GPS 
data, mobile phone data, smart card data, and online geo-location data, 
have become available in the past few years. While these types of data 
have great value in understanding human mobility at both individual 
and aggregate levels (Barbosa et al., 2018), they often lack information 
related to subjects’ demographic attributes. Demographic attributes 
have proven to play an important role in human mobility (Lenormand 
et al., 2015; Alessandretti et al., 2020) and travel behavior (Mouratidis 
et al., 2019; Acheampong et al., 2020). 

Existing studies suggest that people with the same demographic at-
tributes tend to show considerable similarities in their travel behavior 
(Lenormand et al., 2015; Goulet-Langlois et al., 2016; Xianyu et al., 
2017; Shou and Di, 2018; Xu et al., 2020; Zhou et al., 2021). Such 
knowledge led to the proposal of a series of imputation methods in 

recent years, mainly based on discrete choice methods (Auld et al., 2015; 
Pawlak et al., 2015; Zhao et al., 2022) and machine learning models 
(Brdar et al., 2012; Wang et al., 2016; Wu et al., 2019). Although these 
studies included activity-travel characteristics as part of the input data 
for the model estimation, they did not include the multidimensional or 
sequential nature of activity-travel patterns. These studies generally 
found that, regardless of the data source or the method, demographics 
imputation is complicated and challenging reflected by the typical ac-
curacy of imputation being about in the range of 50%-85%. 

In view of the low accuracy of imputed demographics in the existing 
studies, this study attempts to improve the existing methods by first 
calculating the similarity in activity-travel patterns, taking into account 
their multidimensional and sequential nature. In addition, with the 
premise that built environment characteristics of the areas contribute to 
the arrangement of activity-travel patterns (Ewing and Cervero, 2001; 
Wang et al., 2011; Ding et al., 2018; Farinloye et al., 2019; Figueroa 
Martínez et al., 2019), we included land use mix and density of various 
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facility types in the area where the activity takes place in the similarity 
measurement as well. More precisely, we define a distance metric to 
measure the distance (or similarity) between two activity-travel patterns 
characterized by multiple features. These features include departure 
time, arrival time, travel time, activity duration, trip mode, trip purpose, 
population density of visited location, bus stop density of visited loca-
tion, railway station density of visited location, land use mix of visited 
location, shopping facility density of visited location, leisure facility 
density of visited location, and surrounding address density of visited 
location. The weight for each feature is then determined by permutation 
feature importance which is defined as the decrease in a model score 
with a single feature value randomly shuffled (Breiman, 2001). In order 
to account for the multi-dimensionality of activity-travel patterns, dy-
namic time warping (DTW) is used to calculate the (dis-)similarity in 
activity-travel patterns of any two persons in the base dataset (contains 
social demographic) and target dataset (lacks social demographic). The 
calculated distances are then sorted in ascending order in which the 
person in the base dataset with the smallest distance (to the person in the 
target dataset) is ranked first. For each person in the target dataset, a 
certain number of subjects from the top of the ranked list are selected 
and are placed in the match list for that person. A support vector ma-
chine (SVM) is then constructed to model each social demographic 
feature of the sample in the target database based on the matched 
subjects in the base dataset. A large-scale national mobility survey as 
well as a GPS dataset are used to train and validate the model. The high 
prediction accuracy suggests the value of the proposed approach. 

The rest of the paper is organized as follows. Section 2 reviews cur-
rent research on activity-travel similarity measurement and de-
mographics imputation. Section 3 describes the details of the proposed 
method for measuring people’s similarity and their demographic im-
putations. Section 4 describes the data used in the study. Section 5 re-
ports the results. In Section 6 we draw conclusions and discuss the 
avenue for future research. 

2. Literature review 

2.1. Activity-travel and demographic association 

Existing studies suggest that people with similar demographic attri-
butes tend to exhibit considerable similarities in their mobility behavior. 
Lenormand et al. (2015) analyzed geolocated credit card transactions 
from Spain and found that people’s mobility patterns vary according to 
their gender, age, and occupation. Goulet-Langlois et al. (2016) inves-
tigated travelers’ heterogeneity based on their multi-week activity se-
quences derived from smart card data of London’s public transport 
network. They found significant associations between travel patterns 
and demographics, such as age, occupation, household composition, 
income, and vehicle ownership. Xianyu et al. (2017) analyzed vari-
ability in activity-travel diaries imputed from multi-day GPS data. 
Considering that an activity-travel pattern is multidimensional in na-
ture, involving time, location, mode, purpose, etc., multidimensional 
sequence alignment was applied to measure the similarity of activity- 
travel sequences. They then applied panel effect regression models to 
estimate the effects of demographics and weekdays on the degree of 
similarity. They found people’s gender, age and income have strong 
influences on the degree of similarity in activity-travel sequences. Shou 
and Di (2018) proposed a framework to analyze the similarity of activity 
patterns using frequent sequential pattern mining. Prefix-Span algo-
rithm was used to extract frequent patterns while similarity was defined 
considering both travel sequence length and frequent patterns. Based on 
the pairwise similarity between two people, hierarchical clustering was 
used to divide travelers into communities. A multinomial logistic 
regression model was employed to model the extent to which the clus-
tered communities can be explained by the similarity of demographics. 
They found that similarities in demographics, such as employment sta-
tus and number of children in the household, are closely correlated with 

the similarity of activity patterns. Xu et al. (2020) proposed a novel 
semantic-enhanced urban mobility embedding model with a represen-
tation learning method for demographics imputation. They designed a 
user-location network to represent users’ physical mobility patterns (i. 
e., visited locations, visiting frequency and user’s time allocation 
pattern) and underlying semantic information (i.e., urban region’s point 
of interest (POI) distribution). By extracting the most representative 
temporal patterns and spatial distribution of the most representative 
locations, and applying Student’s t-test with Bonferroni correction, they 
found significant correlations between people’s demographics, i.e., 
gender, age, occupation, and their spatial and temporal visitation pat-
terns. Zhou et al. (2021) employed a Markov-chain-based mixture model 
to cluster daily activities and detect recurrent patterns. Subsequently, 
logistic regression models were constructed to examine the postulated 
associations between activity patterns and socio-demographic charac-
teristics. The study revealed strong correlations between socio- 
demographic attributes and the determination of daily activity 
scheduling. 

2.2. Similarity of multi-dimensional activity-travel sequences 

Joh et al. (2002) proposed a multidimensional sequence alignment 
method (MDSAM) based on Levenshtein distance to measure the simi-
larity of people’s daily activity-travel patterns. Considering both the 
multidimensional and sequential nature of activity-travel patterns, 
MDSAM proved to be a suitable similarity measure for classifying 
activity-travel patterns. Li et al. (2008) proposed a hierarchical-graph- 
based similarity measurement framework to mine the similarity be-
tween people based on their visited locations. A GPS dataset collected 
from 65 volunteers over six months was used for the measurement. A 
relation matrix, generated by these volunteers, was used as the bench-
mark for similarity measurement. The method proved to be about 10% 
higher in mean average precision compared with cosine and Pearson 
similarity measurements. Kwan et al. (2015) presented a methodology 
for measuring the similarity among individual activity patterns. Multi-
dimensional sequence alignment of daily activities was conceptualized 
as a multi-objective optimization problem which was further solved 
with an evolutionary algorithm. They demonstrated the effectiveness of 
their proposed method by comparing it with ClustalG, a commonly used 
software package for sequence alignment which is a rewrite of the well- 
known Clustal series, using 50 car drivers’ activity-travel sequences in a 
day. They concluded that their method outperforms the ClustalG for 
most of the selected cases. Joh et al. (2016) proposed a position-sensitive 
sequence-alignment method to measure the similarity between people’s 
daily activities. The method was tested using the activity diary data 
collected in the Netherlands. Faroqi et al. (2018) introduced a model 
with two parallel steps for quantifying the activity similarity among 
public transit passengers. Space-time prism was utilized to measure the 
spatiotemporal similarity of two activities in a three-dimensional 
continuous space, and probabilistic decision tree was employed to 
measure the activity type similarity. The final activity similarity value 
was defined as the product of the spatiotemporal and activity type 
similarity values. With the proposed model, they found more than 81 
percent of the passengers exhibited partial or complete activity simi-
larity with their fellow passengers. Shou and Di (2018) proposed a 
framework to analyze the similarity of activity patterns using Prefix- 
Span algorithm which can discover the frequently occurring ordered 
subsequences. They defined a quantitative measurement of pattern 
similarity by considering both travel sequence length and frequent ac-
tivity patterns. Hierarchical clustering was conducted to divide all 
travelers into three major clusters based on pairwise similarity. They 
found that there is a strong association between the similarity of de-
mographics and similarity of activity patterns. 

B. Zhang et al.                                                                                                                                                                                                                                   
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2.3. Demographics imputation 

In recent years, with the generation and application of big datasets, 
the problem of demographic imputation has attracted increasing 
attention. Early studies imputed people’s demographics based on their 
online behavior (Hu et al., 2007; Mislove et al., 2010; Kosinski et al., 
2013; Wang et al., 2019; Cui and He, 2021) and mobile phone usage 
patterns (Dong et al., 2014, 2017; Sarraute et al., 2014; Jahani et al., 
2017) because it is easier to generate big data using these data sources. 
These studies implemented various techniques to impute missing de-
mographics, such as machine learning algorithms (Hu et al., 2007; 
Kosinski et al., 2013; Dong et al., 2014, 2017; Jahani et al., 2017; Wang 
et al., 2019; Cui and He, 2021), and network analysis (Mislove et al., 
2010; Sarraute et al., 2014). For example, Hu et al. (2007) utilized users’ 
web browsing behaviors in a Bayesian framework to predict their gender 
and age. Mislove et al. (2010) used a community detection algorithm to 
infer missing education information based on other users’ profiles in the 
same online social network. Dong et al. (2014) developed a probabilistic 
framework based on mobile communication patterns to predict gender 
and age. Jahani et al. (2017) applied five different machine learning 
algorithms (logistic regression, SVM with linear kernel, SVM with radial 
basis function kernel, k-nearest neighbors, and random forest) to impute 
the missing information of gender, age and income using call detail 
records. 

Studies using people’s physical activity-travel patterns to impute 
their demographics are rather scarce. Methods used in the few existing 
studies can be classified into random utility theory/discrete choice 
model, and machine learning models. Auld et al. (2015) used GPS traces 
of 9,736 people and extracted their activity-travel patterns including the 
number of activities, tour-based transport mode, trip purpose, travel 
time and activity duration. These characteristics in an isolated form, 
combined with land use data (i.e., road density, intersection density, 
block size, employment density, population density, and housing den-
sity), were used as determinants in various discrete choice models for 
the demographic imputation. Work status, education level, age, license 
possession, and presence of children in households were among the 
predicted demographics. The accuracy of license possession was up to 
90% while for other demographics, the prediction accuracy was gener-
ally between 55%-75%. In fact, gender, household size, and number of 
vehicles were proven to be more difficult to predict. Zhao et al. (2022) 
proposed an inverse discrete choice modelling (IDCM) approach to infer 
the demographics based on people’s travel behavior (i.e., departure time 
and travel mode). They assumed that people’s choice of departure time 
and travel mode is partly influenced by demographic variables that can 
be estimated from observed travel behavior patterns using the IDCM. 
The approach aimed to maximize the probability that an individual is 
characterized by a particular demographic attribute considering the 
observed activity-travel choices. They used each feature of the travel 
patterns separately as opposed to considering travel patterns as multi-
dimensional sequence. They validated their approach over two empir-
ical applications and reported accuracies in the range of 50%-90% for 
different demographics. 

Besides the random utility theory/discrete choice model, machine 
learning models have also been applied to impute demographic infor-
mation. One advantage of using machine learning models is that they do 
not require any pre-defined functional form for the relationship between 
demographic variables and activity-travel patterns. Brdar et al. (2012) 
experimented graph-based representation of people where each person 
was considered as a node in a graph and the relationships (edges in the 
graph) between people were modeled based on the cosine similarity of 
their activity-travel features, such as travel time and distance. The de-
mographics were then inferred using three well-known algorithms: k- 
nearest neighbors, radial basis function network and random forest. 
Demographics of neighbors in the graph were then used to infer the 
missing demographics. Testing on a large-scale mobility dataset from 
Nokia mobile data challenge, they reached the accuracy of 70%-80% for 

gender, 50%-60% for marital status, and 30%-40% for work status. In 
the conclusion, they stressed the need for future improvement in feature 
extraction and the measurement of user similarity, particularly high-
lighting the importance of taking travel sequences into consideration. 
Zhong et al. (2015) extracted rich semantics of people’s check-in on Sina 
Weibo1 including time and location. These check-in semantics include 
the region of check-in, time bins of check-in, and related POI informa-
tion. They applied SVM and LambdaMART which is a ranking algorithm 
to infer the demographics based on the check-in semantics. They re-
ported accuracy of gender, age, and education level 80%-85%, while for 
sexual orientation and marital status, the accuracy dropped to about 
50%. Wu et al. (2019) put forward a feature engineering approach that 
included both spatiotemporal features and semantic features in the 
analysis. The spatiotemporal features included the number of visited 
locations, radius of gyration, travel distance per trip, etc. Semantic 
features refer to the land use which represents the function of a place 
such as residence, park, hospital, school, and shopping mall. Charac-
teristics of trajectories were not treated as multi-dimensional sequences 
but as independent features. Based on GPS records of 437 volunteers in 
7 days, they compared the performance of three algorithms: SVM, 
random forest, XGBoost. The imputation accuracy of marital status 
appeared to be 82% while the accuracies of predicting education level, 
gender, and age were 74%, 66% and 43% respectively. Zhang et al. 
(2020) proposed a novel framework with a multi-task convolutional 
neural network (CNN) for demographic prediction. They converted an 
individual’s spatial–temporal activity pattern from multi-week transit 
smart card data to a two-dimensional image. CNN was employed to learn 
features from the images for demographic imputation. The proposed 
model was validated with smart card data in UK. The accuracy of pre-
dicting age, gender, income level, and car ownership was 50%-80%. Xu 
et al. (2020) proposed a novel semantic-enhanced urban mobility 
embedding model where SVM was used as the classifier for de-
mographics imputation. They included travelers’ activity duration, POI 
distribution of visited locations, and visiting frequency of different lo-
cations as classifying indicators. Their model was validated on two real- 
world mobility traces and results showed that the proposed model 
significantly outperforms all baseline methods such as random guess and 
raw feature. The accuracy of their proposed model for predicting gender, 
education level, income level, age, and work status were 72%, 79%, 
80%, 79% and 59% respectively. 

Review of (low) accuracy level in the previous studies, calls for 
improvement of imputation methods. Previous studies have consistently 
demonstrated significant associations between demographics and 
various dimensions of activity-travels, such as travel time (Dharmowi-
joyo et al., 2017), trip mode (Cao et al., 2022), trip purpose (Su et al., 
2020), activity duration (Dharmowijoyo et al., 2015; Garikapati et al., 
2016), and so forth. The relationship between the sequential nature of 
activity-travels in daily life and demographics has also received signif-
icant attention and research from scholars (Jiang et al., 2012; Dhar-
mowijoyo et al., 2015, 2017; Goulet-Langlois et al., 2016; Shou and Di, 
2018; Hafezi et al., 2019; Su et al., 2020; Zhou et al., 2021). While 
reviewing existing studies, we realized that neither multidimensional 
nor sequential nature of activity-travel patterns have been incorporated 
in imputing the missing demographics. Research has also found that 
individuals with different demographic attributes exhibit distinct visi-
tation patterns across various built environments (Wang et al., 2011; 
Cheng et al., 2019; Wu et al., 2021; Duan et al., 2023). Despite this, in 
many previous studies, the characteristics of the visited location have 
not been considered when imputing the demographics. Considering 
such a gap, we propose a novel approach integrating all the above fea-
tures in calculating similarity between people. We first extract the 
importance of each activity-travel feature for demographics imputation, 
and then measure the similarity between people with DTW considering 

1 A Chinese microblogging website similar to Twitter. 
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multidimensional and sequential nature of their activity-travels. As a 
result, a matching list is created for each individual in a target dataset 
after which a SVM model is created for imputing each demographic 
variable. This paper differs from existing studies in the following ways. 
First, activity-travel patterns of people (as a measure of similarity) are 
taken with their multi-dimensional nature in the form of a linear poly-
nomials for which the parameters are measured with permutation 
feature importance. Second, DTW is used in this study for aligning (the 
multi-dimensional sequences) for the purpose of imputing demographics 
for the first time. Third, unlike existing studies that directly input 
activity-related attributes as features into the model, we first calculate 
the similarity of people based on their activity-travel sequences, and 
then use the demographic attributes of similar people as input of the 
imputation model. 

3. Methodology 

3.1. Measurement of activity-travel similarity 

A trip is typically made to engage in an activity. Each activity and 
associated trip can be defined by multiple features such as departure 
time, travel time, transport mode, trip purpose (type of activity for 
which the trip is made), activity location and its characteristics. If a 
person has multiple trips and activities per day, daily activity-travel 
patterns can then be viewed as a multidimensional sequence. 

If ai and bj represent the i-th and the j-th activity (and the associated 
trip) of person a and b respectively, then ai,f and bj,f are feature (attri-
bute) f of the activities. We consider 13 features to characterize each 
activity and the associated trip, i.e., departure time ai,1, arrival time ai,2, 
travel time ai,3, activity duration ai,4, population density of visited 
location ai,5, bus stop density of visited location ai,6, railway station 
density of visited location ai,7, land use mix of visited location ai,8, 
shopping facility density of visited location ai,9, leisure facility density of 
visited location ai,10, surrounding address density of visited locations 
ai,11, trip mode ai,12, and trip purpose ai,13. All density data are calcu-
lated at the PC42 level in which the visited location is located. Seven trip 
modes are distinguished, i.e., car, bike, walk, bus/tram/metro, train, 
motorbike, and others; and eight trip purposes: home, work, shopping, 
social/leisure/sports, study, pick up/drop off people, services, and 
others. Each activity and associated trip is therefore a 13-dimensional 
vector, ai =

[
ai,1, ai,2,⋯, ai,13

]
. All features of the activity-travel pat-

terns, except for trip mode and trip purpose, are normalized with the 
min–max normalization. The distance dis

(
ai, bj

)
between two activity- 

travel patterns for social demographic feature c is then defined as: 

where βc,f (f = 1,⋯, 11) is the importance of feature f in defining the 
distance (dissimilarity) between two people’s activity-travel patterns 
when it comes to the imputation of the demographic characteristic c. 
βc,mode is the feature importance of trip mode and βc,purpose is the feature 
importance of trip purpose. dmode measures whether the trip modes of 
two compared trips are the same. dmode equals 0 when the two modes are 
the same and 1 otherwise. dpurpose measures whether the trip purposes of 
the two compared trips are the same. dpurpose equals 0 in case of the same 

trip purpose and 1 otherwise. 
We impute four demographics, i.e., gender, age, education level and 

work status. βc,f are calculated using the permutation feature impor-
tance method which is defined as the decrease in the model score when a 
single feature value is randomly shuffled (Breiman, 2001). Random 
forest with 100 decision trees using Gini impurity for measuring the 
quality of split is used as the model and accuracy as the score. Accuracy 
is defined as the ratio (tp+tn)/(tp+tn+fp+fn) where tp is the number of 
true positives, tn is the number of true negatives, fp is the number of false 
positives, and fn is the number of false negatives. In developing the 
decision trees, maximum tree depth is set to 5, minimum number of 
cases in a parent node is set to be 100 while minimum number of cases in 
a child node is 50. Input in the feature importance analysis is the 
characteristics of the activity-travel sequence ai =

[
ai,1, ai,2,⋯, ai,13

]
, 

and corresponding output is the demographic feature of interest. Each 
feature is randomly shuffled 10 times resulting in the coefficient βc,f to 
be defined as: 

βc,f = sc −
1
10
∑10

k=1
sc,k,f (2)  

where sc is the accuracy of the trained random forest model for de-
mographics c, and sc,k,f is the accuracy of the trained random forest 
model for demographics c on randomly shuffled data of feature f . Trip 
mode and trip purpose are categorical variables, and all other features 
are continuous variables. One-hot encoding is used to encode categorical 
variables. Taking the trip mode (seven categories: car, bike, walk, bus/ 
tram/metro, train, motorbike, other) as an example, the permutation 
feature importance will return seven importance for the mode, the 
weighted average is then used as the weight of trip mode βc,mode. The 
same strategy applies to the weight of the trip purpose βc,purpose. 

Each activity is a vector of features, and all consecutive activities in 
the day can then be seen as a multidimensional activity sequence. Since 
the number of daily activities of various people might differ, the 
compared vectors of activity sequences may have different lengths. 
Thus, dynamic time warping (DTW) was used to align the two multi-
dimensional activity sequences with different lengths. DTW achieves 
sequence alignment based on the minimum cumulative distance by 
warping. The cumulative distance generated during the alignment is 
regarded as the measure of people’s activity-travel (dis-)similarity, that 
is, the smaller the cumulative distance, the greater the similarity. 

Given two sequences A = [ai](i = 1,⋯,m) and B =
[
bj
]
(j = 1,⋯, n)

with lengths m and n, the distance between the two vectors ai and bj is 
dis
(
ai, bj

)
. We create a cumulative distance matrix D ∈ Rm×n and 

initialize it with D1,1 = dis(a1, b1), Di,1 = dis(ai, b1) +

Di− 1,1 (i = 2,⋯,m) and D1,j = dis
(
a1, bj

)
+ D1,j− 1 (j = 2,⋯,n). Di,j is the 

element in the cumulative distance matrix D and stands for the mini-
mum cumulative distance when aligning the two sequences from (a1, b1)

to (ai, bj). For other elements Di,j (i = 2,⋯,m; j = 2,⋯, n) in the cu-
mulative distance matrix D: 

Di,j = dis
(
ai, bj

)
+ min

⎧
⎨

⎩

Di− 1,j
Di,j− 1

Di− 1,j− 1 × 2
(3)  

The coefficient of 2 for the Di− 1,j− 1 is to avoid the warping path towards 
the diagonal of the cumulative distance matrix D (Giorgino, 2009). 

dis
c

(
ai, bj

)
=

(
∑11

f=1

(
βc,f *

(
ai,f − bj,f

) )2
+
(
βc,mode*dmode

)2
+
(
βc,purpose*dpurpose

)2

)1/2

(1)   

2 PC4 is 4-digit postcode and 4076 of them existed in the Netherlands in 
2013. 

B. Zhang et al.                                                                                                                                                                                                                                   



Travel Behaviour and Society 37 (2024) 100843

5

For each person whose demographics are unknown (target), based 
on the daily activity sequence in a day and the method presented above, 
the (dis-)similarity in activity-travel patterns in terms of the associated 
features with any other people whose demographics are known (base) is 
calculated. All calculated distances are sorted in ascending order, and 
the person in the base sample corresponding to the smallest distance is 
considered as the most similar one to the person in the target sample 
whose demographics are to be imputed. In the next step, a matching list 
is created for each person in the target sample. For certain demographics 
c, the matching list is considered as [pc

0,pc
1,...,pc

s ], where pc
0 is the person in 

the target sample whose demographic feature c is unknown, and pc
1 to pc

s 
are the top s most similar people to pc

0 in the base sample in ascending 
order of distance. The weight of an activity-travel feature (βc,f described 
in Equations (1) and (2)) may be different for various demographic 
types, so the matching list for a p0 may be different when considering 
various demographics. Considering the day-to-day variability in 
activity-travel patterns (Buliung et al., 2008; Kang and Scott, 2010; Raux 
et al., 2016; Deschaintres et al., 2022), as well as the nature of the data 
available for this study (detailed in Section 4.2: activities were recorded 
for respondents for only one day), we have chosen to use day of the week 
as an additional matching item, so the comparison of activity-travel 
patterns is done for people on the same observed day. 

3.2. Imputation of demographics 

Based on the matched list, the demographics of each person in the 
target dataset are imputed by applying a support vector machine (SVM). 
SVM is a supervised learning method that can be used for classification, 
regression, and outlier detection. SVM is a robust and efficient predic-
tion method and is specifically effective in cases where the number of 
dimensions is greater than the number of samples (Pedregosa et al., 
2011). 

For the binary classification, SVM maps the samples into a high 
dimensional space, and finds a hyperplane to maximize the gap between 
the two categories. A hyperplane is a (d − 1) dimensional subspace in an 
d dimensional ambient space that divides the space into two discon-
nected parts. For other multi-class classifications, we can construct a 
total of nclasses*(nclasses − 1)/2 binary classifiers among which each one 
trains data from two classes and the final decision is made by aggre-
gating the decisions of these classifiers using a voting scheme. 

Given a set of training instance-label pairs 
(
xu, yu

)
where u = 1,⋯,l, 

and l is the number of training instance-label pairs. xu ∈ Rd is a d 
dimensional feature vector (instance) and yu ∈ {1, − 1} is a one- 
dimensional label where 1 and − 1 represent the two categories. The 
goal of SVM is to find the weight vector w ∈ Rd and bias term b ∈ R such 
that the prediction given by wTϕ(xu)+b for most samples is correct, that 
is yu(wTϕ(xu)+b) ≥ 1 for most samples. ϕ(xu) is the kernel function 
which can map xu to the high dimensional space. Basic kernels include 
linear kernel, polynomial kernel, radial basis function kernel, and sig-
moid kernel. SVM then maximizes the margin 2

‖w‖
between correctly 

classified samples (equivalent to minimize 1
2 ‖w‖

2
= 1

2 wTw) and mini-
mize the sum of penalty terms for misclassified samples as shown in 
Equation (4) (Hsu et al., 2003; Chang and Lin, 2011): 

min
w,b,ξ

(
1
2
wTw + C

∑l

u=1
ξu

)

(4)  

subject to: 

yu
(
wTϕ(xu) + b

)
⩾1 − ξu (5)  

ξu⩾0, u = 1, .., l (6)  

where ξu is the allowed distance from correct margin boundary of some 
samples when they are misclassified or within the margin boundaries, 

and C is the penalty for such imperfect classification. 
Due to the potential high dimensionality of the weight vector w in 

SVM, it is computationally demanding to solve the above primal prob-
lem directly. In order to address this issue, a dual problem is often 
considered as an alternative approach, as shown in Equation (7): 

min
α

(
1
2

αTQα − eTα
)

(7)  

subject to: 

yTα = 0 (8)  

0⩽αu⩽C, u = 1, .., l (9)  

where e = [1,⋯,1]T is the vector of all ones, and Q is an l × l positive 
semidefinite matrix. Such a matrix Qu,v ≡ yuyvK(xu, xv), where K(xu,

xv) = ϕ(xu)
Tϕ(xv) is the kernel. The dual coefficient αu is upper bounded 

by penalty C. By solving this easier dual optimization problem, w and b 
will be found and the hyperplane is determined. 

As in our study, the ultimate goal is to impute the social demographic 
c of person p0 given the matched list created for this person, the matched 

list is passed to SVM where the d dimensional vectors xuc =
[
p1,c,⋯, pd,c

]

is the social demographic c of these d (d ≤ s) matched people and used 
as input in SVM. The corresponding output, inferred social demographic 
c for p0, is yuc = p0,c. As the number of matched people d (d ≤ s) may 
affect the imputation accuracy of the SVM model, the optimum number 
of d needs to be determined when training the model. 

The training and testing of the imputation model is based on two 
datasets that contain activity-travel and demographic information: the 
Onderzoek Verplaatsingen in Nederland (OViN, (CBS, 2017)) dataset 
and the GPS dataset collected in Rotterdam, the Netherlands. Detailed 
information on these two datasets is provided in Section 4. In order to 
train the models, we use the full data from OViN dataset to obtain 
feature importance βc,f . Then 20% of the people in OViN dataset (6,675) 
is randomly selected and used as the target sample, while the remaining 
80% of OViN sample is used as the base. The dissimilarity between the 
activity-travel patterns of each individual in the target sample with all 
people in the base sample is calculated using βc,f . A matched list of 
different lengths d is generated for each demographic information c (for 
each person in the target dataset). The matched list is used to train the 
SVM model. Different lengths of the matched lists are tested and the 
optimum length for training SVM for each demographic information c is 
determined. In the model application stage, people in the GPS dataset 
are used as the target group while all people in OViN dataset are 
considered as the base group. The trained SVM model is then used to 
impute the demographics of people in GPS dataset. A framework 
describing the imputation process is shown in Fig. 1. 

Multidimensional activity-travel sequences during one day are 
considered for the calculation of similarity. If multiple days trajectories 
are available for one person, the data for each day will be matched 
separately and the SVM model is applied for each day. Eventually, the 
mode of the inferred demographics in multiple days will be regarded as 
the imputed demographics for the person. 

When training the SVM model, the radial basis function (RBF) kernel 
exp
(
− γ‖x − x’‖

2) where γ > 0 is used to map the input x to the high 
dimensional space. Such an RBF kernel requires no prior knowledge 
about the data. Then two parameters of penalty C (described in Equa-
tions (4) and (9)) and γ in the RBF kernel need to be determined. A 
proper choice of C and γ is critical to the SVM’s performance. The se-
lection of parameter C is a trade-off between the misclassification of 
training examples against the simplicity of the classification hyperplane. 
A higher C aims at classifying more training examples correctly, while a 
lower C makes the decision surface smoother. The parameter γ defines 
how much influence a single training instance has, with smaller values 
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indicating a wider influence and larger values indicating a narrower 
influence (Pedregosa et al., 2011). The optimum values of these two 
parameters can be obtained using a cross-validation grid search process. 

4. Data 

4.1. GPS data 

The GPS dataset was collected in 2013 in the Rotterdam region, 
Netherlands. Respondents were randomly recruited and invited to take 
part in the study of their activity-travel patterns for three consecutive 
months. GPS loggers recorded time, longitudinal and latitudinal co-
ordinates every three seconds. The respondents were required to upload 
the GPS traces to the server, after which an imputation algorithm was 
used to extract travel purposes and transportation modes (Feng and 
Timmermans, 2014). Respondents were then asked to check and confirm 
or correct the imputed aspects. 86,733 activities (27,698 location 
related) from 175 respondents are used for the current research. The 

demographic information of these respondents are summarized in 
Table 1. 

4.2. OViN data 

Onderzoek Verplaatsingen in Nederland (OViN) is an annual survey 
conducted from 2010 to 2017 (CBS, 2017) by the Centraal Bureau voor 
de Statistiek (CBS) aiming at providing adequate information about the 
daily mobility of the Dutch population. The respondents reported their 
activities and trips on a predetermined day of the year, as well as their 
social demographics. These trips are described by reporting the origin, 
destination, departure time, arrival time, trip mode and trip purpose. In 
the survey, a mixed approach was used. Respondents were asked by 
letter to complete the OViN questionnaire via the Internet. If people 
were unwilling or unable to respond via the Internet, they were con-
tacted by telephone if the telephone number was available. In case the 
telephone number was not available, the questionnaire was adminis-
tered at the respondent’s home. 

Fig. 1. Methodological framework of demographics imputation.  

Table 1 
Demographics of GPS dataset.  

Variable Description 

Gender Male: 86 
Female: 89 

Age <18: 0 
18–24: 10 
25–44: 53 
45–64: 88 
>=65: 24 

Education level Low: 3 
Medium: 133 
High: 35 
Unknown: 4 

Work status No job: 43 
With job: 100 
Study: 6 
Retired: 25 
Unknown:1 

Number of days recorded Min.: 7; Max.: 92  

Table 2 
Demographics of OViN dataset.  

Variable Description 

Gender Male: 16,298 
Female: 17,088 

Age <18: 8,223 
18–24: 2,446 
25–44: 7,800 
45–64: 9,832 
>=65: 5,085 

Education level Low: 2,131 
Medium: 15,602 
High: 8,188 
Unknown: 7,465 

Work status No job: 2,994 
With job: 1,4585 
Study: 7,254 
Retired: 5,469 
Unknown: 3,084 

Number of days recorded 1  
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In 2013, there were 135,762 trips reported from 42,350 respondents. 
Some incomplete or duplicated reported trips have been deleted during 
the data cleaning. Eventually, 109,936 trips of 33,386 respondents are 
used in this research. The demographic information of these respondents 
are presented in Table 2. 

4.3. Spatial data 

Although GPS data has accurate location information, the OViN data 
are at the level of postcodes. In 2013 there existed 4,076 PC4 areas in the 
Netherlands (CBS, 2013) with the boundaries shown in Fig. 2. 

Seven built environment-related variables consisting of population 
density, bus stop density, railway station density, land use mix, shopping 
facility density, leisure facility density, and surrounding address density 
are used as features fs. All density data are calculated at PC4 levels. 
Population and address data are extracted from the census data (CBS, 
2013). All other data are extracted from the OpenStreetMap (OSM). 
Land use mix is measured as the entropy of different land use types 
following Equation (10). 

Entropy = −

∑R
r=1PrlnPr

lnR
(10)  

where Pr is the percentage of area of land use type r in the postcode area, 
and R is the total number of land use types. Table 3 lists the categori-
zation of facilities and associated POIs extracted from OSM. 

5. Results 

The results of activity-travel feature importance βc,f are shown in 
Table 4. A larger feature importance for the demographics means there 
is a stronger correlation between the feature and demographics. The 
results suggest that departure time, arrival time, travel time and activity 
duration are the top four important features for all four demographics. 
The railway station density of visited PC4 area is the least important 
feature regardless of the type of imputed demographics. This may be 
attributed to the fact that the number of railway stations is extremely 
limited, with a very low density across all PC4 areas, rendering it unable 

Fig. 2. Boundaries of PC4 areas in the Netherlands.  

Table 3 
Facility and associated POI.  

Facility POI 

Shopping 
facility 

Supermarket, bakery, kiosk, mall, department_store, general, 
convenience, clothes, florist, chemist, bookshop, butcher, 
shoe_shop, beverages, optician, jeweller, gift_shop, sports_shop, 
stationery, outdoor_shop, mobile_phone_shop, toy_shop, 
newsagent, greengrocer, beauty_shop, vedio_shop, car_dealership, 
bicycle_shop, doityouself, furniture_shop, computer_shop, 
garden_centre, hairdresser, car_repair, car_rental, car_wash, 
car_sharing, bicycle_rental, travel_agent, laundry, 
vending_machine, vending_cigarette, vending_parking 

Leisure facility Theater, nightclub, cinema, park, playground, dog_park, 
sports_centre, pitch, swimming_pool, tennis_court, golf_course, 
stadium, ice_rink  
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to exhibit the correlation with demographics. Trip mode is an unim-
portant feature for gender (ranked 11), while relatively important for 
other demographics (ranked 5, 7, 5). Trip purpose exhibits a relatively 
weak correlation with all four demographics (ranked 11–12). 

20% of the individuals (6,675) from the OViN dataset are set as p0 
(target) and the similarity between each person in the target and the 
remaining 80% of the dataset (base) is calculated using the estimated 
weight of the features applying DTW. The number of people on each 
weekday in the 80% and 20% sub datasets is shown in Fig. 3. In the base 
database (80% of OViN data), the lowest number of people’s reported 
activity-travel patterns belongs to Sunday including 2,435 individuals. 
Therefore, for each person in the target dataset, the maximum number of 
persons matched in the base dataset is set to 2,400 to make matched lists 
for all days of the week having the same maximum length. By sorting the 
distance in ascending order, a matched list [p0, p1,⋯, ps] is obtained. This 
process generates a matched list for each individual and each de-
mographic feature in the target dataset. 

To find the optimum value of the length for the base dataset to be 
matched as well as the two hyper-parameters C and γ in the RBF kernel, a 
cross-validated grid search is applied. C is chosen from {10− 1,100,101}, 
γ is chosen from {10− 4,10− 3,10− 2,10− 1,100}, and d (number of matched 
subjects) is chosen from {50,100,150,⋯,2400}. In total, there are 3 ×

5 × 48 = 720 parameter combinations for each demographic attribute. 
For each parameter combination, 5-fold cross-validation (Pedregosa 
et al., 2011; Jahani et al., 2017) is implemented as the final metric. The 
accuracy of each parameter combination for four demographic attri-
butes is shown in Fig. 4. 

When C is 100 or 101, for all four demographics, increasing the 
number of people in the matched list increases the accuracy, which is 

especially evident when γ is 10− 4, 10− 3 and 10− 2. When C is 10− 1, the 
accuracy is lower than 0.6. When C is set as 100, the highest accuracy 
can be obtained, exceeding 0.9. In certain subplots, we are unable to 
observe the accuracy data corresponding to each γ. This is because they 
are overshadowed by the accuracy results associated with other larger γ. 
For instance, in subplots (a) and (c), the results for γ = 10− 1 (green dots) 
are almost entirely overshadowed by the results for γ = 100 (blue dots). 
Table 5 lists the best parameter combinations for achieving the highest 
accuracy of each demographic variable. If different parameter combi-
nations lead to the same accuracy, a smaller d (length of the matched 
list) is considered for further analysis. 

After obtaining the optimum parameters, the SVM model is used to 
impute the demographics of the respondents in GPS dataset (Stage 2). 
Now, the individuals from the GPS dataset are set as p0 (target) and 
OViN dataset is the base dataset. Four metrics, i.e., accuracy, precision, 
recall and F1 score, are used to measure the performance of the SVM 
imputation model. Demographics imputation results are shown in 
Table 6. 

Precision is the ratio tp/(tp + fp). Recall is the ratio tp/(tp + fn). F1 
score is a harmonic mean of the precision and recall. The relative 
contribution of precision and recall to the F1 score are equal. 

F1 score = 2*
precision*recall

precision + recall
(11)  

For multilabel targets, the precisions, recalls and F1 scores are calcu-
lated for each class and their average value weighted by the number of 
true instances for each label is regarded as the final score. 

It can be found the accuracy exceeds 0.88 for all four imputed de-
mographics, precision exceeds 0.86, recall exceeds 0.88, and F1 score 

Table 4 
Weights and ranks of each activity-travel feature for different demographics.  

Activity-travel features Gender Age Education level Work status Rank 
(Gender) 

Rank 
(Age) 

Rank 
(Education level) 

Rank 
(Work status) 

Departure time 0.069 0.165 0.148 0.214 4 1 3 1 
Arrival time 0.080 0.155 0.161 0.201 3 4 2 2 
Travel time 0.146 0.164 0.202 0.150 1 2 1 4 
Activity duration 0.094 0.163 0.140 0.185 2 3 4 3 
Population densitya 0.029 0.036 0.052 0.056 8 10 10 9 
Bus stop densitya 0.031 0.051 0.086 0.069 6 7 6 6 
Railway station densitya 0.005 0.006 0.009 0.013 13 13 13 13 
Land use mixa 0.040 0.039 0.069 0.059 5 9 8 8 
Shopping facility densitya 0.028 0.041 0.059 0.052 9 8 9 10 
Leisure facility densitya 0.017 0.030 0.050 0.045 10 12 11 12 
Surrounding address densitya 0.030 0.056 0.098 0.064 7 6 5 7 
Trip mode 0.008 0.077 0.076 0.098 11 5 7 5 
Trip purpose 0.007 0.031 0.032 0.050 12 11 12 11  

a In the visited PC4 area. 

Fig. 3. Number of people each day in target and base samples.  
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Fig. 4. Accuracy of demographics prediction vs. model parameters.  

Table 5 
Optimum parameter values.  

Demographics d C γ Accuracy 

Gender 200 100 10− 1  0.941 
Age 500 100 10− 2  0.906 
Education level 700 100 10− 2  0.921 
Work status 500 100 10− 2  0.911  

Table 6 
Demographics imputation results of GPS dataset.  

Demographics Accuracy Precision Recall F1 score 

Gender  0.914  0.915  0.914  0.914 
Age  0.886  0.906  0.886  0.878 
Education level  0.897  0.864  0.897  0.873 
Work status  0.880  0.866  0.880  0.860  
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which balances precision and recall exceeds 0.86. Comparing these 
values with the ones obtained in the previous research (discussed in 
Section 2.3), we can conclude that the proposed method outperforms the 
existing ones in terms of the prediction accuracy. 

Further examination of the demographics for which imputation 
failed reveals an even distribution of misclassified respondents by 
gender, with 7 males and 8 females. In the meanwhile, the gender dis-
tribution in the overall sample is approximately equal. Among re-
spondents with incorrect age imputation, errors occur within the second, 
third, and fifth age groups, where respondents are erroneously imputed 
into the fourth age group. This fourth age group, 45–64, comprises the 
largest subgroup in terms of population. Regarding education level 
related imputation errors, inaccuracies are observed across low, high, 
and unknown levels, with respondents have been mistakenly inferred to 
belong to the medium level, which is the most prevalent category among 
all education levels. In the case of work status imputation errors, inac-
curacies are observed when other categories of work status are imputed 
as the second status, “with job”, which is also the most common status 
among all work categories. It is evident that a disproportionate repre-
sentation of a certain category in demographics can bias the model to-
wards this category during training. 

6. Conclusions 

While understanding citizens’ travel behavior is imperative for urban 
and transport policy makers, having knowledge about the social de-
mographics of people is equally important allowing them to customize 
policies in order to reduce social exclusion and transport poverty. With 
the development of information and communication technology, the 
acquisition of travel behavior is becoming increasingly more conve-
nient, while these datasets usually lack demographic information. To 
address this lack of demographics, we propose a two-step approach to 
infer the missing information. (Dis)similarity of activity-travel patterns 
is calculated with weighted features and applying DTW after which a 
matched list is created for each person in the target dataset. The matched 
lists are then used to train the SVM imputation model. The results show 
that our proposed method performs well in imputing the four selected 
demographics. 

This two-step demographics imputation approach holds promise for 
diverse domains where inferring missing demographic information from 
activity-travel patterns or leveraging inferred demographics for further 
research is necessary. The domains can include, but not limited to, urban 
and transportation planning, social science and market research. In 
urban and transportation planning, this method can provide invaluable 
insights into the mobility patterns of different demographic groups 
within a city or region. By identifying social demographic characteris-
tics, planners can develop more effective and equitable transportation 
policies and infrastructure designs. In social science research, the 
application of this approach can contribute to a deeper understanding of 
human behavior and social dynamics. By analyzing activity-travel pat-
terns and inferred demographic attributes, researchers can explore 
topics such as social inequality, urban segregation, and community 
development, thereby informing policy interventions and societal ini-
tiatives. Furthermore, in market research, this approach offers the op-
portunity to do market segment analysis and find out needs and 
preferences of customers at different life stages. 

It is important to realize that GPS tracking solely can provide limited 
information regarding the activity-travel patterns as it basically can only 
register time stamp and longitude-latitude coordination. It is important 
therefore to develop or have access to reliable imputation algorithms by 
which travel mode and trip purpose can be imputed from the GPS 
tracking. It is only then, when our proposed method can be applied to 
impute missing social demographic attributes. Availability of detailed 
built environment characteristics is equally important in any new area 
which the proposed methodology deems to be tested. In terms of tem-
poral coverage, the collected data should span various times and days to 

capture a comprehensive range of activity-travel patterns, considering 
both weekday and weekend behaviors as well as variations across 
different times of the day. 

Concurrently, data privacy remains a crucial concern. It is of utmost 
importance that the users whose data is collected are informed about 
any future attempt to synthesize their social demographic. It can be 
communicated with them either via privacy policy information sheet or 
any other types of consent forms. In our research, it was not an issue 
because our GPS data already contained detailed social demographics of 
the users. 

Although the developed method contributes to the existing body of 
knowledge, the work still leaves space for further research. Firstly, the 
determination of feature importance as an integrated part of imputation 
is worth exploration although it could be a challenge. Secondly, devising 
a method to find the weights for each person in the matched list can also 
be added as part of the imputation process. Since the matched list has the 
order in terms of the extent of similarity, higher weights can be assigned 
to those in a higher order of the list. Thirdly, there might exist interac-
tion between activity-travels across multiple days (Fu and Lam, 2014, 
2018; Astroza et al., 2018; Nayak and Pandit, 2023). Our dataset did not 
allow to include such interaction because OViN data which was used for 
training only records the activity-travel pattern for one single day. In 
addition, our GPS data, although contains observations of multiple days 
for each person, the days are not necessarily consecutive. Expansion of 
our proposed framework to include such interaction across days is 
straightforward once data becomes available. Lastly, applying the same 
methodology to the data from other areas with substantially different 
contexts and demographic profiles will allow the examination of the 
generalibility of the proposed method beyond the current application. 
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