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MISSING AT RANDOM AND
IGNORABILITY FOR INFERENCES

ABOUT SUBSETS OF PARAMETERS
WITH MISSING DATA

Roderick J. Little and Sahar Zanganeh

Abstract

For likelihood-based inferences from data with missing values, Rubin (1976)
showed that the missing data mechanism can be ignored when (a) the missing
data are missing at random (MAR), in the sense that missingness does not de-
pend on the missing values after conditioning on the observed data, and (b) the
parameters of the data model and the missing-data mechanism are distinct; that
is, there are no a priori ties, via parameter space restrictions or prior distributions,
between the parameters of the data model and the parameters of the model for
the mechanism. Rubin described (a) and (b) as the “weakest simple and general
conditions under which it is always appropriate to ignore the process that causes
missing data”. However, these conditions are not always necessary. Also, they re-
late to the complete set of parameters in the model, but we argue that it would be
useful to have definitions of MAR and ignorability for a subset of parameters of
substantive interest. We propose such definitions, and apply them to a variety of
examples where the missing data mechanism is missing not at random, but MAR
or ignorable for the parameter subset.
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ABSTRACT 

For likelihood-based inferences from data with missing values, Rubin (1976) showed 

that the missing data mechanism can be ignored when (a) the missing data are missing at 

random (MAR), in the sense that missingness does not depend on the missing values after 

conditioning on the observed data, and (b) the parameters of the data model and the 

missing-data mechanism are distinct; that is, there are no a priori ties, via parameter space 

restrictions or prior distributions, between the parameters of the data model and the 

parameters of the model for the mechanism. Rubin described (a) and (b) as the "weakest 

simple and general conditions under which it is always appropriate to ignore the process 

that causes missing data". However, these conditions are not always necessary. Also, they  

relate to the complete set of parameters in the model, but we argue that it would be useful 

to have definitions of MAR and ignorability for a subset of parameters of substantive 

interest. We propose such definitions, and apply them to a variety of examples where the 

missing data mechanism is missing not at random, but MAR or ignorable for the 

parameter subset. 
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1. Introduction 

We consider likelihood-based inference for parameters from data with missing values. 

Let D denote the set of complete data if there were no missing values, and R a set of 

binary variables indicating whether individual components of D are observed (1) or 

missing (0). We initially model the density of the joint distribution of D and R using the 

"selection model" factorization (Little and Rubin, 2002):  

 , |( , | , ) ( | ) ( | , )
D R D R D

f D R f D f R Dθ φ θ φ= , (1) 

where θ  is the parameter of the data model, and φ  is the parameter of the model for the 

missing data mechanism. Let obs mis( , )D D D= , where obsD  is the observed part of D and 

misD  is the missing part of D. Then the full likelihood based on the observed data and the 

assumed model is 

 obs | mis( , | , ) const. ( | ) ( | , )
D R D

L D R f D f R D dDθ φ θ φ= × ∫ , (2) 

treated as a function of the parameters ( , )θ φ . The likelihood of θ  ignoring the missing-

data mechanism is  

 obs mis( | ) const. ( | )
D

L D f D dDθ θ= × ∫ , (3) 

which does not involve the model for R. In a landmark paper, Rubin (1976) noted that  

when the missing data are missing at random (MAR), defined as  

  | obs mis | obs mis( | , , ) ( | , ) for all ,
R D R D

f R D D f R D Dφ φ φ= , (4) 
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the full likelihood Eq. (2) factorizes as 

 obs obs |( , | , ) const. ( | ) ( | , )
D R D

L D M f D f R Dθ φ θ φ= × × . (5) 

Hence, likelihood inference based on (3) is valid if the data are MAR, and fully efficient 

if θ  and φ  are distinct, that is, their joint parameter space is the product of the parameter 

space of  θ  and φ . For Bayesian inference, distinctness involves the additional 

assumption that θ  and φ  are a priori independent (Little and Rubin, 2002). 

These definitions are illustrated in the following simple example. 

Example 1. Monotone Bivariate Data  

Let { }1 2( , ), 1,..., }i iD y y i n= = denote an independent sample from two variables 1 2,Y Y  

with probability density 1 2( , | )
i i

f y y θ  indexed by unknown parameters θ . Suppose 

{ } { }obs 1 2 1( , ), 1,...,  and , 1,...,i i iD y y i m y i m n= = = + , so that 1Y  is fully observed and 2Y  

has missing values (Figure 1A). Let { }, 1,...,
i

R r i n= =  where 1
i

r =  if 2i
y  is observed and 

0
i

r =  if 2i
y  is missing. Missingness of 2Y  is assumed to depend only on 1Y , that is: 

 1 2 1Pr( 1| , , ) ( , )
i i i i

r y y g yφ φ= = , (6) 

where g is a known function with support between 0 and 1. This mechanism meets 

definition (4) of MAR; likelihood inferences for θ  are then ignorable if the parametersθ  

and φ  are distinct, and Bayesian inferences are ignorable if in addition θ  and φ  are a 

priori independent. 

Since Rubin (1976), MAR has come to be defined by Eq. (4), and ignorability of 

the missing-data mechanism by Eq. (4) together with the distinctness condition (see 

example Little and Rubin, 2002). However, Rubin described them as the "weakest simple 
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and general conditions under which it is always appropriate to ignore the process that 

causes missing data", and it is important to note that these conditions are not necessary 

for ignoring the mechanism in all situations. Also, MAR and ignorability are defined in 

terms of the complete set of parameters θ  in the model for D, but it would be useful to 

have a definition of MAR that applies to subsets of parameters of substantive interest. 

Here are some motivating examples. 

 

Example 2. Ignorability for parameters of distributions of fully-observed variables. 

In Example 1, suppose we assume that missingness of 2Y  depends on both 1Y  and 2Y : 

 1 2 1 2Pr( 1| , , ) ( , , )
i i i i i

r y y g y yφ φ= = , (7) 

where g is a known function with support between 0 and 1. This mechanism is missing 

not at random (MNAR), but is plausibly MAR for inference about the parameters of the 

marginal distribution of 1Y , since 1Y   is fully observed and missingness of 2Y  seems 

irrelevant for this inference. More specifically, suppose we write 1 2( , )θ θ θ=  and 

factorize the joint distribution of 1Y  and 2Y  as 

  1 2 1 1 1 2 2 1 2( , | ) ( | ) ( | , )
i i i i i

f y y f y f y yθ θ θ= × , (8) 

where 1θ  and 2θ denote the parameters for the marginal distribution of 1Y  and conditional 

distribution of 2Y  given 1Y  respectively. Then it seems that the mechanism should be 

MAR for 1θ , and ignorable for 1θ  if 1 2 and ( , )θ θ φ  are distinct sets of parameters. This is 

the case for the formal definitions we propose below. This example is somewhat trivial, 
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but we extend it below to a more complex situation where 1Y  and 2Y  are blocks of 

(possibly incomplete) variables.   

 

 Example 3. Outcome-dependent dropout in clinical trials, where valid treatment 

effects are estimated from respondents. In randomized clinical trials where the outcomes 

are missing for participants who drop out, a similar response rate in the treatment arms is 

commonly thought to increase the possibility that biases from nonrandom nonresponse will 

cancel out. The resulting estimate of the parameter that compares the two treatments would 

therefore be valid, even though the estimate of the mean for each treatment group is biased. 

This motivates the question: is it possible to define mechanisms where the outcome is 

MNAR overall, but MAR for the parameters of interest, measuring treatment effects? The 

answer is yes, and we show below how our expanded definition of MAR and ignorability 

can be applied in this setting. We also show that in a discrete data setting, a more general 

condition in the response mechanism than “equal response rates” is sufficient for treatment 

effects to be estimable from the respondent sample. 

 

Example 4. Regression with the missing-data mechanism tailored to predictors. In 

regression with missing predictors, data are MNAR when missingness depends on the 

underlying missing values of a predictor. For example, Little and Zhang (2011) analyze 

data from the 2003-2004 National Health and Nutrition Examination Survey (CDC 2004) 

to study the effect of socioeconomic status on blood pressure. Regressions of two 

outcome measures, systolic blood pressure (SBP) and diastolic blood pressure (DBP) are 

estimated on two socioeconomic status measures,  household income (HHINC) and years 
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of education (EDUC, in years) and three other covariates: AGE (in years), GENDER, and 

body mass index (BMI, kg/m
2
). The covariates, AGE and GENDER are fully observed, 

but the predictor variables HHINC, EDUC and BMI have missing values. The MAR 

assumption (4) is considered implausible, since the probability of responding to HHINC 

is thought likely to depend on the underlying (sometimes missing) value of HHINC – 

individuals with high or low values of income are often considered less likely to respond 

to income than others. On the other hand, it may be reasonable to assume that education 

and BMI are “MAR” -- but the current definition does not allow some the mechanism to 

be MAR for coefficients of some variables and MNAR for others. Hence it would be 

useful to have distinct definitions of MAR and ignorability tailored to missingness of W = 

HHINC and X = (EDUC, BMI). Our proposed definitions accomplish this. 

 

Example 5. A sample with auxiliary data where the mechanism is MNAR but 

ignorable. In Example 1, suppose 1Y  as well as 2Y  is missing when 0
i

r = ,  so the 

respondent data consist only of the complete cases, { }resp 1 2( , ), 1,...,i iD y y i m= = . The 

joint distribution of 1Y  and 2Y  is factored as in Eq. (8), and missingness depends on 1Y  

but not 2Y , as given by Eq. (6). Then the mechanism is MNAR, since missingness 

depends on values of 1Y  which are missing for the incomplete cases. Suppose, however, 

we also have auxiliary information on the marginal distribution of 1Y  from an external 

source, with observations not linked to the respondent sample (Figure 1B). The observed 

data are then obs resp aux( , )D D D= , where  { }*

aux 1 , 1,...,
j

D y j n= = . The latter set includes 
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the respondent values of 1Y , but we do not know which they are. Data of this form arise 

in sample surveys, where the external data are available for the whole sample or for the 

entire population from a census. The mechanism is technically MNAR, since the 

mechanism depends on 1Y , but we do not know the values of 1Y  for individual 

nonrespondents.  However, intuitively the marginal distribution of 1Y  can be estimated 

from auxD , and the conditional distribution of 2Y  given 1Y  can be estimated from respD , 

without modeling the missing-data mechanism. In our definitions below this mechanism 

is MAR for θ , and ignorable for θ  if the parameters  θ  and φ  are distinct. This is an 

example where Rubin's conditions are not necessary.  

In Section 2, we propose definitions of MAR and ignorability for likelihood 

inferences about subsets of model parameters, and relate them to Rubin’s (1976) 

definitions for all the parameters. In Section 3 we then show how our definitions address 

the issues in our motivating examples. Conclusions are summarized in Section 4. 

 

2. Definitions of MAR and Ignorability for Parameter Subsets 

 We propose a definition of missing at random for likelihood inferences for a 

subset 1θ  of the parameters θ  in a model.  

Definition 1: Write 1 2( , )θ θ θ= , where 1θ  and 2θ  are subsets of parameters, and let φ   

denote the parameters for a model for the missing-data mechanism R. The missing data 

mechanism is MAR for inference about 1θ , denoted 1MAR( )θ ,  if the likelihood (1) can 

be factorized as 
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   1 2 obs 1 1 obs rest 2 obs 1 2( , , | , ) const. ( | , ) ( , | , ) for all , ,L D R L D R L D Rθ θ φ θ θ φ θ θ φ= × × . (9) 

 

Definition 2. The missing data mechanism is ignorable for likelihood inference about 1θ , 

denoted 1LIGN( )θ , if (a) the missing data mechanism is 1MAR( )θ , and  (b) 

1 2 and ( , )θ θ φ  are distinct sets of parameters, in the sense defined by Rubin (1976).  

Under 1MAR( )θ , likelihood inference about 1θ , or functions of 1θ , can be based 

on 1 1 obs( | , )L D Rθ , which does not involve a model for the mechanism R. Under 

1LIGN( )θ , inference based on 1 1 obs( | , )L D Rθ  is fully efficient. If the mechanism is 

1MAR( )θ  but 1 2 and ( , )θ θ φ  are not distinct sets of parameters, likelihood inference 

based on 1 1 obs( | , )L D Rθ  is valid but not fully efficient, and might still be entertained to 

avoid the additional assumptions involved in modeling the mechanism. For Bayesian 

inference, the mechanism can be ignored if, in addition, 1θ  and 2( , )θ φ  are a-priori 

independent. The posterior distribution of 1θ  is then 

 1 1 1 1 obs( | , ) const ( ) ( | , )p D R L D Rθ π θ θ= × × , (10) 

where 1 1( )π θ  is the prior distribution of 1θ . Note that (10) does not involve the 

parameters of the model for the mechanism.  

When 1θ θ= , these definitions deviate slightly from Rubin’s (1976) original 

sufficient conditions. The distinctness condition reduces to distinctness between θ  and φ , 

as defined by Rubin. The 1MAR( )θ  condition, Eq. (9), with 1θ θ=  is less restrictive than 

http://biostats.bepress.com/umichbiostat/paper98



 

 

9

Rubin’s MAR definition, Eq. (4), but it does imply Eq. (5), which is the key condition for 

validity of inferences about θ  based on the ignorable likelihood Eq. (3).  

 

3. The Proposed Definitions Applied to the Examples 

We now apply these definitions to our motivating examples. 

Example 2 (ctd). Ignorability for parameters of distributions of fully-observed 

variables. For the data pattern in Figure 1A, the factorization of the joint distribution of 

1Y  and 2Y  in Eq. (8), and the mechanism defined by Eq. (7), the likelihood factors as 

( )

1 2 obs 1 1 obs rest 2 obs 1 2

1 1 obs 1 1 1

1

rest 2 obs 2 2 1 2 1 2 2 2 1 2 1 2 2

1 1

( , , | , ) const. ( | , ) ( , | , ) for all , , ,  where

( | , ) ( , )

( , | , ) ( | , ) ( , , ) ( | , ) (1 ( , , )

n

i

i

m n

i i i i i i i i i

i i m

L D R L D R L D R

L D R f y

L D R f y y g y y f y y g y y dy

θ θ φ θ θ φ θ θ φ

θ θ

θ φ θ φ θ φ

=

= = +

= × ×

=

= × −

∏

∏ ∫ .∏

 

Hence the mechanism is MNAR, but it is 1MAR( )θ , and 1LIGN( )θ  if 1 2 and ( , )θ θ φ  are 

distinct sets of parameters. Without distinctness, there is potential information about 1θ  in 

rest 2 obs( , | , )L D Rθ φ , but recovering the information requires correctly specifying a model 

for the mechanism, with parameters that can be identified from the data. The simplicity of 

inference based on 1 1 obs( | , )L D Rθ  often outweighs the potential loss of information. 

 More generally, suppose 1Y  and 2Y  are sets of (possibly incomplete) variables, and let 

(1) (2),
i i

r r  denote response indicators for 1Y  and 2Y  in observation i. We adopt a block-

conditional factorization (Zhou, Kalbfleisch and Little, 2010) of the joint density: 

(1) (2)

1 2 1 2 1 2

(1) (1) (2) (1)

1 1 1 1 1 2 2 1 2 1 2 2

( , , , | , , , )

( | ) Pr( | , ) ( | , , ) Pr( | , , , ),

i i i i

i i i i i i i i i i

f y y r r

f y r y f y y r r r y y

θ θ φ φ

θ φ θ φ

=
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and assume the missing-data mechanism:  

 (1)

1 1 1 1,obs, 1 1,mis,Pr( | ; ) ( , ) for all ,i i i ir y g y yφ φ=  (11) 

 (2) (1) (1)

1 2 2 2 1 2 2Pr( | , , ; ) ( , , , ),
i i i i i i i

r r y y g r y yφ φ=  (12)  

where .obs, .mis,,
j i j i

y y   denote the observed and missing components of 
j

Y   for unit i. This 

mechanism is MNAR because of Eq. (12), but the resulting likelihood is 

1 2 obs 1 1 obs rest 2 1 2 obs 1 2 1 2( , , | , ) const. ( | , ) ( , , | , ) for all , , , , whereL D R L D R L D Rθ θ φ θ θ φ φ θ θ φ φ= × ×

1 1 obs 1 1,obs, 1

1

( | , ) ( , )
n

i

i

L D R f yθ θ
=

= ∏ ,

(1) (1) (1)

rest 2 1 2 obs 1 1,obs, 1 2 2 1 2 2 1 2 2 1,mis, 2,mis,

1

( , , | , ) ( | , ) ( | , , ) ( , , , )
n

i i i i i i i i i i

i

L D R g r y f y y r g r y y dy dyθ φ φ φ θ φ
=

=∏ ∫
 

Hence the mechanism is MNAR, but it is 1MAR( )θ , and 1LIGN( )θ  if 1 2 1 2 and ( , , )θ θ φ φ  

are distinct sets of parameters.  

 

Example 3 (ctd). Outcome-dependent dropout in clinical trials, where valid 

treatment effects are estimated from respondents. In a randomized clinical trial, let X 

be a variable indicating T + 1 treatment groups (X = 0,1,…,T), and Y a categorical 

outcome variable with K + 1 distinct values y = 0,1,… K. We assume missing data are 

confined to Y, and let R = 1 if Y is observed and R = 0 if Y is missing. We model the joint 

distribution of ( , | )Y R X   using the pattern-mixture factorization (Little, 2003), with a 

logistic model for outcomes in the respondent and nonrespondent strata: 

Pr( , | , , ) Pr( | , ) Pr( | , , )Y y R j X x R j X x Y y R r X xθ φ φ θ= = = = = = = = =  

http://biostats.bepress.com/umichbiostat/paper98
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( )
0 1

(0) (1) ( ) ( ) ( )

0 1

( ) ( )

0 1

( , ,..., ),Pr( 1| , ) 1 Pr( 0 | , )

=( , ), ( , ), 1,..., ,   0,1

Pr( | , , )
log

Pr( 0 | , , )

T x

r r r

y y

r r

y y

R X x R X x

y K r

Y y R r X x
x

Y R r X x

φ φ φ φ φ φ φ

θ θ θ θ θ θ

θ
θ θ

θ

= = = = − = = =

= = =

= = =
= +

= = =

 

 The likelihood for the observed data is then (1)

1 obs 2( , ) ( | , ) ( | ),  whereL L Y R L Rθ φ θ φ= ×  

1

(1)

1 obs

1

( )

2

0

( | , ) Pr( | 1, , ),

( | ) (1 ) ,t t

r

i i i

i

T
n rr

t t

t

L Y R Y y r x

L R

θ θ

φ φ φ

=

−

=

= = =

= −

∏

∏
  

and 
t

n  and 
t

r are respectively the sample size and number of respondents in treatment 

group X = t. There is no information in the data for (0)θ . By the above definitions, the 

mechanism is MAR( (1)θ ) and LIGN( (1)θ ) if  (1)θ  and φ   are distinct. However, since 

(1)θ  concerns the distribution of Y for respondents, it is generally not a valid measure of 

the quantities of interest, namely the effects of treatments in the whole sample. Suppose, 

however, we assume that the log odds of response is an additive function of treatment 

group and outcome, that is  

 0 1 2logit Pr( 1| , )
x y

R X x Y y β β β= = = = + + , (13) 

where  0 1 2{ , , }
x y

β β β  are functions of ,θ φ  . Equivalently, we assume the loglinear model 

[XY, RX, RY] for the contingency table defined by R, X, and Y, with the three-way 

associations set to zero. This assumption implies that  

 ( )

0 1

Pr( | , , )
log , 1,...,

Pr( 0 | , , )

r

y y

Y y R r X x
x y K

Y R r X x

θ
θ θ

θ

= = =
= + =

= = =
, 

That is, (1)

1 1y yθ θ= , so the mechanism is MAR for 1y
θ , which measures the effects of 

treatments on the log odds ratio for Y = y relative to Y = 0 in the whole sample. Thus, 

Hosted by The Berkeley Electronic Press



 

 

12

inferences based on the respondents are valid for these parameters. A special case of Eq. 

(13) is the assumption that missingness depends on Y but not X ( 1 0
x

β = ), which might be 

reasonable in a study where participants are blinded to treatment, and drop out is related 

to the value of the outcome but not the treatment received. 

 

Example 4 (ctd). Regression with missing-data mechanisms tailored to predictors. 

Following Little and Zhang (2011), let (Z, W, X and Y) be (possibly vector-valued) 

variables, where interest concerns the regression of Y on predictors Z, W and X. The data 

are displayed in Figure 2; variables Z are fully observed, W and X have missing values, 

and Y may or may not have missing values. Let ( , ),
i i iw x y

R R   respectively denote the 

missing data pattern for 
i

w   and ( , )
i i

x y   for observation i. The observations are grouped 

into two patterns: Pattern 1 (P1) consists of cases where W is fully observed (
iw w

R u= ), 

where 
w

u   denotes a vector of ones with the same dimension as W. Pattern 2 (P2) consists 

of cases with W missing or incomplete (
iw w

R u= ). In both P1 and P2, the pattern of 

missing data for X and Y is arbitrary. Interest concerns the parameters  .y zwx
θ ⋅ of the 

distribution of Y given (Z, W, X), say .( | , , , )
i i i i y zwx

f y z w x θ .  

The division of covariates into W and X is determined by the following 

assumptions about the missing data mechanism:  

(a) Covariate missingness of W: the probability that W is fully observed depends only on 

the covariates and not Y, that is: 

( ) ( )Pr | , , , , ) Pr | , , , )  for all 
i iw w i i i i w w w i i i w i

R u z w x y R u z w x yφ φ= = =  (14) 
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(b) Subsample MAR of X, Y: Missingness of X and Y is MAR within the subsample (P1) 

of cases for which W is fully observed, that is: 

 
( , )

( , ) obs, obs, mis, mis,

Pr( | , , , , ; )

Pr( | , , , , ; )   for all ,

i i i

i i i

x y i i i i w w xy w

x y i i i i w w xy w i i

R z w x y R u

R z w x y R u x y

φ

φ

⋅

⋅

= =

=
 (15) 

 The mechanism defined by Eqs. (14) and (15) is missing not at random, but we 

show that valid inferences for  
y zwx

θ ⋅ can be based on likelihood for the data in P1, 

discarding the data in P2, without modeling the missing data mechanism. Little and 

Zhang (2011) model the distribution, conditional on the fully observed covariates Z, as  

[ , , , , , | ] [ | , ][ , , | , , ][ , | , , , , , ]
w x y w w w x y w xy

W X Y R R R Z R Z W X Y R Z R R W X Y R Zφ θ φ=  

Here the joint distribution of W, X and Y given Z is modeled separately in each pattern 

defined by 
w

R . Letθ  denote the collective set of parameters of these distributions, and 

write 1 2( , )θ θ θ= , where 1θ  are the parameters of the distribution of W, X and Y given Z 

in P1 ( )
iw w

R u= and 2θ  are the parameters of the distributions of  W, X and Y given Z in 

P2 ( )
iw w

R u≠ . The likelihood of the observed data factors as follows: 

 ( )1 1 2 rest 2( , , | data) ( , ) ( , , ),w xy w xy w xyL L L Lθ φ φ θ φ φ θ φ φ= × ×  (16) 

( ) ( )
1

1

2

1 1 obs, obs, 1

2 obs, obs,

rest 2 , obs, obs, 2

, , | , ,

( , ) Pr( | , ) Pr( , | , , , , , )

( , , ) Pr( | ) ( , , , , ,| , , , )

i

i i i i

i i i i

i i i i w w

i P

w xy w w i w x y w w i i i i xy

i P

w xy w i w x y i i i w i xy

i P

L f w x y z R u

L R u z R R R u z w x y

L R z f R R w x y R z

θ θ

φ φ φ φ

θ φ φ φ θ φ

∈

∈

∈

= =

= = =

=

∏

∏

∏

 

Here the likelihood from the data in P1 factors into ( )1 1L θ   and 2 ( , )
w xy

L φ φ  as a result of 

the “subsample MAR” condition Eq. (15). Hence, the missing data mechanism is 
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1MAR( )θ  and 1LIGN( )θ   if 1θ   and  2( , , )
w xy

θ ψ ψ  are distinct. By Eq. (14), the joint 

distribution of W, X and Y given Z in P1 ( )
iw w

R u=   factors as  

1 . 1 1[ , , | , , ] [ | , , , ( )][ , | , , ]
w w y zwx w w

W X Y R u Z Y X W Z W X R u Zθ θ θ θ⋅= = = ,  

Where 1( )
y zwx y zwx

θ θ θ⋅ ⋅=   are the parameters of the regression of interest, namely the 

regression of Y on X, W and Z for the whole sample. Hence the mechanism is 

MAR( )
y zwx

θ ⋅  and LIGN( )
y zwx

θ ⋅   if 1θ   and  2( , , )
w xy

θ φ φ are distinct. That is, we have 

established that a likelihood-based analysis based on the data in P1 is valid for 
y zwx

θ ⋅  

without specifying the missing data mechanism. Little and Zhang (2011) call this 

approach subsample ignorable likelihood (SSIL) analysis. The omitted factor in the 

likelihood rest 2( , , )
w xy

L θ φ φ  from P2 potentially has information about 
y zwx

θ ⋅ , but extracting 

it requires a model for the missing-data mechanism. 

 In the specific example cited above with outcome measures systolic blood 

pressure (SBP) and diastolic blood pressure (DBP), predictors with missing values 

household income (HHINC), years of education (EDUC, in years) and body mass index 

(BMI), and fully observed covariates age and  gender, subsample MAR was considered 

plausible for EDUC and BMI, and covariate missingness was considered plausible for 

HHINC. Thus the above theory was applied with Y = (SBP, DBP), W = HHINC, X = 

(EDUC, BMI) and Z = (AGE, GENDER). The resulting SSIL method consists of 

applying a ignorable likelihood method to the subsample of cases with HHINC observed. 
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Example 5 (ctd). A sample with auxiliary data where the mechanism is MNAR but 

ignorable. Here the observed data are shown in Figure 1B, with obs resp aux( , )D D D= , 

where  { }resp 1 2( , ), 1,...,i iD y y i r= =  and { }*

aux 1 , 1,...,
j

D y j n= = . The probability that 

1 2( , )
i i

y y   is observed in the sample is given by Eq. (6). The data is missing not at random 

according to Rubin’s definition since missingness depends on 1iy , which is missing for 

the incomplete cases. The joint distribution of 1 2( , )
i i

y y  is factored as in Eq. (8). Let S  

denote the set of permutations of the external data ( )(1,..., ) (1),..., ( )n nπ π π=  that map 

respD  into the set of respondent values of 1Y , in the sense that *

1, ( ) 1 , 1,...,i iy y i rπ = = . Let 

�S  be the size of this set. The observed likelihood is then 

( )

( )

1 2 obs 1 1 1 2 2 1 2 1

1

*

1 1, ( ) 1, ( )

1

*

1 1 1 2 2 1 2 1 1

1 1 1 1

( , , | , ) const. ( | ) ( | , ) (1 ( , )

( ) ( , ) /

. ( | ) ( | , ) (1 ( , ) ( ,c n t ),o s

r

i i i i

i

n

i i

i r

n r r n

j i i i j

j i i j r

L D M f y f y y g y

f y g y

f y f y y g y g y

π π
π

θ θ φ θ θ φ

φ

θ θ φ φ

=

∈ = +

= = = = +

= × −

×

= × × − ×

∏

∑∏

∏ ∏ ∏ ∏

S

�S �  

since each of the �S  permutations has the same probability, and the aggregate of the 

product from r+1 to n is the same for each permutation. Hence the mechanism is 

MAR( )θ  and LIGN( )θ  if θ  and φ  are distinct.  

 

4. CONCLUSION 

We have proposed definitions of MAR and ignorability for likelihood inference 

about subsets of model parameters. This is useful since in many problems the primary 

focus is on a particular parameter or subset of parameters, and weaker conditions suffice 
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for a subset. Our definitions differ slightly from Rubin (1976) when applied to all the 

model parameters, in that cases like Example 5 can be formulated where the mechanism 

is MAR and ignorable for all the parameters, but the mechanism is not MAR according to 

Rubin’s definition. This example of auxiliary information is important in survey settings, 

where auxiliary data is available from external data sources; in the future we plan to 

extend this example to situations with item nonresponse, and more extensive auxiliary 

information.  
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Figure 1. Patterns of Missing Data in the Examples  

Figure 1A                                               Figure 1B 
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Figure 2. General Missing Data Structure for Example 4 
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Key: √ denotes observed, ? denotes observed or missing 
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