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Targeted Data Adaptive Estimation of the
Causal Dose Response Curve

Iván Dı́az and Mark J. van der Laan

Abstract

Estimation of the causal dose-response curve is an old problem in statistics. In
a non parametric model, if the treatment is continuous, the dose-response curve
is not a pathwise differentiable parameter, and no root-n-consistent estimator is
available. However, the risk of a candidate algorithm for estimation of the dose
response curve is a pathwise differentiable parameter, whose consistent and ef-
ficient estimation is possible. In this work, we review the cross validated aug-
mented inverse probability of treatment weighted estimator (CV A-IPTW) of the
risk, and present a cross validated targeted minimum loss based estimator (CV-
TMLE) counterpart. These estimators are proven consistent an efficient under
certain consistency and regularity conditions on the initial estimators of the out-
come and treatment mechanism. We also present a methodology that uses these
estimated risks to select among a library of candidate algorithms. These selectors
are proven optimal in the sense that they are asymptotically equivalent to the ora-
cle selector under certain consistency conditions on the estimators of the treatment
and outcome mechanisms. Because the CV-TMLE is a substitution estimator, it
is more robust than the CV-AIPTW against empirical violations of the positivity
assumption. This and other small sample size differences between the CV-TMLE
and the CV-A-IPTW are explored in a simulation study.



1 Introduction
Estimating the causal effect of an exposure A on an outcome Y when the relation between them is
confounded by a set of covariates is a very common problem in causal inference, of high relevance for
applications in epidemiology, medical, and social research, among other fields.

Causal effects in this setting are defined as parameters of the distribution of the counterfactual out-
come [see, for example Rubin, 1974, Pearl, 2000] Ya that would have been observed if, possibly contrary
to the fact, the subject would have received level a of the exposure. Computation of causal parame-
ters involves expectations with respect to the distribution of the stochastic process that one would have
observed if, for each subject, all the counterfactual outcomes were observed. Since the observed data
contains only one of the counterfactuals, namely Y = YA, additional untestable assumptions are needed
in order to identify parameters of the counterfactual process distribution as parameters of the observed
data distribution. These assumptions are usually described in terms of the so-called no unmeasured con-
founders assumption, a particular case of the coarsening at random assumption, which roughly states that
the censoring or exposure processes cannot depend on unobserved covariates that are also related to the
outcome.

In spite of the large number of causal inference problems that are inherently defined in terms of ex-
posures of continuous nature, most of the attention in the field of causal inference has focused in the
definition and estimation of parameters for binary treatments, in which it is natural to compare the coun-
terfactual outcome under two possible exposure levels. Estimation of causal parameters for binary expo-
sures has been widely studied [e.g., Rubin, 1978, Rosenbaum and Rubin, 1983, Robins, 1986, van der
Laan and Robins, 2003, Rubin, 2006, R. Mansson, 2007, Rose and van der Laan, 2011]. The main reason
why consistent and efficient estimators of the causal dose response curve (CDRC) for continuous treat-
ments in the nonparametric model have not yet been developed is that it is not a pathwise differentiable
parameter [see Bickel et al., 1997, chapter 3, 5], and therefore cannot be estimated at a consistency rate
of n−1/2. Examples of pathwise differentiable parameters that measure the causal effect of a continu-
ous exposure on an outcome of interest are given by the parameters defined in Dı́az and van der Laan
[2012a,b]. These approaches make use of stochastic interventions [Korb et al., 2004, Didelez et al., 2006,
Dawid and Didelez, 2010] as a means to define a counterfactual outcome in a post-intervened world,
which compared to the expectation of the actual outcome defines the causal effect of an intervention.

The most widely known method for estimation of the CDRC for continuous exposures is the so
called marginal structural model (MSM) framework, which was first proposed by Robins et al. [2000],
and whose validity relies on the correct specification of a parametric model for the CDRC. Neugebauer
and van der Laan [2007] generalize this setting to avoid dependence on the correct specification of a
parametric model by defining the parameter of interest as the projection of the true CDRC on the space
of functions defined by the parameterization implied by the MSM, providing robustness against mis-
specification of the parametric MSM. Their work also includes identification results for this projection
parameter, as well as IPTW, G-Comp and augmented IPTW double robust estimators. Marginal struc-
tural models represent only a provisional solution to the problem, because in many instances the interest
relies on estimating the actual CDRC and not its projection on some parametric space of functions.

An alternative and widely used method for estimating non pathwise differentiable parameters is the
selection of the best performing candidate among a list of algorithm estimators, where performance is
defined in terms of the cross-validated risk. Formal analytical asymptotic arguments backing the use of
cross-validation as an estimator selection tool were first given by van der Laan and Dudoit [2003], van der
Vaart [2003], van der Laan et al. [2004], among others. The main result of these works is a finite sample
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size inequality that bounds the risk of the cross-validation selector by the risk of the oracle selector (the
selector based on the true distribution), which is in turn used to establish, under certain conditions, the
asymptotic equivalence between the cross-validation and the oracle selectors. These results are later
explored in specific contexts by Dudoit and van der Laan [2005], van der Laan et al. [2006], among
others. Of special interest is the work of van der Vaart et al. [2006], in which the cross-validation oracle
inequalities are extended to candidate libraries with a continuous index set and unbounded loss functions.
Van der Laan et al. [2006] demonstrates that this oracle property for cross-validation combined with the
right library of estimators results in a minimal adaptive optimal estimator. Van der Laan et al. [2007]
use these optimality results in order to define the super learner prediction algorithm, implemented in the
SuperLearner R library. Van der Laan and Petersen [2012] describe a general methodology in which
the CV-A-IPTW estimators of the risk are replaced by CV-TMLE estimators.

For the particular case of the CDRC, van der Laan and Dudoit [2003, pag. 52] proof that under
convergence of the initial estimators, the candidate selector based on the cross validated A-IPTW risk is
asymptotically equivalent to the oracle selector. Since A-IPTW estimators are not substitution estimators,
they can fall outside the parameter space, and are very sensitive to violations of the positivity assumption.
Violations to the positivity assumption are very likely to occur when working with continuous exposures,
since the exposure mechanism is now a conditional density.

The main contribution of this paper is to present a cross validated targeted minimum loss based
estimator of the risk of a CDRC candidate estimator that is endowed with an oracle inequality analogue
to that of the A-IPTW. The CV-TMLE we propose is more robust to empirical violations of the positivity
assumption, and it is a substitution estimator, which guarantees estimates that are within the bounds of the
parameter space. These two estimators have also been proven to be asymptotically linear with influence
function equal to the efficient influence function, under certain conditions, which implies that they are
consistent and efficient estimators of the risk.

The paper is organized as follows. In Section 2 we formally describe the inference problem, define
the loss and risk functions, and present the efficient influence function of the parameter of interest. In
order to first introduce relevant concepts, in Section 2.1 we present four estimators (G-comp, IPTW,
A-IPTW, TMLE) of the risk when the candidate estimators of the CDRC are assumed fixed functions.
In Section 2.2 we generalize these estimators to the case when the candidates are estimated from the
sample, and present the corresponding cross-validated versions of the A-IPTW and TMLE. In Section
3 we present a theorem describing the conditions under which the CV-TML estimator of the risk is an
asymptotically linear estimator, the conditions under which it is consistent and efficient, as well as a
discussion on the estimation of its variance. Section 4 presents the main contribution of this paper; an
oracle inequality for the selector based on the CV-TML estimator of the risk, and the conditions under
which it is asymptotically equivalent to the oracle selector. Finally, in Section 5 we use Monte Carlo
simulation to compare the performance of CV-TMLE and CV-A-IPTW selectors and estimators of the
risk in finite sample sizes.

2 Definition and estimation of the risk of an estimator of the CDRC
Consider an experiment in which an exposure variable A, a continuous or binary outcome Y and a set
of covariates W are measured for n randomly sampled subjects. Let O = (W,A, Y ) represent a random
variable with distribution P0, and O1, . . . , On represent n i.i.d. observations of O. The range of W , A
and Y will be denoted byW ,A and Y , respectively. Assume that the following non-parametric structural
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equation model (NPSEM) holds:

W = fW (UW ); A = fA(W,UA); Y = fY (A,W,UY ), (1)

where UW , UA and UY are exogenous random variables such that UA⊥⊥UY holds, and either UW⊥⊥UY or
UW⊥⊥UA holds (randomization assumption). The true distribution P0 of O can be factorized as

P0(O) = P0(Y |A,W )P0(A|W )P0(W ),

where we denote g0(A|W ) ≡ P0(A|W ), Q̄1,0(A,W ) ≡ E0(Y |A,W ), Q̄2,0(A,W ) ≡ E0(Y 2|A,W ),
QW,0(W ) ≡ P0(W ), and Pf =

∫
fdP for a given function f . For a given value a ∈ A, the counterfactual

of Y is defined as the value Ya = fY (a,W,UY ), the counterfactual process of Y is given by (Ya : a ∈ A),
and the full data is denoted by X = {W, (Ya : a ∈ A)} ∼ F0.

In this paper we will discuss the estimation of the causal dose-response curve within strata of the
covariates Z ⊂ W , given by the expression

Ψf (F0)(a, Z) = EF0(Ya|Z) = arg min
ψ
Rf (ψ, F0), (2)

whereRf (ψ, F0) = F0L
f (ψ), Lf (ψ)(X) =

∫
A{Ya−ψ(a, Z)}2h(a, Z)dµ(a), the superscript f stands for

full data, and h is a non-negative function such that
∫
hdµ = 1. The second equality in (2) is true because

EF0(Ya|Z) is the projection of Ya into the space of functions of Z, and F0L
f (ψ) is the integral over A of

the squared norm of Ya − ψ(a, Z). The randomization assumption implies that Ya⊥⊥A|W , which allows
identification of the full data parameter (2) in terms of a function of the observed data distribution as the
mapping

Ψ(P )(a, Z) = EP{Q̄(a,W )|Z}, (3)

where we denote ψ0 = Ψ(P0). If A is continuous, Ψ(P ) is not a pathwise differentiable parameter in
the non parametric model, and

√
n−consistent estimation is not possible [Bickel et al., 1997, chapter 3,

5]. However, the risk of a given candidate value ψk, is a pathwise differentiable parameter for which it is
possible to find regular asymptotically linear estimators.

Following the ideas of Wang et al. [2006], consider a list of candidates values ψk : k = 1, . . . , Kn

for ψf0 . Throughout the paper we will make a distinction between candidate values (denoted ψk) and
candidate estimators (denoted Ψ̂k), where the difference is that the former are given functions, whereas
the latter are functions of (a, Z) estimated from the sample.

If the full dataX were observed, a general selection procedure would involve computingRf (ψk, F0) :
k = 1, . . . , Kn, and estimating ψf0 based on ψk0 , where k0 = arg mink R

f (ψk, F0). Of course this
optimization procedure cannot be carried out as described previously, because: 1) only a coarsened
version of X denoted by O is observed, 2) the distribution P0 of O is unknown, and 3) in most cases we
have a list of candidate estimators Ψ̂k, as opposed to a list of candidate values ψk, which arises the issue
of over-fitting.

In order to overcome these obstacles one needs to:

1. Find a mapping R(ψ, ·) : M → R that identifies Rf , i.e., a mapping such that R(ψ, P0) equals
Rf (ψ, F0), under certain assumptions. It is common that R(ψ, P ) = PLΓ(P )(·, ψ) for a loss func-
tion LΓ(P ) that is now indexed by a nuisance parameter Γ :M→ Fγ .
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2. If P0 is known, the value R(ψ, P0) suffices to find a selector among the Kn candidate values.
However, since P0 is unknown, we now need to estimate R(ψ, P0). At this point it is worth to note
that even though Ψ(P ) is not a pathwise differentiable parameter, the mapping R(ψ, ·) is pathwise
differentiable, and can therefore be

√
n-consistently estimated under regularity conditions.

3. If candidate values are not available it is necessary to estimate the risk of candidate estimators Ψ̂k

that are trained in the sample, which makes necessary the use of cross-validated versions of these
estimators.

In the remaining of this section we will discuss the identification of Rf . The risk of a candidate ψ is
given by Rf (ψ, F ) = FLf (ψ), and is identified as a function of the observed data distribution by

R(ψ, P ) = EPLQ̄(P )(O,ψ), (4)

where

LQ̄(O,ψ) =

∫
A
EP{(Y − ψ(a, Z))2|A = a,W}h(a, Z)dµ(a).

=

∫
A
{Q̄2(a,W )− 2Q̄1(a,W )ψ(a, Z) + [ψ(a, Z)]2}h(a, Z)dµ(a), (5)

given the randomization assumption and the positivity assumption

sup
a∈A

h(a, Z)

g0(a,W )
<∞, QW,0 − a.e. (6)

Note that the loss function that defines the risk is not unique, since the loss functions

Lg(O,ψ) =
(Y − ψ(A,Z))2

g(A,W )
h(A,Z), (7)

LQ̄,g(O,ψ) =
h(A,Z)

g(A,W )

[
{Y 2 − Q̄2(A,W )} − 2ψ(A,Z){Y − Q̄1(A,W )}

]
+∫

A
{Q̄2(a,W )− 2ψ(a, Z)Q̄1(a,W ) + ψ2(a, Z)}h(a, Z)dµ(a) (8)

lead to the same definition of the risk. Loss functions (5) and (7) come from more intuitive definitions
of the risk, whereas the loss function (8) comes from efficient estimation theory, and is closely related to
the efficient influence function of R(ψ, P ). This fact is exploited by Wang et al. [2006] in order to define
estimators of the risk as a cross-validated average of estimators of these loss functions. We will work
towards the definition of a CV-TMLE analogue of those estimators, and present similar results to those
obtained by van der Laan and Dudoit [2003] in terms of an oracle inequality, as well as the conditions
under which the estimator of the risk is asymptotically linear.

The loss function (8), referred to as the double robust loss function, defines the efficient influence
function of parameter R(ψ) and plays a very important role in double robust and efficient estimation of
R(ψ), as explained in the next section.

Parameter (4) is a pathwise differentiable parameter, for which consistent asymptotically linear esti-
mators can be found. Note that R(ψ, P ), as defined in (4), depends on P only through Q = (Q̄, QW ),
where Q̄ = (Q̄1, Q̄2). In an abuse of notation, we will use R(ψ, P ) and R(ψ,Q) indistinctly, and the
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true value R(ψ,Q0) will be denoted by R0(ψ). We will also use the notations R(ψ,Q) and R(ψ)(Q)
indistinctly. In Section 2.1 we will focus on the estimation of the risk when the candidates are given
values. Given candidate values constitute a situation that is not very common in research problems, but
provides an easy way to introduce the estimators that are going to be developed in Section 2.2, in which
we will generalize these estimators to the case of a candidate estimated from the sample. Cross validation
will be used as a tool to avoid over-fitting, and will lead to an oracle inequality presented in Section 4.

The efficient influence function of the risk R(ψ,Q) is given by the expression

D(Q, g, ψ)(O) = LQ̄,g(O,ψ)−R(ψ,Q), (9)

with LQ̄,g defined in (8).

2.1 Estimators of the risk of a candidate parameter value
In this section we exploit the definitions of the risk in terms of loss functions given in the previous
section in order to define various estimators of the risk. As we will see, the definitions of the risk through
the different loss functions previously described lead to the definition of G-comp, IPTW and A-IPTW
estimators. We will also use the efficient influence function of R(ψ, P ) in order to define a targeted
maximum likelihood estimator of R0(ψ). The A-IPTW loss function is closely related to the efficient
influence curve of R(ψ, P ), which results in the consistency and efficiency of the A-IPTW and TMLE.
Analytical properties of these estimators has been discussed elsewhere [van der Laan and Robins, 2003,
van der Laan and Rubin, 2006, Rose and van der Laan, 2011].

We will assume that ψ is a given function of a and Z in the sense that it is not estimated from the
sample. Such scenario is attainable, for example, in situations in which a pilot study is conducted in
order to postulate candidate estimators with the objective of assessing their performance with data from
a posterior study.

Let ˆ̄Q = ( ˆ̄Q1,
ˆ̄Q2) and ĝ be initial estimators of Q̄0 = (Q̄1,0, Q̄2,0) and g0, respectively. These estima-

tors will be denoted ˆ̄Q or ˆ̄Q(P), depending on whether it is necessary to emphazise their dependence on
the empirical distribution

P =
1

n

n∑
i=1

δOi

with δx denoting a Dirac delta with a point mass at x.

2.1.1 G-comp, IPTW and A-IPTW Estimators

The equivalent definitions of the risk through G-comp, IPTW and A-IPTW loss functions allow the
straightforward definition of three estimators of the risk of a candidate value, given by:

R̂G(ψ) =
1

n

n∑
i=1

L ˆ̄Q
(Oi, ψ), R̂I(ψ) =

1

n

n∑
i=1

Lĝ(Oi, ψ), and R̂DR(ψ) =
1

n

n∑
i=1

L ˆ̄Q,ĝ
(Oi, ψ),

which can be seen as solutions in R of the corresponding estimating equations PDI(·|ĝ, ψ, R) = 0,
PDG(·| ˆ̄Q,ψ,R) = 0, and PDDR(·| ˆ̄Q, ĝ, ψ,R) = 0, where
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DI(O|g, ψ,R) =Lg(O,ψ)−R
DG(O|Q̄, ψ,R) =LQ̄(O,ψ)−R

DDR(O|Q̄, g, ψ,R) =LQ̄.g(O,ψ)−R.

According to theorem 5.11 of van der Vaart [2002], if Lĝ falls in a Glivenko-Cantelli class {Lg : g ∈
G} with probability tending to one, and P0(Lĝ − Lg0)

2 → 0, then the IPTW estimator is consistent
for R0(ψ). Under an appropriate Donsker condition and consistency of ĝ, the IPTW estimator is also
asymptotically linear with influence function DI(O|g0, ψ,R0), as explained in theorem 6.18 of van der
Vaart [2002] and the theorems of Chapter 2 of van der Laan and Robins [2003]. As a consequence, it is
an inefficient estimator of the risk R0(ψ), and its variance can be estimated with the empirical variance
of DI(O|ĝ, ψ, R0). Equivalent statements are also true for the G-comp estimator.

Following similar arguments, the A-IPTW estimator is double robust in the sense that it is consistent
if either of ˆ̄Q or ĝ is consistent. It is also efficient if both ˆ̄Q and ĝ are consistent. Even though the
A-IPTW represents an important improvement with respect to the G-comp or the IPTW, it suffers from
some of the drawbacks inherited from the estimating equation methodology. One of the most important
problems of such methodology is the possibility of solutions out of the parameter space, or very unstable
estimators if the positivity assumption is practically violated. For this reason we prefer estimators that are
substitution estimators, i.e., estimators that are the result of applying the map R(ψ) to a certain estimated
distribution P ∗ ∈M. As we will see, the TMLE is such a substitution estimator.

2.1.2 Targeted minimum loss based estimator

For a review on TMLE and its properties we refer the interested reader to Rose and van der Laan [2011].
TML estimation requires the specification of three components: a valid loss function for the relevant part
of the likelihood, a parametric submodel whose generalized score equals the efficient influence function,
and initial estimators of the relevant parts of the likelihood.

We will assume that Y is binary, or that P (Y ∈ [a, b]) = 1 for known values a and b, in which
case we can work with Y ∗ = (Y − a)/(b − a) and interpret the results accordingly. Consider the loss
functions −Lj{(Q̄j)(O)} = Y j log Q̄j(A,W ) + {1 − Y j} log{1 − Q̄j(A,W )}; j = 1, 2, for Q̄j , and
the parametric fluctuations given by logit Q̄j(εj) = logit Q̄j + εjHj(ψ, g), where H1(ψ, g)(A,W ) =
−2{ψ(A,Z)h(a, Z)}/ĝ(A,W ) and H2(ψ, g)(A,W ) = h(a, Z)/ĝ(A,W ). Note that these loss functions
are not related to those in (5), (7) or (8). The generalized scores are equal to

d

dε1
L1{Q̄1(ε1), O}|ε1=0 = −2

ψ(A,Z)h(A,Z)

ĝ(A,W )
{Y − Q̄1(A,W )}

d

dε2
L2{Q̄2(ε2), O}|ε2=0 =

h(A,Z)

ĝ(A,W )
{Y 2 − Q̄2(A,W )},

corresponding with the first two parts of the efficient influence curve presented in (9). The marginal
distribution of W is estimated with the empirical distribution QW (P) of W1, . . . ,Wn. It can be shown
that QW (P) solves LQ̄(ψ) − EQW

LQ̄(ψ) (the third part of the efficient influence curve equation) at any
Q̄.

For initial estimators ˆ̄Q and ĝ, the first step TMLE of Q̄0 is given by ˆ̄Q∗j = ˆ̄Qj(ε̂j), where

ε̂j = arg min
ε

PLj{ ˆ̄Qj(ε)}. (10)
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The TMLE ofR0(ψ) is now defined as the plug-in estimator R̂(Ψ̂k) ≡ R(ψ)(Q̂∗), where Q̂∗ = ( ˆ̄Q∗1,
ˆ̄Q∗2, QW (P)).

Under certain conditions explained in detail in [Rose and van der Laan, 2011, Appendix A.18], if
Q̄0 and g0 are consistently estimated, this TMLE of R0(ψ) is asymptotically linear with influence curve
D(O|Q̄0, g0, R0(ψ)), which means that it is consistent and efficient. If ĝ is consistent but ˆ̄Q∗ is not, the
TMLE is consistent but inefficient, and its variance can be conservatively estimated by

σ̂2 =
1

n2

n∑
i=1

{DDR(Oi|Q̄∗, ĝ, R̂(Ψ̂k))}2.

If one uses data-adaptive estimators in ˆ̄Q and ĝ, it is often appropriate to replace the estimate of the
variance by a cross-validated estimator.

The conditions needed for asymptotic linearity of the TMLE [see Rose and van der Laan, 2011,
Appendix 18] include a Donsker condition on the class of functions that contains the estimated efficient
influence function D. Such Donsker conditions impose certain restrictions on the type of algorithms that
can be used for estimation of Q̄0 and g0, forcing the user to find a trade off between obtaining the best
possible prediction algorithms and not using algorithms that are too data-adaptive, because data-adaptive
algorithms might lead to estimators that do not belong to a Donsker class (e.g., random forest).

The cross-validated TMLE, whose theoretical properties are discussed in Zheng and van der Laan
[2011], provides a template for the joint use of cross-validation and TMLE methodology that avoids
Donsker conditions and therefore allows the use of very data-adaptive techniques in order to find consis-
tent estimators of Q̄0 and g0. An additional advantage of CV-TMLE in this setting is that it allows us to
have a valid estimator of the risk of an estimated CDRC, solving the issue of over-fitting through the use
of cross-validation.

2.2 Estimators of the risk of a candidate estimator
The previous section provided an algorithm to estimate the risk of a candidate value for the causal dose-
response curve, when the value is given and not estimated from the sample. That scenario is very rare in
real data applications, and it is very common that the CDRC candidates have to be estimated from the
sample as well. In such situations, if the algorithms Ψ̂k are trained in the whole sample, the use of the
estimators of the risk presented in the previous sections would lead to the selection of the candidates that
overfit the data.

Van der Laan and Dudoit [2003], van der Vaart [2003], van der Laan et al. [2004], among others, show
that cross-validation is a powerful tool for estimating the risk of a candidate estimator of a non pathwise
differentiable parameter, and show that such cross-validation based selection endows the selector with an
oracle inequality that translates into asymptotic optimality.

Assume now that Ψ̂k is a mapping that maps elements in a non parametric statistical model into a
space of functions of a and Z (Ψ̂k : M → H). An estimate of ψ0 = Ψ(P0) is now seen as such map
evaluated in the empirical distribution of O1, . . . , On, i.e., Ψ̂k(P).

Consider the following cross-validation scheme. Let a random variable S taking values in {0, 1}n
index a random sample split into a validation sample VS = {i ∈ {1, . . . , n} : Si = 1} and a training
sample TS = {VS}c, where S has a uniform distribution over a given set {s1, . . . , sm} such that

∑
j si,j >

1 for all i = 1, . . . ,m. Here we note that the union of the validation samples equals the total sample:
∪SVS = {1, . . . , n}, and the validations samples are disjoint: Vs1 ∩ Vs2 = ∅ for s1 6= s2. Denote
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PTS and PVS the empirical distributions of a training and validation sample, respectively. For a function
g{TS, VS}, we denote ESg(T, V ) = 1

m

∑m
j=1 g{Tsj , Vsj}.

Since Ψ̂k(P) is now a value that depends on the sample, it does not make sense to talk about a param-
eter R{Ψ̂k(P), Q0}, because it does not agree with the formal definition of a parameter. Nonetheless, in
an abuse of language we will talk about “estimation” of the “parameter” ESR{Ψ̂k(PT ), Q0}, which we
call the conditional (on the sample) risk of Ψ̂k.

2.3 Cross validated augmented IPTW
This estimator is also discussed by Wang et al. [2006], and is given by the solution of the cross-validated
version of the A-IPTW estimating equation, given by

ESPVL ˆ̄Q(PT ),ĝ(PT )
{Ψ̂k(PT )}.

This estimator is asymptotically linear under the conditions presented in van der Laan and Dudoit [2003].
An oracle inequality for the selector based on the A-IPTW risk estimator is also proved in the original
paper.

2.4 Cross validated TMLE
The cross-validated targeted maximum likelihood estimator was introduced by Zheng and van der Laan
[2010] as an alternative to the TMLE that avoids the Donsker conditions on the efficient influence curve
(discussed in Section 2.1.2). Donsker conditions on the class of functions generated by the estimated
efficient function D represent an important limitation to the kind of algorithms that can be used in the
initial estimators of Q̄0 and g0: very data adaptive techniques will give as a result functions that do not
belong to a Donsker class. As discussed in Section 2.1.2, the consistency and efficiency of the risk
estimator depend on the consistency of the initial estimator of Q̄0 and g0. It is common practice in
statistics to assume parametric models in order to estimate these quantities. Such parametric models
are often chosen ad-hoc, based on arbitrary preferences of the researcher, and do not encode legitimate
knowledge about the data generating process. Thus, we avoid such parametric assumptions, and prefer
to use data-adaptive techniques to find the algorithm that best approximates Q̄0 and g0.

As we will see in the next section, the use of cross-validation also equips the CV-TML selector with
an oracle inequality, meaning that such selector performs asymptotically as well as a selector in which
the risk is computed based on the true (unknown) probability distribution.

Zheng and van der Laan [2010] present two types of CV-TML estimators: one for a general parameter,
and a specific CV-TMLE for the case in which Q can be partitioned as (Q1, Q2) and the mapping that
defines the parameter is linear in Q1. As discussed in Section 2, the risk R(ψ, P ) of a given candidate
depends on P only through Q(P ) = {Q̄(P ), QW (P )}, and it can be easily verified that R(ψ,Q) is linear
in QW .

The construction of a CV-TML estimator requires the specification of the same three components dis-
cussed in Section 2.1.2: a logistic loss function, a logistic parametric fluctuation, and an initial estimator
of Q. For each S, let

logit Q̄j,k(PTS)(εj,k) = logit Q̄j(PTS) + εj,kHj{Ψ̂k(PTS), ĝ(PTS)},
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where Hj; j = 1, 2 were defined in Section 2.1.2. This is the same fluctuation considered before, but
defined only based on the training sample. With this modification, the CV-TMLE is defined analogous to
the regular TMLE. Let

ε̂j,k = arg min
ε
ESPVLj{ ˆ̄Qj,k(PT )(ε)}; j = 1, 2, (11)

and for each S define the updates

ˆ̄Q∗j,k(PTS) = ˆ̄Qj(PTS)(ε̂j,k); j = 1, 2, (12)

which results in the plug-in estimator of the oracle risk

R̂(Ψ̂k) = ESR{Ψ̂k(PT ), ˆ̄Q∗k(PT ), QW (PV )} =
1

m

∑
s∈{s1,...,sm}

1

ns

∑
i∈Vs

∫
A

{
ˆ̄Q∗2,k(PTs)(a,Wi)

− 2 ˆ̄Q∗1,k(PTs)(a,Wi)Ψ̂k(PTs)(a, Zi) + [Ψ̂k(PTs)(a, Zi)]2
}
h(a, Zi)dµ(a), (13)

where ˆ̄Q∗k(PTS) = { ˆ̄Q∗1,k(PTS), ˆ̄Q∗2,k(PTS)}, QW (PVS) denotes the empirical distribution of W in the
validation sample S, and ns denotes the size of VS .

For a definition of the CV-TMLE for general parameters the interested reader is referred to the original
article. In the next sections we will present the asymptotic linearity of the previous estimator, as well as
an oracle inequality for the selector based on it.

3 Asymptotic linearity of CV-TML estimator of the risk
In this section we present a theorem establishing asymptotic linearity of the CV-TML estimator of the
risk. This theorem is analogue to the theorems presented in Zheng and van der Laan [2010], and its proof
uses the same ideas presented in that paper.

An analogue version of this theorem for the CV-A-IPTW is presented in van der Laan and Dudoit
[2003]. The CV-TMLE is expected to perform better than the CV-A-IPTW in finite sample sizes, in
which practical positivity violations are often present and lead to CV-A-IPTW estimators that are either
very unstable or provide solutions out of the range of the parameter of interest.

Theorem 1 (Asymptotic linearity). Define

R̂0(Ψ̂k) = ESR{Ψ̂k(PT ), Q0} and R̂(Ψ̂k) = ESR{Ψ̂k(PT ), ˆ̄Q∗k(PT ), QW (PV )}

withR{ψ,Q} = QWLQ̄(ψ). For a function f(PTS) ofO, define the norm ||f(PT )||0,S =
√
ESP0f(PT )2h.

Assume:

1. There exist constants δ1 > 0 and δ2 > 0 such that P (ĝ(P)(A|W ) > δ1) = 1 and g0(a|w) >
δ2 ∀ a, w.

2. ||ĝ(PT )− g0||20,S = oP (1/
√
n)
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3. ˆ̄Q∗1(PTS), ˆ̄Q∗2(PTS) and Ψ̂k(PTS) converge to some fixed ˆ̄Q∗1(P0), ˆ̄Q∗2(P0) and Ψ̂k(P0) in the sense
that

||ĝ(PT )− g0||0,S|| ˆ̄Q∗2(PT )− ˆ̄Q∗2(P0)||0,S = oP (1/
√
n)

||ĝ(PT )− g0||0,S|| ˆ̄Q∗1(PT )− ˆ̄Q∗1(P0)||0,S = oP (1/
√
n)

||ĝ(PT )− g0||0,S||Ψ̂k(PT )− Ψ̂k(P0)||0,S = oP (1/
√
n)

4. For some mean zero function ICg(P0) ∈ L2
0(P0), we have

P0
g0 − ĝ(P)

g2
0

h

[
{Q̄2,0 − ˆ̄Q∗2(P0)} − 2hψ0{Q̄1,0 − ˆ̄Q∗1(P0)}

]
= (P− P0)ICg(P0) + oP (1/

√
n),

Then we have that

R̂(Ψ̂k)− R̂0(Ψ̂k) = (P− P0)
[
D{ ˆ̄Qk̄(P0), QW,0, g0, ψ0}+ ICg(P0)

]
+ oP (1/

√
n),

for D{Q̄, QW , g, ψ} = LQ̄,g(ψ)−QWLQ̄; the efficient influence function of R{ψ,Q(P )}.

The proof of this theorem is presented in Appendix A. Next we will discuss the plausibility and
implications of the assumptions of Theorem 1.

Discussion on the assumptions of Result 1

1. This assumption is a natural assumption, equivalent to the positivity assumption for binary treat-
ments, and needed to identify and also needed to estimate the risk using IPTW or A-IPTW estima-
tors.

2. This is a very important assumption stating that ĝ is a consistent estimator of g0. It is required
that the rate of convergence is n−1/4 or faster. This condition is automatically true in randomized
control trials (RCT), in which the treatment mechanism is known. It is also true if g is known to
belong to a parametric model, and in semi parametric models that assume enough smoothness of g0.
If g0 is completely unknown, it is important to use aggressive data adaptive estimation techniques
such as the super learner [van der Laan et al., 2007] to find an estimator ĝ that is more likely to
satisfy this assumption.

3. This assumption states that the updated estimator ˆ̄Q∗1 converges to some unspecified limit at a
certain rate. It is worth to note that such limit is not assumed to be Q̄1,0, the only requirement
is convergence to some value at a certain rate that depends on the rate of convergence of ĝ to
g0. The desired rate of convergence can be achieved if, for example, ĝ is

√
n-consistent (i.e.,

√
n||ĝ(PT ) − g0||0,S = OP (1)) and ˆ̄Q∗1(PTS) converges to ˆ̄Q∗1(P0) at any rate (i.e., || ˆ̄Q∗1(PT ) −

ˆ̄Q∗1(P0)||0,S = oP (1)). The same is true for ˆ̄Q∗2 and Ψ̂k.

4. In an RCT, in which g0 is known, one could set ĝ(P) = g0 and this condition would be trivially
satisfied. On the other hand, since cross-validation allows for the use of very aggressive techniques
for estimation of Q̄0, we could have that ˆ̄Q∗(P0) = Q̄0, and the condition would also be satisfied.
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In other cases, this assumption seems to be conflicting with assumption 2. If the treatment mecha-
nism is completely unknown, it is necessary to use very aggressive data adaptive techniques to find
estimators that satisfy assumption 2. The use of such estimators will usually lead to estimates of g0

that do not provide the asymptotic linearity needed in 4. Likewise, the use of an inconsistent esti-
mator that satisfies this condition (e.g., a parametric model) will violate assumption 2. In that case,
it is necessary to rely on the consistency of ˆ̄Q∗(P) in the sense that ˆ̄Q∗(P0) = Q̄0, in which case
assumption 4 will be trivially satisfied. This condition seems to suggest that the initial estimator ĝ
must also be fluctuated to target a smooth functional of g0. This is a direction of future research,
beyond the scope of this article.

As opposed to the regular TMLE or A-IPTW, in which the Donsker conditions onD limit the use of
very aggressive techniques for estimation of Q̄0, the use of cross-validation allows us to implement
any type of algorithm, which in turn makes consistency of ˆ̄Q∗(P) a very sensible assumption.
We encourage the use of super learning for estimation of both Q̄0 and g0. Super learner is a
methodology that uses cross-validated risks to find an optimal estimator among a library defined by
the convex hull of a user-supplied list of candidate estimators. One of its most important theoretical
properties is that its solution converges to the oracle estimator (i.e., the candidate in the library that
minimizes the loss function with respect to the true probability distribution). Proofs and simulations
regarding these and other asymptotic properties of the super learner can be found in van der Laan
et al. [2004] and van der Laan and Dudoit [2003].

4 Asymptotic optimality of the CDRC estimate selector based on
CV-TMLE risk

If the objective is to choose the best candidate among a list of candidate estimators Ψ̂k : k = 1, . . . , Kn,
it suffices to construct a ranking based on the pseudo-risk

R†(ψ)(Q̄1, QW ) = EQW

∫
A
ψ(a, Z){ψ(a, Z)− 2Q̄1(a,W )}h(a, Z)dµ(a).

which has the advantage that Q̄2,0 does not need to be estimated, providing additional robustness of the
candidate selector. In an abuse of notation R† and Q̄1 will also be denoted by R and Q̄ whenever the
difference is clear from the context. Estimation of this pseudo-risk can be carried out in a similar fashion
to estimation of the full risk presented in the previous section, with efficient influence function given by

D†(Q, g, ψ)(O) = −2
h(A,Z)ψ(A,Z)

g(A,W )
{Y − Q̄1(A,W )}+∫

A
ψ(a, Z){ψ(a, Z)− 2Q̄1(a,W )}h(a, Z)dµ(a)−R(ψ)(Q̄1, QW ), (14)

which results in a CV-TMLE defined as

R̂(Ψ̂k) ≡ ESR{Ψ̂k(PT ), ˆ̄Q∗(PT ), QW (PV )}

with ˆ̄Q∗(PTS) exactly as in (12). We will discuss now asymptotic optimality of the selector based on the
CV-TMLE. Assume that we have a list of candidate estimators for the CDRC given by Ψ̂k; k = 1, . . . Kn.
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Each of these algorithms is viewed as a map Ψ̂k : M→ F , where F is the space of functions of a and
Z. Define the CV-TMLE selector as

k̂ = arg min
k=1,...,Kn

R̂(Ψ̂k),

and the oracle selector as
k̃ = arg min

k=1,...,Kn

R̂0(Ψ̂k),

with R̂0(Ψ̂k) = ESR{Ψ̂k(PT ), Q0}. The following theorem proves that these two selectors are asymp-
totically equivalent under certain consistency conditions of the initial estimator of g0.

Theorem 2 (Oracle inequality). For each k, define

ε̂k = arg min
ε∈B⊂R

ESPVL{ ˆ̄Qk(PT )(ε)}

where |B| = nc for finite c,

−L(Q̄)(O) = Y log{Q̄(A,W )}+ (1− Y ) log{1− Q̄(A,W )},

and

logit Q̄k(PTS)(ε) = logit Q̄(PTS)− 2ε
hΨ̂k(PTS)

ĝ(PTS)
.

Let ˆ̄Q∗k(PTS) = ˆ̄Q(PTS)(ε̂k) be the CV-TMLE targeted towards estimation of the true conditional risk

R̂0(Ψ̂k) = ESR{Ψ̂k(PT ), Q0}.

Assume that h/ĝ, h/g0 Ψ̂k, ψ0, Q̄0, and ˆ̄Q have supremum norm smaller than a constant C < ∞ with
probability 1. Let Mn be the total number of possible points for (k, εk) across k = 1, . . . , Kn, so that
Mn ≤ ncKn. Define R̂(Ψ̂k, ψ0) ≡ R̂(Ψ̂k)− R̂(ψ0) and R̂0(Ψ̂k, ψ0) ≡ R̂0(Ψ̂k)−R0(ψ0), where

R̂(Ψ̂k) = ESR{Ψ̂k(PT ), ˆ̄Q∗k(PT ), QW (PV )}

is the TMLE of R̂0(Ψ̂k). The expression an . bn means that an ≤ cbn for a constant c. For a function
f(PTS) of O, define the norm ||f(PT )||0,S =

√
ESP0f(PT )2h. We have for each δ > 0, there exists a

c(M, δ) <∞ so that√
ER̂0(Ψ̂k̂, ψ0)−

√
(1 + 2δ)ER̂0(Ψ̂k̃, ψ0) .

√
c(M, δ)

1 + logMn

n

+

√
(1 + δ)E||ĝ(PT )− g0||0,S

1 + logMn√
n

+ (1 + δ)E||ĝ(PT )− g0||0,SE|| ˆ̄Q∗k̄(PT )− Q̄0||0,S
+ (1 + δ)E||(ĝ(PT )− g0)( ˆ̄Q∗0(PT )− Q̄0)||0,S,

where ˆ̄Q∗0 is the CV-TMLE of Q̄0 obtained when the target parameter is R(ψ0), and k̄ is either k̂ or k̃,
whichever gives the worst bound.
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A proof of this theorem is provided in Appendix B. The use of a grid of size nc for constant c when
estimating εk does not represent a limitation of the result of the theorem, since the result without the grid
will be similar up to a term OP (1/

√
n) that does not affect the asymptotic behavior of the CV-TMLE

selector. However, a grid of size nc allows the proof presented in Appendix B.
The following corollary provides the conditions under which the CV-TMLE selector is asymptotically

equivalent to the oracle selector.

Corollary 1 (Asymptotic optimality). In addition to the conditions of Theorem 2, assume that

1 + logMn

n

1

ER̂0(Ψ̂k̃, ψ0)
→ 0 as n→∞

1 + logMn√
n

E||ĝ(PT )− g0||0,S
ER̂0(Ψ̂k̃, ψ0)

→ 0 as n→∞

E2||ĝ(PT )− g0||0,SE2|| ˆ̄Q∗
k̄
(PT )− Q̄0||0,S

ER̂0(Ψ̂k̃, ψ0)
→ 0 as n→∞

E2||(ĝ(PT )− g0)( ˆ̄Q∗0(PT )− Q̄0)||0,S
ER̂0(Ψ̂k̃, ψ0)

→ 0 as n→∞.

then
ER̂0(Ψ̂k̂, ψ0)

ER̂0(Ψk̃, ψ0)
→ 1 as n→∞.

Since

ER̂0(Ψ̂k̃, ψ0) = E

∫ ∫
(Ψ̂k̃(PT )− ψ0)2dµ dQW,0 = E||(Ψ̂k̃(PT )− ψ0)/

√
g0||20,S,

the convergences assumed in Corollary 1 are expected to hold, for example, if ĝ converges to g0 at a rate
faster than Ψ̂ converges to ψ0.

In the following section we will show the results of a simulation study in which the finite sample
size properties of the CV-TMLE based selector of their risk are explored for a specific data generation
process.

5 Simulation
In order to explore some of the finite sample size properties of the risk estimators and the selectors based
on them, we performed a Monte Carlo simulation. We generated 500 samples of sizes 100, 500, and
1000 from the following data generating process:

W1 ∼ U{0, 1}
W2 ∼ Ber{0.7}
W3 ∼ N{W1, 0.25× exp(2W1)}
A ∼ Beta{ν(W )µ(W ), ν(W )[1− µ(W )]}
Y ∼ Ber{Q0(A,W )},
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where

ν(W ) = exp{1 + 2W1 expit(W3)}
µ(W ) = expit{.03− .8 log(1 +W2) + .9 exp(W1)W2 − .4 arctan(W3 + 2)W2W1}

Q̄0(A,W ) = expit{−2 + 1.5A+ 5A3 − 2.5W1 + .5AW2 − log(A)W1W2 + .5A3/4W1W3}.

Under this parameterization E(A|W ) = µ(W ). We considered four candidates algorithms given by
marginal structural models (MSM) of the form logit Ψp(a) = mp(a, β), where mp is a polynomial of
degree p = 1, . . . , 4 on a with coefficients βj : j = 0, . . . , p. The coefficients βj were estimated with
IPTW estimators as presented in Robins et al. [2000] and Neugebauer and van der Laan [2007]. The true
value of ψ0(a) = E{Q̄0(a,W )}was computed from this data generating distribution by drawing a sample
of size 100.000 and, for each a, computing the empirical mean of Q̄0(a,W ). All the simulations were
performed assuming the true parametric model for the outcome and treatment mechanism were known.
Figure 1 presents the true dose-response curve, as well as the expectation of the candidate estimators
across the 500 samples. From this graph, we can see that among the candidates chosen, a polynomial of

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
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True
p = 1
p = 2
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Figure 1: True ψ0(a) and expectations of the four candidate estimators of degree p

degree 2 seems to provide the closest approximation to the true dose-response curve without over-fitting
the data. Table 1 shows the expectation of the random variable R̂(Ψp)− R̂0(Ψp), which from Theorem 1
should approach zero as the sample size increases. As we can see, that is not the case for the CV-A-IPTW
estimator with sample size 100 due to the presence of empirical violations of the positivity assumption
that cause very small treatment weights and therefore very unstable, non-regular estimates. However,
that problem seems to be fixed asymptotically, since for large sample sizes empirical violations of the
positivity assumption are less likely to occur.
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Risk Candidate n
Estimator Degree 100 500 1000

CV-A-IPTW

1 -1.1436 0.0067 0.0048
2 -1.1716 -0.0061 0.0042
3 -1.0788 -0.0054 0.0043
4 -1.0194 -0.0053 0.0032

CV-TMLE

1 0.0063 0.0054 0.0046
2 0.0085 0.0054 0.0041
3 0.0091 0.0059 0.0043
4 0.0094 0.0058 0.0042

Table 1: Expectation of R̂(Ψp)− R̂0(Ψp) across 500 simulated samples.

Outliers Out of bounds
Risk Candidate n

Estimator Degree 100 500 1000 100 500 1000

CV-A-IPTW

1 0.0098 0.0000 0.0000 0.0547 0.0020 0.0020
2 0.0078 0.0000 0.0000 0.0527 0.0020 0.0020
3 0.0098 0.0000 0.0000 0.0488 0.0020 0.0020
4 0.0098 0.0000 0.0000 0.0508 0.0020 0.0020

Table 2: Proportion of estimates outliers (< −10 or > 10) and proportion of estimates out of bounds
(< 0 or > 1).

Table 2 shows the proportion of estimates that fell outside the interval (−10, 10) or fell out of the
parameter space. The interval (−10, 10) was chosen arbitrarily, and represents inadmissible bounds for
an estimator of a parameter that ranges in the interval (0, 1). Since the TMLE is a substitution estimator,
it all the estimates fell within the parameter space, and are thus not presented. Due to practical violations
of the positivity assumption previously mentioned, an important proportion (around 5%) of the A-IPTW
estimates fell outside the parameter space for sample size 100.

Table 3 contains the expected values of R̂(Ψp) − R̂0(Ψp) across 500 simulated samples once the
estimates that fell outside the interval (0, 1) were removed. In this case, the expectation of the A-IPTW
based estimator of the risk is much closer to what is expected theoretically and had already been achieved
by the TML estimator.

Finally, Table 4 shows the proportion of times that a given candidate is chosen according to the A-
IPTW, TMLE, and the oracle selector. As we can see, both the A-IPTW and the TMLE based selectors
perform similar to the oracle selector, particularly as the sample size increases, thus showing no apparent
advantage (at least for this particular data generating mechanism) of either method when evaluated as a
candidate selector procedure.
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Risk Candidate n
Estimator Degree 100 500 1000

CV-A-IPTW

1 0.0034 0.0064 0.0048
2 -0.0076 -0.0062 0.0042
3 -0.0083 -0.0054 0.0043
4 -0.0083 -0.0055 0.0032

CV-TMLE

1 0.0063 0.0054 0.0046
2 0.0085 0.0054 0.0041
3 0.0091 0.0059 0.0043
4 0.0094 0.0058 0.0042

Table 3: Expectation of R̂(Ψp) − R̂0(Ψp) across 500 simulated samples after removing estimates out of
bounds.

n
Candidate 100 500 1000

Degree TMLE A-IPTW Oracle TMLE A-IPTW Oracle TMLE A-IPTW Oracle
1 0.37 0.24 0.39 0.11 0.08 0.05 0.03 0.05 0.00
2 0.44 0.48 0.54 0.63 0.60 0.74 0.59 0.59 0.74
3 0.11 0.17 0.06 0.14 0.20 0.17 0.24 0.21 0.20
4 0.07 0.11 0.01 0.12 0.12 0.04 0.14 0.15 0.06

Table 4: Proportion of times that a given candidate is chosen according to each risk estimator.

Appendix A
In this appendix we will proof Theorem 1. This proof follows closely the proofs presented in Zheng and
van der Laan [2010] for a general CV-TMLE. Those proofs rely heavily on empirical process theory, of
which van der Vaart and Wellner [1996] provide a complete study.

Proof of Theorem 1. First of all note that

R(ψ,Q)−R(ψ,Q0) = −P0D{Q̄, QW , g0, ψ},

which implies that

R̂(Ψ̂k)− R̂0(Ψ̂k) = −ESP0D{ ˆ̄Q∗(PT ), QW (PV ), g0, Ψ̂k(PT )}.

Note that
ESPVD{ ˆ̄Q∗(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )} = 0,
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so that we can write

R̂(Ψ̂k)− R̂0(Ψ̂k) = ES(PV − P0)D{ ˆ̄Q∗(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )}

+ ESP0

[
D{ ˆ̄Q∗(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )} −D{ ˆ̄Q∗(PT ), QW (PV ), g0, Ψ̂k(PT )}

]
= ES(PV − P0)D{ ˆ̄Q∗(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )} (15)

+ ESP0
g0 − ĝ(PT )

g0ĝ(PT )
h

[
{Q̄2,0 − ˆ̄Q∗2(PT )} − 2Ψ̂k(PT ){Q̄1,0 − ˆ̄Q∗1(PT )}

]
. (16)

We will first handle the term (16). By Cauchy-Schwartz, (16) can be bounded by

sup
(a,v)

|h(a, v)|
∣∣∣∣∣∣∣∣g0 − ĝ(PT )

g0ĝ(PT )

∣∣∣∣∣∣∣∣
0,S

|| ˆ̄Q∗2(P0)− ˆ̄Q∗2(PT )||0,S

+ ESP0
g0 − ĝ(PT )

g0ĝ(PT )
h{Q̄2,0 − ˆ̄Q∗2(P0)}

− 2 sup
(s,a,v)

|h(a, v)Ψ̂k(PTS)(a, v)|
∣∣∣∣∣∣∣∣g0 − ĝ(PT )

g0ĝ(PT )

∣∣∣∣∣∣∣∣
0,S

|| ˆ̄Q∗1(P0)− ˆ̄Q∗1(PT )||0,S

− 2ESP0
g0 − ĝ(PT )

g0ĝ(PT )
hΨ̂k(PT ){Q̄1,0 − ˆ̄Q∗1(P0)}. (17)

Using a similar argument, the last term can be bounded (using assumption 1 and up to universal constants)
by

||ĝ(PT )− g0||0,S||Ψ̂k(PT )− ψ0||0,S+

ESP0
g0 − ĝ(PT )

g2
0

hψ0{Q̄1,0 − ˆ̄Q∗1(P0)}+ ||ĝ(PT )− g0||20,S,

whereas the second term in (17) is bounded by

ESP0
g0 − ĝ(PT )

g2
0

h{Q̄2,0 − ˆ̄Q∗2(P0)}+ ||ĝ(PT )− g0||20,S.

Therefore

R̂(Ψ̂k)− R̂0(Ψ̂k) = ES(PV − P0)D{ ˆ̄Q∗(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )} (18)

+ ESP0
g0 − ĝ(PT )

g2
0

h

[
{Q̄2,0 − ˆ̄Q∗2(P0)} − 2ψ0{Q̄1,0 − ˆ̄Q∗1(P0)}

]
+Remn,

where

Remn ≤ ||g0 − ĝ(PT )||0,S
{
a||Q̄∗2(P0)− Q̄∗2(PT )||0,S − b||Q̄∗1(P0)− ˆ̄Q∗1(PT )||0,S+

c||Ψ̂k(PT )− ψ0||0,S + d||g0 − ĝ(PT )||0,S
}
,

for constants a, b, c, d.
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On the other hand, since ESPV f = Pf when f does not depend on S, we may rewrite (18) as

ES(PV − P0)D{ ˆ̄Q∗(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )}

=ES(PV − P0)

[
D{ ˆ̄Q∗(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )} −D{Q̄∗(P0), QW,0, g0, ψ0}

]
(19)

+ (P− P0)D{Q̄∗(P0), QW,0, g0, ψ0}

Following similar arguments to those presented by Zheng and van der Laan [2010], and using the as-
sumptions of the theorem, it can be proven that (19) is oP (1/

√
n), which implies

ES(PV −P0)D{̂̄Q(PT )(ε̂), QW (PV ), ĝ(PT ), Ψ̂k(PT )} = (P−P0)D{Q(P0)(ε0), ĝ(P0), ψ0}+oP (1/
√
n).

This result, together with (18) and assumptions 2, 3 and 4, yields

R̂(Ψ̂k)− R̂0(Ψ̂k) = (P− P0) [D{Q(P0), QW,0, g0, ψ0 + ICg(P0)] + oP (1/
√
n).

Appendix B
Before proceeding to prove Theorem 2, we will first present and prove the following useful theorem.

Theorem 3. Define R̂(Ψ̂k, ψ0) ≡ R̂(Ψ̂k)− R̂(ψ0) and R̂0(Ψ̂k, ψ0) ≡ R̂0(Ψ̂k)−R0(ψ0), where

R̂(Ψ̂k) = ESR{Ψ̂k(PT ), ˆ̄Q∗k(PT ),PV }

is the TMLE of the true conditional risk

R̂0(Ψ̂k) = ESR{Ψ̂k(PT ), Q0}.

Assume
(R̂− R̂0)(Ψ̂k, ψ0) = ES(PV − P0)Dk(PT , P0, ε̂k) +Remk

for some function Dk that depends on (PT , P0, ε̂k) such that

ESP0Dk(PT , P0, ε̂k) = R̂0(Ψ̂k, ψ0),

||Dk(PT , P0, ε̂k)||∞ < M1 < ∞, and P0{Dk(PT , P0, ε̂k)}2 ≤ M2P0Dk(PT , P0, ε̂k). Assume also that ε̂k
falls in a finite set with maximally nc points for some finite c, and denote Mn = ncKn. Then,

ER̂0(Ψ̂k̂, ψ0) . (1 + 2δ)ER̂0(Ψ̂k̃, ψ0) + c(M1,M2, δ)
1 + logMn

n
+ (1 + δ){ERemk̃ − ERemk̂},

where c(M1,M2, δ) = (1 + δ)2(M1/3 +M2/δ)
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Proof of Theorem 3.

0 ≤R̂0(Ψ̂k̂, ψ0)

=R̂0(Ψ̂k̂, ψ0)− (1 + δ)R̂(Ψ̂k̂, ψ0) + (1 + δ)R̂(Ψ̂k̂, ψ0)

≤R̂0(Ψ̂k̂, ψ0)− (1 + δ)R̂(Ψ̂k̂, ψ0) + (1 + δ)R̂(Ψ̂k̃, ψ0)

=R̂0(Ψ̂k̂, ψ0)

+ (1 + δ){R̂(Ψk̃, ψ0)− R̂0(Ψ̂k̃, ψ0)}
− (1 + δ){R̂(Ψk̂, ψ0)− R̂0(Ψ̂k̂, ψ0)}
+ (1 + δ)R̂0(Ψ̂k̃, ψ0)

− (1 + δ)R̂0(Ψ̂k̂, ψ0)

=(1 + 2δ)R̂0(Ψ̂k̃, ψ0) +Hk̂ + Tk̃,

where

Hk = −(1 + δ)(R̂− R̂0)(Ψ̂k, ψ0)− δR̂0(Ψ̂k, ψ0)

Tk = (1 + δ)(R̂− R̂0)(Ψ̂k, ψ0)− δR̂0(Ψ̂k, ψ0).

By using the assumptions of the theorem we get

Hk =− (1 + δ)ES(PV − P0)Dk(PT , P0, ε̂k)− δESP0Dk(PT , P0, ε̂k)− (1 + δ)Remk

≡H∗k − (1 + δ)Remk.

Following arguments similar to those presented by Dudoit and van der Laan [2005] and van der Vaart
et al. [2006] we have that

EH∗
k̂
. c(M1,M2, δ)

1 + logMn

n
.

The same bound applies to ET ∗
k̃

. As a consequence we obtain the desired result.

Proof of Theorem 2. Recall from Theorem 1 that

R̂(Ψ̂k)− R̂0(Ψ̂k) = ES(PV − P0)D{ ˆ̄Q∗k(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )}+

2ESP0
g0 − ĝ(PT )

g0ĝ(PT )
hΨ̂k(PT ){ ˆ̄Q∗k(PT )− Q̄0}, (20)

where D is the efficient influence function

D(Q,QW , g, ψ)(O) = −2
h(A,Z)ψ(A,Z)

g(A,W )
{Y − Q̄(A,W )}+∫

A
ψ(a, Z){ψ(a, Z)− 2Q̄(a,W )}h(a, Z)dµ(a)−R(ψ)(Q̄, QW ).
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Applying this same equality to the constant algorithm ψ0 and subtracting it from (20) yields

(R̂− R̂0)(Ψ̂k, ψ0) =ES(PV − P0)
[
D{ ˆ̄Q∗k(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )} −D{ ˆ̄Q∗0(PT ), QW (PV ), ĝ(PT ), ψ0}

]
+ 2ESP0

g0 − ĝ(PT )

g0ĝ(PT )
h{Ψ̂k(PT )− ψ0}{ ˆ̄Q∗0(PT )− Q̄0} (21)

+ 2ESP0
g0 − ĝ(PT )

g0ĝ(PT )
hΨ̂k(PT ){ ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )} (22)

=ES(PV − P0)
[
D{ ˆ̄Q∗k(PT ), QW (PV ), g0, Ψ̂k(PT )} −D{ ˆ̄Q∗0(PT ), QW (PV ), g0, ψ0}

]
(23)

+ ES(PV − P0)

([
D{ ˆ̄Q∗k(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )} −D{ ˆ̄Q∗k(PT ), QW (PV ), g0, Ψ̂k(PT )}

]
−
[
D{ ˆ̄Q∗0(PT ), QW (PV ), ĝ(PT ), ψ0} −D{ ˆ̄Q∗0(PT ), QW (PV ), g0, ψ0}

])
(24)

+Remk,1 +Remk,2

≡ES(PV − P0)Dk(P, P0) +Remk,1 +Remk,2 +Remk,3 (25)

where Dk(P, P0) denotes the function inside square brackets in (23), and Remk,1, Remk,2 and Remk,3

denote (21), (22) and (24), respectively. From the definition of the efficient influence function D, note
that D{Q̄, QW , g, ψ} = LQ̄,g(ψ)−R(ψ, Q̄,QW ), which implies

ES(PV − P0)Dk(P, P0) =ES(PV − P0)

[
L ˆ̄Q∗

k(PT ),g0
(Ψ̂k(PT ))− L ˆ̄Q∗

0(PT ),g0
(ψ0)

]
− ES(PV − P0)

[
R{Ψ(PT ), ˆ̄Q∗k(PT ), QW (PV )} −R{ψ0,

ˆ̄Q∗0(PT ), QW (PV )}
]
,

(26)

where the term inside square brackets in (26) is a constant, and (26) equals zero. Note that ˆ̄Q∗k(PT ) ≡
ˆ̄Q(PT )(ε̂k) depends on PV only through ε̂k, thus allowing us to rewrite

(R̂− R̂0)(Ψ̂k, ψ0) = ES(PV − P0)Dk(PT , P0, ε̂k) +Remk,1 +Remk,2 +Remk,3,

for
Dk(PT , P0, ε̂k) ≡ L ˆ̄Q∗

k(PT ),g0
(Ψ̂k(PT ))− L ˆ̄Q∗

0(PT ),g0
(ψ0).

From the identity P0LQ̄,g0(ψ) = P0LQ̄0
(ψ) (LQ̄ denotes the g-comp loss function) we have that

ESP0Dk(PT , P0, ε̂k) = R̂0(Ψ̂k, ψ0).

This fact together with (25) prove that Dk satisfies the conditions of Theorem 3, with Remk = Rem1,k +
Rem2,k +Rem3,k. By application of Theorem 3 we obtain

ER̂0(Ψ̂k̂, ψ0) . (1 + 2δ)ER̂0(Ψ̂k̃, ψ0) + c(M1,M2, δ)
1 + logMn

n
+ (1 + δ){ERemk̃ − ERemk̂}.

It remains to study ERemk. Let us first consider ERem1,k. Note that

||(Ψ̂k(PT )− ψ0)/
√
g0||20,S = R̂0(Ψ̂k, ψ0)

20 http://biostats.bepress.com/ucbbiostat/paper306



Since g0 and ĝ(PT ) are assumed bounded away from zero (positivity assumption), we can apply the
Cauchy-Schwartz inequality to obtain

ERem1,k . E||(ĝ(PT )− g0)( ˆ̄Q∗0(PT )− Q̄0)||0,S
√
R0(Ψ̂k, ψ0).

We now consider ERem2,k. By applying the Cauchy-Schwartz inequality we obtain

Rem2,k . ||ĝ(PT )− g0||0,S|| ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )||0,S. (27)

From the definition of ε̂k in the CV-TMLE of R(Ψ̂k), note that ˆ̄Q∗k satisfies the equation

ESPV
h

ĝ(PT )
Ψ̂k(PT ){Y − ˆ̄Q∗k(PT )} = 0.

Applying the same equation for ψ0 and ˆ̄Q∗0, and subtracting it from the previous one yields

ESPV
h

ĝ(PT )

(
Ψ̂k(PT ){Y − ˆ̄Q∗k(PT )} − ψ0{Y − ˆ̄Q∗0(PT )}

)
= 0,

which can be written as

ESPV
h

ĝ(PT )
{Ψ̂k(PT )− ψ0}{Y − ˆ̄Q∗k(PT )} = ESPV

h

ĝ(PT )
ψ0{ ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )},

which implies

ESP0
h

ĝ(PT )
ψ0{ ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )} =ES(PV − P0)

h

ĝ(PT )
{Ψ̂k(PT )− ψ0}{Y − ˆ̄Q∗k(PT )}

− ES(PV − P0)
h

ĝ(PT )
ψ0{ ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )}

− ESP0
h

ĝ(PT )
{Ψ̂k(PT )− ψ0}{ ˆ̄Q∗k(PT )− Q̄0}.

By empirical process theory [van der Vaart and Wellner, 1996, Theorem 2.14.1], noting that the first two
terms are empirical processes applied to functions in a class of functions F = {f(k, εk, ε0) : k, εk, ε0},
the expectations of the first two terms are bounded by (1 + logMn)/

√
n. The third term is bounded by√

R0(Ψ̂k, ψ0)|| ˆ̄Q∗k(PT )− Q̄0||0,S . These facts together with (27) yield

ERem2,k . E||ĝ(PT )− g0||0,S
1 + logMn√

n
+ E||(ĝ(PT )− g0)||0,S ||( ˆ̄Q∗k(PT )− Q̄0)||0,S

√
R0(Ψ̂k, ψ0),

Finally, consider the term Rem3,k. We can bound this term by maxk,εk,ε0 ES(PV − P0)D(PT , k, εk, ε0),
for

D(PT , k, εk, ε0) =D{ ˆ̄Q∗k(PT ), QW (PV ), ĝ(PT ), Ψ̂k(PT )} −D{ ˆ̄Q∗k(PT ), QW (PV ), g0, Ψ̂k(PT )}

−D{ ˆ̄Q∗0(PT ), QW (PV ), ĝ(PT ), ψ0}+D{ ˆ̄Q∗0(PT ), QW (PV ), g0, ψ0}

=2h
ĝ(PT )− g0

ĝ(PT )g0

{Ψ̂k(PT )(Y − ˆ̄Q∗k(PT ))− ψ0(Y − ˆ̄Q∗0(PT ))}
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Let F (PT ) be the envelope of the class of functions F(PT ) = {D(PT , k, εk, ε0) : k, εk, ε0}, over which
we take the maximum. We have P0F (PT )2 . ||ĝ(PT ) − g0||20,S . We will apply the following inequality
for empirical processes indexed by a finite class of functions F :

Emax
f∈F
|(P− P0)f | . 1√

n

√
log(#F)||F ||2,

where F is an envelope of F . Thus, given PT , we can bound the conditional expectation of Rem3,k by
(1 + logMn)||ĝ(PT )− g0||0,S/

√
n, which results in the following bound for the marginal expectation:

ERem3,k .
1 + logMn√

n
E||ĝ(PT )− g0||0,S.

Accumulation of these bounds for the different components of Remk̂ and Remk̃ yields the following
inequality:

ER̂0(Ψ̂k̂, ψ0) .(1 + 2δ)ER̂0(Ψ̂k̃, ψ0)

+ c(M, δ)
1 + log(Kn)

n

+ (1 + δ)E||(ĝ(PT )− g0)( ˆ̄Q∗0(PT )− Q̄0)||0,S
√
ER̂0(Ψ̂k̂, ψ0)

+ (1 + δ)E||ĝ(PT )− g0||0,SE|| ˆ̄Q∗k̂(PT )− Q̄0||0,S
√
ER̂0(Ψ̂k̂, ψ0)

+ (1 + δ)E||ĝ(PT )− g0||0,SE|| ˆ̄Q∗k̃(PT )− Q̄0||0,S
√
ER̂0(Ψ̂k̃, ψ0)

+ (1 + δ)
1 + logMn√

n
E||ĝ(PT )− g0||0,S

.(1 + 2δ)ER̂0(Ψ̂k̃, ψ0)

+ c(M, δ)
1 + log(Kn)

n

+ (1 + δ)E||(ĝ(PT )− g0)( ˆ̄Q∗0(PT )− Q̄0)||0,S
√
ER̂0(Ψ̂k̂, ψ0)

+ (1 + δ)E||ĝ(PT )− g0||0,SE|| ˆ̄Q∗k̄(PT )− Q̄0||0,S
√
ER̂0(Ψ̂k̂, ψ0)

+ (1 + δ)E||ĝ(PT )− g0||0,S
1 + logM(n)√

n
,

where k̄ is either k̂ or k̃, whichever gives the worst bound. This inequality can be written as x2− bx . c,
for

b =(1 + δ)E||ĝ(PT )− g0||0,S|| ˆ̄Q∗k̄(PT )− Q̄0||0,S + (1 + δ)E||(ĝ(PT )− g0)( ˆ̄Q∗0(PT )− Q̄0)||0,S

c =c(M, δ)
1 + logMn√

n
+ (1 + δ)E||ĝ(PT )− g0||0,S

1 + logMn√
n

and can be solved using the quadratic formula as x ≤ (b+
√
b2 + 4c)/2, which in turn implies x ≤ b+

√
c,

proving Theorem 2.
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