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a b s t r a c t

While many event-triggered control strategies are available in the literature, most of them are designed
ignoring the presence of measurement noise. As measurement noise is omnipresent in practice and
can have detrimental effects, for instance, by inducing Zeno behavior in the closed-loop system and
with that the lack of a positive lower bound on the inter-event times, rendering the event-triggered
control design practically useless, it is of great importance to address this gap in the literature. To
do so, we present a general approach for set stabilization of (distributed) event-triggered control
systems affected by additive measurement noise. It is shown that, under general conditions, Zeno-free
static as well as dynamic triggering rules can be designed such that the closed-loop system satisfies
an input-to-state practical set stability property. We ensure Zeno-freeness by proving the existence
of a uniform strictly positive lower-bound on the minimum inter-event time. The general approach
is applied to point stabilization and consensus problems as particular cases, where we show that,
under similar assumptions as the original work, existing schemes can be redesigned to robustify them
to measurement noise. Consequently, using this approach, noise-robust triggering conditions can be
designed both from the ground up and by simple redesign of several important existing schemes.
Simulation results are provided that illustrate the strengths of this novel approach.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, event-triggered control (ETC), see, e.g.,
eemels, Johansson, and Tabuada (2012), Nowzari, Garcia, and
ortés (2019) and the references therein, has been studied exten-
ively as a resource-aware sampling paradigm, as an alternative
o periodic time-triggered control, reducing the computational
urden and/or the communication bandwidth of the control
trategies, while still ensuring important closed-loop stability and
erformance properties. In ETC, the sampling or transmission
nstants are decided on the basis of well-designed state- or
utput-based triggering conditions, rendering these instants not
ecessarily periodic. The general idea in ETC is to allow more
lexibility in the sampling and communication processes and
dapt the communication to the system needs according to the
esired objectives.

✩ This work is supported by the ANR via grant HANDY 18-CE40-0010 and by
CNRS via the grant IRP ARS. The material in this paper was presented at the 59th
IEEE Conference on Decision and Control, December 14–18, 2020, Jeju Island,
Republic of Korea. This paper was recommended for publication in revised form
by Associate Editor Fulvio Forni under the direction of Editor Luca Zaccarian.

∗ Corresponding author.
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ttps://doi.org/10.1016/j.automatica.2023.111305
005-1098/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
Most literature on ETC for continuous-time systems assumes
that perfect state or output information is available for control,
see, e.g., Girard (2015), Tabuada (2007). In most physical systems,
this assumption is typically not satisfied as essentially all sensors
are susceptible to measurement noises. The presence of measure-
ment noises may cause the absence of a positive lower bound
on the inter-event times, and, even Zeno behavior (an infinite
number of transmission times in a finite time interval) if not
carefully handled, as demonstrated in, e.g., Borgers and Heemels
(2014). If an ETC scheme exhibits Zeno behavior, it is practically
useless as it cannot be implemented and certainly is not saving
communication resources compared to time-triggered periodic
control. Therefore, establishing strong Zeno-freeness is important,
not only for implementability and saving resources, as an analytic
lower bound on the inter-event times determines the worst-case
scenario in terms of resource utilization, but also for the stability
analysis and proofs to be complete and meaningful.

Few solutions have been proposed in the literature to ad-
dress this problem, see, e.g., Abdelrahim, Postoyan, Daafouz, and
Nešić (2017), Mousavi, Noroozi, Geiselhart, Kogel, and Findeisen
(2019). However, these rely on restrictive assumptions on the
noise signal, in particular, the noise has to be differentiable and
its derivative has to be bounded in an L∞ sense. Moreover,
the ensured input-to-state stability (ISS) or Lp-stability of the
closed-loop system holds with respect to the noise and its time-
derivative. When dealing with real sensors, the differentiability
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ondition and global boundedness of the derivative of the noise
ay not be natural assumptions. The observer-based approach

n Lehmann and Lunze (2011) overcomes this issue, but these
esults only apply to linear systems and involve multiple addi-
ional internal models, thereby requiring extra processing power
nd energy to run. An alternative result is studied in Selivanov
nd Fridman (2016), where a periodic event-triggered controller
PETC), in the sense that the triggering rule is only evaluated at
ome periodically spaced discrete instants, is run simultaneously
ith a continuous event-triggered controller (CETC), and trans-
ission occurs when the triggering conditions of both controllers
old. The downside to this particular method is that, if the state
s close to the origin, transmissions occur periodically, sometimes
alled ‘‘Zeno-like’’ behavior in literature, see, e.g., Yang, Liu, and
hen (2015), Yu, Hao, and Chen (2021), hence, the communica-
ion benefit of ETC might not be preserved. ETC design under
easurement noise becomes even harder when designing dis-

ributed event-triggered controllers for consensus (Nowzari et al.,
019). We are aware of only one work dealing with measure-
ent noise in this context, Hardouin, Bertrand, and Piet-Lahanier

2019), where the control input is integrated to estimate an
pper-bound for the error. Due to the use of an upper-bound on
he error and the use of an absolute fixed threshold condition,
he amount of controller updates (network bandwidth) required
ay become relatively large compared to other ETC consensus
lgorithms, see, e.g., Dolk, Postoyan, and Heemels (2019). With
his in mind, there is a strong need for event-triggered controllers
pplicable to systems where the available output information is
orrupted by (additive) measurement noise, where more natural
onditions are imposed on the type of noise signals.
In this context, we are interested in a general approach to

esign event-triggered controllers robust to measurement noise.
he approach that we present is based on space-regularized
fixed threshold) ETC, see, e.g., Miskowicz (2006), in line with
lassical event generators, such as Donkers and Heemels (2012),
irard (2015), Tabuada (2007). To analyze the resulting ETC
losed-loop system, we present a new hybrid model, in which
jump models a transmission. The model does not involve the
erivative of the noise as opposed to Abdelrahim et al. (2017),
ousavi et al. (2019). This new model is instrumental, and, based
n it, we provide general prescriptive conditions, under which
oth static and dynamic triggering rules can be designed, to
nsure an input-to-state practical stability property, while ruling
ut Zeno phenomena. In particular, we will show that applying
pace-regularization, i.e., enlarging the ‘‘flow set’’ of the hybrid
odel, needs to be done with care to ensure the existence of a
trictly positive (semi-global) minimum inter-event time, which
nly requires that an upper-bound of the noise level is known.
ur results apply to the general scenario where N plants, pos-
ibly interconnected, are each controlled by an event-triggered
ontroller. We thereby cover both classical point stabilization
roblems (N = 1) as in, e.g., Dolk, Borgers, and Heemels (2017b),
onkers and Heemels (2012), Girard (2015), Tabuada (2007),
here we also extend the results to output-feedback control,
nd consensus problems (N > 1) as in, e.g., Dolk, Abdelrahim,
nd Heemels (2017a), in a unified way. Moreover, we explain
ow our approach leads to modifications of the triggering
ules presented in Girard (2015), Tabuada (2007) to ensure Zeno-
reeness in presence of measurement noise. We also apply the
pproach to consensus seeking problems, where we show that
e can maintain ‘‘long’’ inter-event times even in the presence of
easurement noise. We show this, for instance, for ‘‘robustified’’
ersions of Dolk et al. (2019), Garcia, Cao, Yu, Antsaklis, and
asbeer (2013). Lastly, we present numerical case studies to
how the effectiveness of our technique and to demonstrate the

mplications of applying space-regularization.

2

An alternative to our approach for preventing Zeno by apply-
ing space-regularization is the application of time-regularization,
where the time between two events is globally lower-bounded
by an a priori enforced ‘‘waiting time’’. As we will illustrate in
the numerical examples, this often results in so-called ‘‘Zeno-like’’
behavior, a term used in the context of PETC in, e.g., Yang et al.
(2015), Yu et al. (2021), i.e., communication occurs approximately
periodically with the inter-event times equal to the imposed
waiting time, when the state is close to the desired stability
set, thereby not preserving the sparse communication benefits of
ETC. The application of space-regularization combined with time-
regularization can be beneficial to recover sparse transmission
times while obtaining more freedom in the selection of the tun-
ing parameters, see Remark 5. However, as time-regularization
is not necessary to obtain sparse communication, and due to
the fact that time-regularization typically introduces notational
complexity and requires stronger conditions, we do not include
it for the general exposition in this work. In a numerical ex-
ample, see Section 7.2.2, we will illustrate the benefits of using
space-regularization also for time-regularized (dynamic) ETC.

This work generalizes the results of our preliminary ver-
sion (Scheres, Postoyan, & Heemels, 2020). Compared to Scheres
et al. (2020), where only static state-feedback controllers were
considered, we include several extensions, such as output-feed-
back controllers, more general holding functions and dynamical
disturbances. Moreover, the full proofs are provided here, which
are not available in Scheres et al. (2020).

The remainder of this paper is structured as follows. In Sec-
tion 2, we present the preliminaries and notational conventions.
Section 3 contains the problem statement. We present the hybrid
model and the approach in Section 4. The main results are given
in Section 5. We apply the approach to case studies in Section 6.
Finally, we illustrate the obtained results numerically in Section 7,
and provide conclusions in Section 8.

2. Preliminaries

2.1. Notation

The sets of all non-negative and positive integers are denoted
N and N>0, respectively. The fields of all reals and all non-negative
reals are indicated by R and R≥0, respectively. The identity matrix
of size N × N is denoted by IN , and the vectors in RN whose
lements are all ones or zeros are denoted by 1N and 0N , re-
pectively; the index of 0N or 1N is dropped when clear from
he context. The N × M zero matrix is denoted 0N,M . For N
ectors xi ∈ Rni , we use the notation (x1, x2, . . . , xN ) to denote
x⊤

1 x⊤

2 . . . x⊤

N

]⊤. Given a pair of square matrices A1, . . . , An,
e denote by diag(A1, . . . , An) the block-diagonal matrix where
he main diagonal blocks consist of the matrices A1 to An and
ll other blocks are zero matrices. By ⟨·, ·⟩ and | · | we denote
he usual inner product of real vectors and the Euclidean norm,
espectively. For a measurable signal w : R≥0 → Rnw , we denote
y ∥w∥∞ := ess supt∈R≥0

|w(t)| its L∞-norm provided it is finite,
n which case we write w ∈ L∞. A function w : R≥0 → Rnw is
said to be càdlàg ‘‘continue à droite, limite à gauche’’, denoted by
w ∈ PC, when there exists a sequence {ti}i∈N with ti+1 > ti >
t0 = 0 for all i ∈ N and ti → ∞ when i → ∞ such that w
is continuous on (ti, ti+1) where limt↑ti w(t) exists for all i ∈ N>0
and limt↓ti w(t) exists for all i ∈ N with limt↓ti w(t) = w(ti), i.e., w
is piecewise continuous, right continuous and left limits exist for
each ti, i ∈ N>0. Given a set W ⊆ Rnw , we denote by PCW the
set of functions {w ∈ PC | w(t) ∈ W for all t ∈ R≥0}. Note that
continuous functions are contained in PC, {ti}i∈N can be chosen
arbitrarily then. For any x ∈ RN , the distance to a closed non-

empty set A is denoted by |x|A := miny∈A |x − y|. The interior
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f a set A is denoted intA. Given a vector x ∈ Rnx and a set
A ⊆ Rnx × Rny , Π x(A) denotes the projection of A onto the x-
plane Rnx , i.e., Π x(A) = {z ∈ Rnx | ∃y ∈ Rny s.t. (z, y) ∈ A}.
Given a set-valued mapping M : Rn ⇒ Rm, the domain of M is
the set domM = {x ∈ Rm

| M(x) ̸= ∅}. We consider K, K∞

and KL functions as defined in Goebel, Sanfelice, and Teel (2012,
Chapter 3). By ∧ and ∨ we denote the logical and and or operators
respectively.

2.2. Graph theory

A weighted graph G := (V , E , A) consists of a vertex set
V := {1, 2, . . . ,N}, a set of edges E ⊂ V × V and an adjacency
atrix A ∈ RN×N . An ordered pair (i,m) ∈ E , with i,m ∈ V , is an

edge from i to m. For an edge (i,m) ∈ E , i is called the in-neighbor
of m, and m is called the out-neighbor of i. Every (i,m) ∈ E has
an associated weight, denoted αim ∈ R>0. The adjacency matrix
A := (ai,m), i,m ∈ V of a graph is defined as

ai,m :=

{
αim if (i,m) ∈ E ,

0 otherwise.
(1)

The set V in
i of the in-neighbors of i is defined as V in

i := {m ∈

V | (m, i) ∈ E } and the set of out-neighbors as V out
i := {m ∈

V | (i,m) ∈ E }. An undirected graph is a graph, where, for every
edge (i,m) ∈ E , (m, i) is also in E . A sequence of edges (i,m) ∈ E

connecting two vertices is called a directed path for these two
vertices. A connected graph G is defined as a graph where there
exists a directed path between any two vertices in V . The in-
degree is defined as dini :=

∑
m∈V in

i
αmi and the out-degree as

douti :=
∑

m∈V out
i
αim. The in-degree matrix Din and out-degree

matrix Dout are diagonal matrices with dini respectively douti as the
ith diagonal element. A weight-balanced digraph (directed graph)
is a digraph where douti = dini for all i. The Laplacian L of a graph
G is defined as L := Dout

−A. For an undirected graph, Din
:= Dout.

2.3. Hybrid systems

Based on the formalism of Goebel et al. (2012), we model
hybrid systems H(F , C,G,D,X,V) as{
ξ̇ ∈ F (ξ, ν)
ξ+

∈ G(ξ, ν)
(ξ, ν) ∈ C,
(ξ, ν) ∈ D,

(2)

where ξ ∈ X ⊆ Rnξ denotes the state, ν an external input taking
values in V ⊆ Rnv , C ⊆ X × V the flow set, D ⊆ X × V the jump
set, F : X × V ⇒ Rnξ the (set-valued) flow map and G : X × V ⇒
Rnξ the (set-valued) jump map. Sets C and D are assumed to be
closed. We refer to Goebel et al. (2012) for notions related to (2)
such as hybrid time domains or hybrid arcs. For a hybrid time
domain E, supt E := sup

{
t ∈ R≥0 : ∃j ∈ N such that (t, j) ∈ E

}
,

supj E := sup
{
j ∈ N : ∃t ∈ R≥0 such that (t, j) ∈ E

}
and sup E :=

(supt E, supj E). Given a hybrid arc φ, the notation domφ repre-
sents its domain, which is a hybrid time domain in the terminol-
ogy of Goebel et al. (2012). We consider the notion of solutions
proposed in Heemels, Bernard, Scheres, Postoyan, and Sanfelice
(2021).

Definition 1 (Heemels et al., 2021). Given ν ∈ PCV, a hybrid arc φ
is a solution1 to H, if

(S1) for all j ∈ N such that I j := {t | (t, j) ∈ domφ} has nonempty
interior, it holds that φ̇(t, j) ∈ F (φ(t, j), ν(t)) for almost all
t ∈ int I j and (φ(t, j), ν(t)) ∈ C for all t ∈ int I j;

1 This corresponds to the notion of e-solution, see Heemels et al. (2021,
efinition 4.3).
3

(S2) for all (t, j) ∈ domφ such that (t, j+1) ∈ domφ, (φ(t, j), ν(t))
∈ D and φ(t, j + 1) ∈ G(φ(t, j), ν(t)).

We will also use the following definitions.

Definition 2. Given an input ν ∈ PCV, a solution φ is called
non-trivial, if domφ contains at least two points. We say that φ
is maximal, if there does not exist another solution ψ to H for
the same input ν such that domφ is a proper subset of domψ
(i.e., domφ ⊂ domψ , but domφ ̸= domψ) and φ(t, j) =

ψ(t, j) for all (t, j) ∈ domφ. We denote the set of all maximal
solutions to H for input ν by SH(ν). We say that the solution φ is
complete, if domφ is unbounded, and we say that it is t-complete,
if supt domφ = ∞. We say that H is persistently flowing if all
maximal solutions for all ν ∈ PCV are t-complete.

Remark 1. If C and D do not depend on the input ν, the
inputs can be taken as measurable functions instead of piecewise
continuous; see Heemels et al. (2021) for further insights on this
point.

In this paper, we consider systems H that are persistently
flowing, i.e., systems whose maximal solutions are t-complete,
and thus we focus on the stability notions as defined below.

Definition 3. For a persistently flowing hybrid system H, a non-
empty closed set A ⊂ Rnξ is input-to-state practically stable (ISpS),
if there exist γ ∈ K, β ∈ KL and d ∈ R≥0 such that for any input
ν ∈ PCV and any associated solution ξ ,

|ξ (t, j)|A ≤ β(|ξ (0, 0)|A, t) + γ (∥ν∥∞) + d, (3)

for all (t, j) ∈ dom ξ . If (3) holds with d = 0, then A is said to be
input-to-state stable (ISS) for H.

To prove that a given non-empty, closed set A is IS(p)S, we
will use the following Lyapunov conditions; recall that, when H
is persistently flowing, necessarily G(D) × V ⊂ C ∪ D, otherwise,
not all maximal solutions would be complete.

Proposition 1. Suppose H is persistently flowing and let A ⊂ Rnξ

be a non-empty closed set. If there exist V : dom V → R≥0,
α, α, α ∈ K∞, γ ∈ K and c ∈ R≥0 such that

(i) Πξ (C ∪ D) ⊂ dom V and V is continuously differentiable on
an open set containing Πξ (C),

(ii) for any ξ ∈ X,

α(|ξ |A) ≤ V (ξ ) ≤ α(|ξ |A),

(iii) for all (ξ, ν) ∈ C and all f ∈ F (ξ, ν),

⟨∇V (ξ ), f ⟩ ≤ −α(|ξ |A) + γ (|ν|) + c,

(iv) for all (ξ, ν) ∈ D and all g ∈ G(ξ, ν),

V (g) − V (ξ ) ≤ 0,

then A is ISpS. If, moreover, c = 0 in item (iii), then A is ISS.

Sketch of proof. Let ν ∈ PCV and ξ be an associated so-
lution to H, (t, j) ∈ dom ξ and 0 = t0 ≤ t1 ≤ · · · ≤

tj+1 = t the jump times of ξ which satisfy dom ξ ∩ ([0, t] ×

{0, 1, . . . , j}) =
⋃

i∈{0,1,...,j}
[ti, ti+1] × {i}. For each i ∈ {1, 2, . . . , j}

and for almost all s ∈ [ti, ti+1], item (iii) of Proposition 1 implies
that

⟨
∇V (ξ (s, i)), ξ̇ (s, i)

⟩
≤ −α(|ξ (s, i)|A) + γ (|ν(s)|) + c. Similar

arguments as in Sontag and Wang (1995, Lemma 2.14) complete
the proof as (1) V does not increase at jumps due to item (iv)
of Proposition 1, (2) item (ii) holds, and (3) H is persistently
flowing. ■
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Fig. 1. Networked control setup with Event-Triggering Mechanism (ETM). ETM
i determines when the current noisy output ỹi is transmitted over the network.

3. Problem formulation

We consider a collection of N ∈ N>0 interconnected plants
P1, P2, . . . , PN . Each plant Pi, i ∈ N := {1, 2, . . . ,N}, is equipped
with a sensor that communicates its measured output, which is
affected by measurement noise, to the controllers C1, C2, . . . , CN
via a digital packet-based network, see Fig. 1. Plant Pi, i ∈ N , has
state xp,i ∈ Rnxp,i , ideal output yi ∈ Rny,i and measured output
yi ∈ Rny,i , affected by noise, with dynamics

Pi :

⎧⎨⎩
ẋp,i = fp,i(xp, ui, vi),
yi = gp,i(xp,i),
ỹi = gp,i(xp,i) + wi = yi + wi,

(4)

where ui ∈ Rnu,i is the control input of Pi, xp := (xp,1, xp,2, . . . , xp,N )
is the concatenated plant state, vi ∈ Rnv,i is a process disturbance,
wi ∈ Rny,i is the ith measurement noise, fp,i : Rnp ×Rnu,i ×Rnv,i →

Rnxp,i is continuous and gp,i : Rnxp,i → Rny,i is continuously
differentiable, where np :=

∑
i∈N nxp,i . Note that fp,i may depend

n the states of other plants, and, as such, physical couplings are
llowed, as illustrated in Fig. 1. We assume that the process dis-
urbances vi and the measurement noises wi satisfy the following
ssumption.

ssumption 1. For each i ∈ N , vi ∈ L∞ ∩ PC and wi ∈ PCWi ,
where Wi :=

{
wi ∈ Rny,i

⏐⏐ |wi| ≤ wi
}
for some known wi ∈ R≥0.

Assumption 1 imposes natural boundedness conditions on
he process disturbance and the noise and it does not impose
estrictions on the existence or boundedness of their derivatives,
s was required in, e.g., Abdelrahim et al. (2017), Mousavi et al.
2019).

The controller Ci with state xc,i ∈ Rnxc,i and nxc,i ∈ N, i ∈ N , is
given by

Ci :

{
ẋc,i = fc,i(xc,i, ỹi,ˆ̃y ),
ui = gc,i(xc,i, ỹi,ˆ̃y ), (5)

ith fc,i : Rnxc,i ×Rny,i×Rny → Rnxc,i and gc,i : Rnxc,i ×Rny,i×Rny →
nu,i continuous maps, ny :=

∑
i∈N ny,i and where ˆ̃y denotes the

ampled ‘‘networked’’ version of the outputs, which will be made
ore precise next. Note that static controllers are included in (5)
y taking nxc,i = 0.
The ith sensor, i ∈ N , broadcasts its output ỹi to the controllers

1, C2, . . . , CN over the digital network. The corresponding trans-
issions occur at time instants t ik, k ∈ N, which are generated by a

ocal Event-Triggering Mechanism (ETM), which is to be designed.
ecause of the packet-based communication over the network,
he ith controller, which depends on the outputs of Pj, j ∈ N ,
oes not have continuous access to ỹ := (̃y1, ỹ2, . . . , ỹN ), but only
o its estimate ˆ̃y := (ˆ̃y ,ˆ̃y , . . . ,ˆ̃y ) and to its local output ỹ .
1 2 N i

4

When ETM i ∈ N , transmits the measured output of plant i over
the network, ˆ̃yi is updated according to

yi((t
i
k)

+) = ỹi(t ik). (6)

n between transmissions the estimate evolves according to a
olding function fh,i : Rny,i → Rny,i , fh,i continuous, i.e.,

˙
i = fh,i(ˆ̃yi). (7)

Consequently, each local controller that usesˆ̃yi should implement
the holding function fh,i locally. Of course, when a controller Cj
does not depend on ỹi, Cj does not need to generate ˆ̃yi, but,
to derive the model, we proceed as if it would for the sake of
notational convenience. The case of a Zero-Order-Hold (ZOH),
for instance, corresponds to the choice fh,i = 0. For modeling
purposes, we define ŷi and ŵi, where

ŷi((t ik)
+) = yi(t ik), ˙̂yi = fh,i (̂yi + ŵi),

ŵi((t ik)
+) = wi(t ik), ˙̂wi = 0.

(8)

Hence, ŵi is the value of wi at the last transmission instant of
ETM i. Due to the aforementioned definitions, we obtain that
yi = ŷi + ŵi.

We define the ideal network-induced error ei as the difference
between the sampled output ŷi without measurement noise and
the current output yi without measurement noise:

ei := ŷi − yi. (9)

Note that ei is not known by the ETM, and therefore, cannot be
used by the corresponding local triggering condition for deter-
mining t ik, k ∈ N. Hence, we also define the measured network-
induced error ẽi as the difference between the estimated output
yi and the current measured output ỹi, which are both affected
by noise, i.e.,

ei := ˆ̃yi − ỹi = ei + ŵi − wi. (10)

The local ETM at plant i does have access to ẽi. We denote the
concatenated variables corresponding to (9) and (10) as e :=

(e1, e2, . . . , eN ) and ẽ := (̃e1, ẽ2, . . . , ẽN ), respectively.
We proceed by emulation and assume that the controllers

C1, C2, . . . , CN are designed such that, in closed loop with the
plants P1, P2, . . . , PN , the closed-loop system satisfies an input-
to-state stability property in the absence of a communication
network (i.e., under perfect communication in the sense that
y = ỹ). We will formalize these properties in Section 5. Based
on these controllers, which can be designed with any (nonlinear)
design tool as long as the assumption stated in Section 5 holds,
our objective is to determine the transmission times t ik, k ∈ N, for
any i ∈ N , based on suitable local ETMs, to ensure that:

(a) the combined closed-loop system (4), (5) satisfies an input-
to-state practical stability property in the presence of mea-
surement noise and process disturbances;

(b) there exists a strictly positive lower-bound on the time
between any two transmissions generated by ETM i, i.e., for
any initial condition there exists a Ti > 0 such that t ik+1 −

t ik ≥ Ti for all k ∈ N, i ∈ N .

This problem formulation is further formalized in the next section
in terms of hybrid systems concepts.

4. Hybrid model

We model the overall system as a hybrid system H as in
Section 2.3, for which a jump corresponds to the broadcasting
of one of the noisy outputs ỹi, i ∈ N , over the network. We
allow the local triggering (transmission) conditions to depend on

a local auxiliary variable denoted ηi ∈ R≥0, i ∈ N , as is the
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ase in dynamic triggering (Dolk et al., 2017b; Girard, 2015). The
ynamics of ηi is designed in the following. We will also consider

static triggering conditions as a special case, in which case ηi is
ot needed.
We define η := (η1, η2, . . . , ηN ) ∈ RN

≥0, and stack the variables
:= (x1, x2, . . . , xN ) with xi := (xp,i, xc,i), e := (e1, e2, . . . , eN ) and

ŵ := (ŵ1, ŵ2, . . . , ŵN ) in

χ := (x, e, ŵ). (11)

The full state for H becomes ξ := (χ, η) = (x, e, ŵ, η) ∈ X, where
X := Rnx × Rny × W × RN

≥0, W := W1 × W2 × · · · × WN with
Wi as defined in Assumption 1 and nx :=

∑
i∈N

(
nxp,i + nxc,i

)
.

We define the concatenated exogenous inputs ν := (v,w) ∈ V,
where V := V × W , V := Rnv,1 × Rnv,2 × · · · × Rnv,N and with
v := (v1, v2, . . . , vN ) and w := (w1, w2, . . . , wN ). The flow map
F : X × V → X can then be written as

F (ξ, ν) :=

(f (x, e, ŵ, v,w), g(x, e, ŵ, v,w), 0ny , Ψ̄ (̃y,ˆ̃y, ẽ, u, η)). (12)

Based on (4), (5) and (10), we obtain f (x, e, ŵ, v,w) := (f1(x, e, ŵ,
v1, w1), f2(x, e, ŵ, v2, w2), . . . , fN (x, e, ŵ, vN , wN )), where fi : Rnx×

Rny × W × Rnv,i × Rny,i → Rnx,i is given by

fi(x, e, ŵ, vi, wi) :=[
fp,i

(
xp, gc,i(xc,i, gp,i(xp,i) + wi, gp(xp) + e + ŵ), vi

)
fc,i

(
xc,i, gp,i(xp,i) + wi, gp(xp) + e + ŵ

) ]
with gp(xp) := (gp,1(xp,1), gp,2(xp,2), . . . , gp,N (xp,N )). Based on (4),
(7) and (10), we obtain g(x, e, ŵ, v,w) := (g1(x, e, ŵ, v1, w1),
g2(x, e, ŵ, v2, w2), . . . , gN (x, e, ŵ, vN , wN )), where gi(x, e, ŵ, vi, wi
:= fh,i(gp,i(xp,i) + ei + ŵi) − fy,i(x, e, ŵ, vi, wi) with

fy,i(x, e, ŵ, vi, wi) :=

∂gp,i
∂xp,i

fp,i
(
xp, gc,i(xc,i, gp,i(xp,i) + wi, gp(xp) + e + ŵ), vi

)
.

he function Ψ̄ defines the dynamics of the local triggering vari-
bles η, and it is defined as

¯ (̃y,ˆ̃y, ẽ, u, η) := (Ψ̄1(η1, o1), Ψ̄2(η2, o2), . . . , Ψ̄N (ηN , oN )),

where oi := (̃yi,ˆ̃y, ẽi, ui) ∈ Rno,i with no,i := 2ny,i + ny + nu,i is
the locally available information at ETM i, and

Ψ̄i(ηi, oi) = Ψi(oi) − ϕi(ηi), (13)

with ϕi, i ∈ N , any class-K∞ function, and Ψi in (13) will be
constructed in the following.

The flow set C ⊆ X × V is given by

C :=

⋂
i∈N

Ci (14)

with

Ci := {(ξ, ν) ∈ X × V | ηi + θiΨi(oi) ≥ 0} , (15)

here θi ∈ R≥0 is a nonnegative tuning parameter. By selecting a
larger θi, the first triggering occurs earlier than when θi is small,
iven the same initial condition, see Girard (2015, Proposition
.2), where this is shown for the particular case of state-feedback
nd specific functions Ψi, i ∈ N , related to Tabuada (2007).

Generally, enlarging θi results in faster convergence but smaller
inter-event times compared selecting θi smaller, which allows
to tune bandwidth usage vs. performance, see Girard (2015) for
more details.

The jump set is given by

D :=

⋃
Di (16)
i∈N

5

with
Di :=

{
(ξ, ν) ∈ X × V | ηi + θiΨi(oi) ≤ 0

∧ Ψi(oi) ≤ 0
}
.

(17)

he jump map G : X×V ⇒ X is, for any (ξ, ν) ∈ X×V, given by

(ξ, ν) :=

⋃
i∈N

Gi(ξ, ν) (18)

ith

i(ξ, ν) :=

{{
(x,Γ ie,Γ iŵ + Γiw, η)

}
, when (ξ, ν) ∈ Di,

∅, when (ξ, ν) ̸∈ Di,
(19)

here Γi := diag
(
∆i,1,∆i,2, . . . ,∆i,N

)
with

i,j :=

{
0ny,j,ny,j , if i ̸= j,
Iny,j , if i = j,

(20)

nd where Γ i := Iny − Γi. For future use, we use the compact
notation Fχ to denote the flow map of variable χ as

χ (χ, ν) :=
(
f (x, e, ŵ, v,w), g(x, e, ŵ, v,w), 0ny

)
, (21)

nd the jump map Gχ defined as

Gχ (χ, ν) :=

⋃
i∈N

{
(x,Γ ie,Γ iŵ + Γiw)

}
. (22)

The maps Fχ and Gχ will be used to formulate suitable conditions
on the physical system (in absence of a network) for the design
of suitable event generators.

Because of the chosen modeling setup, in particular (8) and
(10), H does not depend on the time-derivative of w as in Abdel-
rahim et al. (2017), Mousavi et al. (2019). This modeling choice
is instrumental to work under more general and more natural
assumptions on the measurement noise, see Assumption 1.

To formalize objective (b) stated at the end of Section 3, we
introduce, for any solution ξ to H for ν ∈ PCV and i ∈ N , the set

Ti(ξ, ν) :=

{
(t, j) ∈ dom ξ | (t, j + 1) ∈ dom ξ ∧ (23)

(ξ (t, j), ν(t)) ∈ Di ∧ (ξ (t, j + 1), ν(t)) ∈ Gi(ξ (t, j), ν(t))
}
.

n words, Ti(ξ, ν) contains all hybrid times belonging to the
ybrid time domain of a solution ξ to H given input ν at which
jump occurs due to triggering condition i (Di and Gi). The next
new) definition will be considered in place of item (b) at the end
f Section 3 in the rest of this paper.

efinition 4. System H has a semi-global individual minimum
nter-event time (SGiMIET) if, for all ∆ ≥ 0 and all i ∈ N , there
xists a τ iMIET > 0 such that for any input v ∈ PCV and associated
olution ξ with |ξ (0, 0)| ≤ ∆, for all (t, j), (t ′, j′) ∈ Ti(ξ, ν),

t + j < t ′ + j′ H⇒ t ′ − t ≥ τ iMIET. (24)

If τ iMIET can be chosen independently of ∆ for all i ∈ N , then
we say that H has a global individual minimum inter-event time
(GiMIET).

Definition 4 means that the (continuous) time between two
successive transmission instants due to a trigger of condition i
are spaced by at least τ iMIET units of time, and that τ iMIET depends
on the set of initial conditions in general.

Using the hybrid model H and the terminology in Definition 4,
we can now formally state the problem formulation at the end of
Section 3 as follows: For a given non-empty closed set A ⊂ Rnx ×

Rny ×W (describing a target set for the state χ ∈ Rnx ×Rny ×W),
synthesize the functions Ψi, i ∈ N , such that AH := {ξ ∈ X | χ ∈

A ∧ η = 0} is ISpS w.r.t. AH and H has the SGiMIET property for
all θ ∈ R , i ∈ N .
i ≥0
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. Main result

.1. Main assumption

As indicated in Section 3, we assume that the controllers Ci,
∈ N , are designed such that the closed-loop system satisfies
uitable stability properties, as formalized below in terms of the
ata of H. We show in Section 6 how these properties can be

naturally obtained for several important case studies.

Assumption 2. There exist α, α, α ∈ K∞, γ ∈ K, βi ∈ K and
ontinuous functions δi : Rno,i → R≥0, where no,i = 3ny,i + nu,i,
or all i ∈ N , a non-empty closed set A ⊂ Rnx × Rny × W and a
ontinuously differentiable function V : Rnx × Rny × W → R≥0
uch that

(i) for any χ ∈ Rnx × Rny × W ,

α(|χ |A) ≤ V (χ ) ≤ α(|χ |A), (25)

(ii) for all χ ∈ Rnx × Rny × W and ν ∈ V,⟨
∇V (χ ), Fχ (χ, ν)

⟩
≤ − α(|χ |A) + γ (|ν|)

+

∑
i∈N

(βi(|̃ei|) − δi(oi)) , (26)

(iii) for all χ ∈ Rnx × Rny × W and ν ∈ V such that (ξ, ν) ∈ D
and g ∈ Gχ (χ, ν),

V (g) − V (χ ) ≤ 0, (27)

(iv) for every p > 0 and ν ∈ PCV, there exists q ≥ 0 such
that for all φ ∈ SH(ν,B)2 with B := {ξ ∈ X | |ξ | ≤ p},
|φ(t, j)| ≤ q for all (t, j) ∈ domφ.

Items (i)-(iii) of Assumption 2 impose Lyapunov conditions
n the χ-system of H. In particular, items (i) and (ii) imply
hat the χ-system satisfies an input-to-state dissipativity prop-
rty during flow w.r.t. the set A, which directly connects to
he controller robustly stabilizing A. These properties may be
erified by Lyapunov-based analysis on the closed-loop dynamics
gnoring the presence of the network at first. After obtaining a
uitable Lyapunov function, the behavior of the network-induced
mperfections can be taken into account by including an ad-
itive disturbance on the output. If the resulting closed-loop
continuous-time) system is ISS with respect to this additive
isturbance, items (i)-(iii) of Assumption 2 are generally satisfied.
tem (iii) implies that the Lyapunov function does not increase at
umps. This condition directly holds when the expression of V
nly involves x, for instance, as x evolves continuously over time
nd is thus not affected by jumps. As we will see in Section 6.2.2,
n some existing ETC setups, the Lyapunov function involves e and
he auxiliary variables ηi may be updated after a transmission
and not kept constant as we do here). In such cases, item (iii)
s required to ensure that transmissions do not destabilize the
ystem. Items (i)-(iii) of Assumption 2 imply that, in absence of a
igital network (and thus, ei = ẽi = 0 and ŵi = wi), the set A is
nput-to-state stable with respect to inputs ν.

Item (iv) is a boundedness property of the solutions to H;
his condition directly follows for many relevant cases from items
i)-(iii) of Assumption 2, such as when A is compact, or when
x(A) is compact and a ZOH is employed. More details are given

n Section 5.4, particularly Lemma 1. In other cases, e.g., when
x(A) is unbounded or when A is not compact and a non-zero
olding-function is used, the dynamics of the system have to be

2 SH(ν,B) denotes the set of maximal solutions φ for the hybrid system H
ith φ(0, 0) ∈ B and input ν.
6

xploited to establish item (iv) of Assumption 2, as we will show,
.g., in the consensus case study in Section 6.2.
Again, a broad range of examples of systems verifying As-

umption 2 are provided in Section 6. Items (i), (ii) and (iv)
ay be verified when designing the controllers C1, C2, . . . , CN
nd holding functions fh,i, i ∈ N , at the first step of emulation.
he challenge is to design the local triggering conditions to han-
le the potentially destabilizing effect due to the measurement
oise and the true network-induced error ei in ẽi in item (ii) of
ssumption 2, which is addressed in the next subsection.

.2. Dynamic triggering rules

The next theorem explains how to design the dynamics of the
ynamic triggering variable η, in particular Ψi, i ∈ N , in (13) to
nsure the desired objectives based on Assumptions 1, 2. Its proof
s provided in the appendix.

heorem 1. Consider system H as given by (12), (15), (17) and
19) and suppose Assumptions 1 and 2 hold. We define for all i ∈ N ,
∈ X and all ν ∈ V

i(oi) := δi(oi) − βi(|̃ei|) + ci (28)

ith ci > βi(2wi) being a tuning parameter and wi and βi come
rom Assumptions 1 and 2, respectively. System H with (28) is
ersistently flowing, has a SGiMIET and the set AH := {ξ ∈ X |

χ ∈ A ∧ η = 0} is ISpS for all θi ∈ R≥0, i ∈ N .

Theorem 1 provides the expression of Ψi, i ∈ N , which ensures
that the ISS property of the set A guaranteed by Assumption 2
in the absence of the network, is approximately preserved in
the presence of the digital network. Moreover, the existence of
a strictly positive lower-bound on the inter-event times of each
triggering mechanism is guaranteed. The interest of Theorem 1
lies in its basic nature, generality and in revealing the main
concepts as a ‘‘prescriptive approach’’, and we will show its broad
applicability in several important applications in Section 6.

The expression of Ψi in (28) is based on so-called space-
regularization, as by introducing ci, we enlarge the flow set to
ensure the existence of a SGiMIET. While space-regularization is
well known in the hybrid systems literature and has been used in
different forms in event-triggered control, see, e.g., Årzén (1999),
Borgers and Heemels (2014), Donkers and Heemels (2012),
Miskowicz (2006), the selection of ci has to be done carefully in
the presence of measurement noise, because the Zeno-freeness
a priori only holds if ci satisfies the condition mentioned in
Theorem 1.

A few remarks are in order. First, note that the consequence
of ci > βi(2wi) in Theorem 1 is that we obtain a practical stability
notion, i.e., the constant d in (3) is non-zero, see Remark 3 for
more details. Second, interestingly, Theorem 1 does not require to
make assumptions on the differentiability of wi, and a fortiori on
boundedness properties of ẇi, as was required in various works
in ETC considering measurement noise, see, e.g., Abdelrahim et al.
(2017), Mousavi et al. (2019). Additionally, we may exploit the
structure present in specific scenarios or ETC mechanisms to ob-
tain less conservative bounds for the parameters ci and, in some
cases, a global individual MIET (see Definition 4), as opposed to a
semiglobal one as in Theorem 1, as will be illustrated in Section 6.

5.3. Static triggering rules

We can derive similar results when the triggering conditions
are static, i.e., when no variable ηi is used to define the transmis-
sion instants. In this case, we obtain the hybrid system Hs defined
as
χ̇ = Fχ (χ, ν), (χ, ν) ∈ Cs,
+ s (29)

χ ∈ Gχ (χ, ν), (χ, ν) ∈ D ,
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s
:=

⋂
i∈N

Cs
i , Ds

:=

⋃
i∈N

Ds
i (30)

ith the sets Cs
i ,D

s
i as

Ds
i := {(χ, ν) ∈ Rnx × Rny × W × V | Ψi(oi) ≤ 0},

Cs
i := {(χ, ν) ∈ Rnx × Rny × W × V | Ψi(oi) ≥ 0},

(31)

here Ψi(oi) ≤ 0 is a (local) static triggering condition, which is
esigned according to the following result.

orollary 1. Consider system (29) and suppose Assumptions 1 and
hold. We define for all i ∈ N , χ ∈ Rnx × Rny × W and ν ∈ V

Ψi(oi) := δi(oi) + ci − βi(|̃ei|) (32)

with ci > βi(2wi) a tuning parameter. The system Hs with (32) is
ersistently flowing, has a SGiMIET, and the set A is ISpS.

The proof of Corollary 1 follows similar steps as the proof of
heorem 1, and is therefore omitted.

emark 2. Corollary 1 and Assumption 2 allow us to consider
he special case where δi = 0 for some i ∈ N . In this case, Ψi
s given by Ψi(oi) := ci − βi(|̃ei|), with ci > βi(2wi) a tuning
arameter. Note that triggering conditions of this form are often
alled absolute triggering conditions or fixed threshold policies
n the event-triggered control literature, see, e.g., Årzén (1999),
orgers and Heemels (2014), Miskowicz (2006).

emark 3. The parameters ci for i ∈ N in Theorem 1 and
orollary 1 are directly related to the constant d in the ISpS
efinition (3). From the proof of Theorem 1, it follows that (3)
olds with d =

∑
i∈N ci, where ci comes from (28). Hence,

or a tighter ultimate bound on |ξ (t, j)|AH , we require that the
i’s are smaller. Recall, however, that due to Theorem 1, ci is
ower-bounded by βi(2wi), and thus the infimum value of d is
dmin =

∑
i∈N βi(2wi) to ensure proper SGiMIET and for handling

measurement noise. On the other hand, selecting a small ci im-
lies a small lower bound on the inter-event times, i.e., that the
onstants τ iMIET in (24) are small. Hence, this suggests a trade-
ff between large lower bounds on the inter-event times and
‘asymptotic closeness’’ to AH in terms of d, see (3), which is
unable via the selection of ci, i ∈ N . Of course, the tuning is
imited due to the constants ci being bounded from below by wi.
ence, the guaranteed ultimate bounds are also bounded from
elow, as they are directly dependent on the bounds wi.

emark 4. We recover as a particular case the result of Borgers
nd Heemels (2014, Remark V.3) when we specialize our results
o the same setting, i.e., when a single linear plant model is
onsidered and ZOH devices are implemented. Indeed if βi is the
dentity function as in Borgers and Heemels (2014), we recover
he lower-bound ci > 2wi in Theorem 1. The results here are
more general as they apply to a broad range of nonlinear and
distributed problem setups, as we will show in Section 5.

Remark 5. Due to the modeling similarities, our space-
regularization approach can also be applied to Dolk et al. (2017b)
with minimal adjustments. In Dolk et al. (2017b), time-regulari-
zation is used to design triggers for classes of nonlinear systems
in absence of measurement noise. By including this approach,
these triggering techniques can be made robust to measurement
noise with minimal changes. Due to the additional (notational)
burden of including time-regularization, the (typically stronger)
conditions that are required for time-regularization and the fact
that our technique works without time-regularization, we opted
7

to omit time-regularization from this paper to ensure that the
main message is not blurred by too many technicalities. However,
we would like to point out that by using time-regularization,
there is no need for a (strictly positive) lower bound on the
constants ci, and, hence, we can obtain ISS properties in this case
by selecting ci = 0 for all i ∈ N . As will be demonstrated in
Section 7, including space-regularization can still be beneficial
to obtain more favorable inter-event times close to the desired
stability set A.

5.4. Boundedness of ξ

We provide the following lemma to ensure item (iv) based on
items (i)-(iii) of Assumption 2 for several common cases.

Lemma 1. Consider system H as given by (12), (15), (17) and
(19), with the trigger dynamics as given by (28) in case of dynamic
triggering and (32) in case of static triggering. When Assumption 1
and items (i)-(iii) of Assumption 2 hold, and one of the following
conditions is met:

• A is compact;
• Π x(A) is compact and fh,i = 0 for all i ∈ N ;

hen item (iv) of Assumption 2 also holds.

The proof of this Lemma 1 is provided in Appendix A. Other
ases for which Assumption 2 is satisfied (without having the
onditions of Lemma 1) are discussed in the next section (e.g., the
onsensus case).

. Case studies

In this section, we revisit and extend several existing event-
riggering techniques of the literature to handle measurement
oise, exploiting the prescriptive approach laid down in the pre-
ious sections. We want to stress that a non-exhaustive sample of
few well-known techniques is considered, however, many more
an be handled given the generality of our approach. To apply the
pproach, we prove that Assumption 2 is verified, which allows
s to then directly apply Theorem 1 and Corollary 1. At the end
f this section, in Table 1, the original triggering rules and their
robustified) counterparts are summarized.

.1. The nonlinear single-system case

In this section, we aim to stabilize the origin of a single plant
sing a dynamic output-feedback controller, thereby revisiting
he techniques of Årzén (1999), Girard (2015), Tabuada (2007),
riginally developed for static feedback laws ignoring measure-
ent noise. As such, we consider a single plant P and a single
ontroller C , i.e., N = 1 in Fig. 1, where the plant is given by

:

{
ẋp = fp(x, u, v)
y = gp(xp)

(33)

nd the ‘ideal’ non-networked feedback controller by

:

{
ẋc = fc(xc, y)
u = gc(xc, y).

(34)

he plant and controller states are concatenated as x := (xp, xc),
hose dynamics are then given by

˙ = f (x, ε, v) :=

[
fp(xp, gc(xc, gp(xp) + ε), v)

fc(xc, gp(xp) + ε)

]
. (35)

here ε ∈ Rny can be perceived as an additive measurement
rror. We employ in this case a ZOH, i.e., fh = 0 in (7). We assume
hat the following properties hold.
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Table 1
Comparison of the original triggering rules vs. the modified ones to be robust
to measurement noise using Theorem 1.
Girard (2015), Tabuada (2007) Ψ (o) = σα(|x|) − ϱ(|e|) (static)
Modified Ψ (o) = σα( 12 |̃x|) − ϱ(2|̃e|) + c with c > ϱ(4w)

Garcia et al. (2013) Ψi(oi) = σi(1 − aNi)u2
i −

1
aNie2i (static)

Modified Ψi(oi) = σi(1 − 2aNi)u2
i −

1
aNĩe2i + ci

with ci > 4
aNiw

2
i

Dolk et al. (2019)
Ψi(oi) =(1 − αi)σiu2

i

− (1 − ωi(τi))γ 2
i

(
1
αiσi
λ2i + 1

)
e2i ,

σi = (1 − ϱ)(1 − aNi)

Modified
Ψi(oi) =(1 − αi)σiu2

i + ci

− (1 − ωi(τi))γ 2
i

(
1
αiσi
λ2i + 1

)
ẽ2i ,

σi = (1 − ϱ)(1 − 2aNi)
with ci ≥ 0

Berneburg and Nowzari (2019)Ψi(oi) = σi(1 −
1
2ϑi)u2

i + dieiui −
1
2 γie

2
i

Modified Ψi(oi) = σi(1 − ϑi)u2
i −

( d2i
ϑi

+ γi
)̃
e2i + ci

with ci >
(

d2i
ϑi

+ γi

)
4w2

i

Assumption 3. Maps fp, fc and gc are locally Lipschitz and gp is
continuously differentiable. Additionally, there exist locally Lips-
chitz α, α, α, ϱ,∈ K∞, ϑ ∈ K, a locally Lipschitz positive definite
function ζ : R≥0 → R≥0 and a continuously differentiable
Lyapunov function W : Rn

→ R≥0 satisfying, for all x ∈ Rnx ,
∈ Rny and v ∈ V ,

(|x|) ≤ W (x) ≤ α(|x|) (36)

and

⟨∇W (x), f (x, ε, v)⟩
≤ −α(|x|) − ζ (|y|) + ϱ(|ε|) + ϑ(|v|). (37)

Assumption 3 implies that the origin of ẋ = f (x, ε, v) is
SS with respect to (ε, v). We derive the following result from
ssumption 3.

roposition 2. Consider system (33) with controller (34) and
uppose Assumption 3 holds. Then all conditions of Assumption 2
re met for A = {χ ∈ Rnx × Rny × W | x = 0} with β(s) = ϱ(2s)
or s ≥ 0, δ(o) = ζ ( 12 |̃y|) for ỹ ∈ Rny and V (χ ) = W (x) as in
ssumption 3.

roof. We take V (χ ) = W (x) for all χ = (x, e, ŵ) ∈ Rnx×Rny×W .
By Assumption 3, items (i) and (iii) of Assumption 2 hold. Let
χ = (x, e, ŵ) ∈ Rnx × Rny × W . In view of the definition of Fχ ,
(10) and (37),

⟨∇V (χ ),Fχ (χ, ν)⟩ = ⟨∇W (x), f (x, ẽ + w, v)⟩
≤ −α(|x|) − ζ (|y|) + ϱ(|̃e + w|) + ϑ(|v|),

(38)

where we take ε = ẽ + w, such that the input to the feedback
controller is ˆ̃y = y + ẽ + w. Next, we use the weak triangular
inequality, see Jiang, Teel, and Praly (1994), i.e., for any γ ∈ K,
γ (a + b) ≤ γ (2a) + γ (2b) for any a, b ∈ R≥0, to obtain

⟨∇V (χ ), Fχ (χ, ν)⟩
≤ −α(|x|) − ζ (|y|) + ϱ(2|̃e|) + ϱ(2|w|) + ϑ(|v|).

(39)

From the weak triangular inequality we also obtain −ζ (|y|) −

ζ (|w|) ≤ −ζ
( 1
2 (|y| + |w|)

)
≤ −ζ

( 1
2 |y + w|

)
= −ζ

( 1
2 |̃y|

)
. Thus,

∇V (χ ), Fχ (χ, ν)⟩
≤ − α(|x|) − ζ (|y|) − ζ (|w|) + ϱ(2|̃e|)

+ ϱ(2|w|) + ζ (|w|) + ϑ(|v|)( 1 ) (40)
≤ − α(|x|) − ζ 2 |̃y| + ϱ(2|̃e|) + γ (|ν|)
8

for some γ ∈ K and where we recall that ν = (v,w). Hence
tem (ii) of Assumption 2 holds. Since Π x(A) = {0} (which is
ompact) and fh = 0, item (iv) of Assumption 2 holds as well
ue to Lemma 1. ■

Proposition 2 implies that, for any bounded measurement
oise as defined by Assumption 1, the trigger dynamics defined in
heorem 1 and the static trigger defined in Corollary 1 render the
rigin of the closed-loop system ISpS with the SGiMIET property.
As a special case of Proposition 2, when the output of the

ystem is the full state, i.e., when y = xp, and when the controller
s static, i.e., when u = k(xp) as in Girard (2015), Tabuada (2007),
he conditions on Assumption 3 can be relaxed as follows.

ssumption 4. The maps fp and k are Lipschitz continuous on
ompacts. Additionally, there exist α, α, α, ζ ,∈ K∞, ϑ ∈ K and
a continuously differentiable Lyapunov function W : Rn

→ R
satisfying, for any x ∈ Rnx ,

α(|x|) ≤ W (x) ≤ α(|x|),
⟨∇W (x),f (x, ε, v)⟩ ≤ −α(|x|) + ϱ(|ε|) + ς (|v|),

(41)

implying that the origin of ẋ = f (x, ε, v) is ISS with respect to ε
and v.

We derive the following result from Assumption 4.

Corollary 2. Consider system ẋ = fp(x, u, v) with controller
u = k(x) and suppose Assumption 4 holds. Then all conditions of
Assumption 2 are met for A = {χ ∈ Rnx × Rny × W | x = 0} with
β(s) = ϱ(2s) for s ≥ 0, δ(o) = σα( 12 |̃y|) for ỹ ∈ Rnx , with σ ∈ (0, 1)
a tuning parameter, and V (χ ) = W (x) as in Assumption 4.

Proof. Let x ∈ Rnx . By noting that y = x, we obtain, for any
σ ∈ (0, 1),

−α(|x|) = − (1 − σ )α(|x|) − σα(|x|)
= − (1 − σ )α(|x|) − σα(|y|).

(42)

he result is then obtained by following similar steps as the proof
f Proposition 2. ■

emark 6. Corollary 2 is a generalization of the setting consid-
red in Årzén (1999), Girard (2015), Tabuada (2007), towards the
nclusions of measurement noise as well as process disturbances.
ndeed, if the measurement noise and process disturbances are
bsent, we recover the exact cases as Årzén (1999), Girard (2015),
abuada (2007). Thus, triggers designed by these methods can
e made robust to measurement noise (and process noise) by
pplying the presented approach.

emark 7. For a single system (i.e. when N = 1), the event-
riggered system H has a global MIET when the system and
ontroller dynamics are linear.

.2. Consensus for multi-agent systems

A specific field of interest for ETC is consensus of multi-agent
ystems. We study several event-triggering control schemes in
his context next. We focus on single integrator systems, where
ach plant Pi, which we call agent in this section, has dynamics

˙i = ui, with xi, ui ∈ R, and the output yi = xi. However, the ideas
in this paper apply to more general settings as well.

For a network topology described by a connected weight-
balanced digraph G with Laplacian L, it is known that agents
chieve consensus when the ideal (static) control law

¯ i =

∑
in

(xi − xm), (43)

m∈Vi
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ith V in
i the in-neighbors of agent i, is applied, see Dimarogonas,

razzoli, and Johansson (2012). In vector notation, this is written
s ū = −Lx, where ū := (u1, u2, . . . , uN ) and L is the Laplacian
atrix of the graph. We use the noisy sampled states for each
gent instead of the actual states, resulting in the actual control
aw

i =

∑
m∈V in

i

(̂̃yi −ˆ̃ym) =

∑
m∈V in

i

(xi + ei + ŵi − xj − em − ŵm), (44)

ritten in vector notation as

= −L(x + e + ŵ). (45)

ence, the closed-loop system dynamics are

˙ = −Lx − Le − Lŵ. (46)

e employ a ZOH as the holding function, which results in the
ynamics for the hybrid system as

χ (χ ) = (−Lx − Le − Lŵ, Lx + Le + Lŵ, 0N ). (47)

We are interested in stability properties of the consensus set

A :=

{
χ ∈ RN2

× W | x1 = x2 = · · · = xN
}
. (48)

We show that the results of Section 5 can be applied to render
the ETC schemes of Berneburg and Nowzari (2019), Dolk et al.
(2019), Garcia et al. (2013) robust to measurement noise.

6.2.1. Decentralized strategy for undirected graphs (Garcia et al.,
2013)

For this case we consider an undirected, connected graph. The
event generator is of particular interest, since the original paper
does not show that solutions are Zeno-free, as noted in Nowzari
et al. (2019). By applying the proposed results, we can design
robust distributed triggering rules such that the system H has the
SGiMIET property and thus does not exhibit Zeno behavior.

We consider the Lyapunov function candidate W (x) =
1
2x

⊤Lx
or x ∈ RN . Note that, due to the undirected graph, L⊤

= L. Using
46), for all x ∈ RN ,

∇W (x), f (x, e, ŵ)⟩ = −(x + e + ŵ)⊤L⊤Lx

= − (x + e + ŵ)⊤L⊤L(x + e + ŵ − e − ŵ)

= − u⊤u − u⊤L(e + ŵ)

= − u⊤u − u⊤L(̃e + w),

(49)

where we use (10) to substitute e+ ŵ by ẽ+w. Following Garcia
et al. (2013), using Young’s inequality, we obtain for some a ∈

(0, 1
2Ni

), where Ni denotes the number of neighbors for agent i,
i.e., Ni = card V in

i , that

⟨∇W (x), f (x, e, ŵ)⟩ ≤

∑
i∈N

−(1 − 2aNi)u2
i +

1
aNi

(̃
e2i + w2

i

)
. (50)

imilarly, by using the first expression in (49), we can also bound
t as

∇W (x), f (x, e, ŵ)⟩ ≤

∑
i∈N

−(1 − 2aNi)z2i +
1
aNi

(̃
e2i + w2

i

)
(51)

where zi := Lix, and Li denotes the ith row of the matrix L.
With these preliminaries in place, we are ready to state the next
proposition, with which we show that Assumption 2 holds.

Proposition 3. Assumption 2 holds for (22) and (47) with A as
defined in (48) with βi(s) =

1
aNis2 and δi(oi) = σi(1 − 2aNi)u2

i ,
where Ni denotes the number of neighbors of agent i and a ∈ (0, 1

2Ni
),

∈ (0, 1) are tuning parameters.
i

9

Proposition 3 implies that, for any bounded measurement
noise as defined by Assumption 1, the triggering conditions de-
fined by Theorem 1 and Corollary 1 render the hybrid system H
ISpS w.r.t. AH with the SGiMIET property.

Proof.
We use the Lyapunov function V (χ ) = W (x) = x⊤Lx for any
= (x, e, ŵ) ∈ RN2

× W . According to Dolk et al. (2019, Lemma
), for this Lyapunov function, there exist 0 < β < β such that
|χ |A ≤ V (χ ) ≤ β|χ |A, hence item (i) of Assumption 2 holds.

Additionally, item (iii) holds as x is not affected by jumps. For item
(ii) of Assumption 2, let x ∈ RN and recall that (50) and (51) hold.
Moreover, note that ui as in (44) is included in oi as it is locally
available. Then, for any σi ∈ (0, 1), it holds that⟨
∇V (χ ), Fχ (χ )

⟩
= ⟨∇W (x), f (x, e, ŵ)⟩

≤
∑

i∈N −(1 − σi)(1 − 2aNi)z2i +
1
aNiw

2
i

− σi(1 − 2aNi)u2
i +

1
aNĩe2i

≤ −α(|χ |A) + γ (|w|) +
∑

i∈N −σi(1 − 2aNi)u2
i +

1
aNĩe2i

(52)

for some α ∈ K∞ and γ ∈ K, where α can be obtained
from Nowzari et al. (2019, (3)) and the sandwich bounds. Hence,
item (ii) of Assumption 2 holds. To prove that item (iv) of As-
sumption 2 holds, we cannot use Lemma 1. However, observe
that x̄ =

1
N

∑
i∈N xi is invariant under the dynamics (46) as the

graph is undirected, i.e., ˙̄x = 0, and hence, S := {x ∈ RN
| x̄ =

1
N

∑
i∈N xi} is forward invariant for a fixed x̄ ∈ RN . Let p > 0

nd ν ∈ PCV. Items (i)-(iii) of Assumption 2 are sufficient to
rove (3) (with the disregard of t-completeness), see the proof
f Lemma 1. Since S ∩ Π x(A) =

{
x ∈ RN

| x1 = · · · =

N = x̄(0, 0) =
1
N

∑
i∈N xi(0, 0)

}
is compact when |ξ (0, 0)| is

ounded, it is trivial to see that the x-part of the trajectories
(t, j) lie in a compact set for all |ξ (0, 0)| ≤ p. Due to the use
f the ZOH, the network-induced error is then necessarily upper-
ounded by the maximum of the distance between two points
n the compact set of trajectories of x and the value of e(0, 0)
(see the proof of Lemma 1, case 2). Since this set is compact,
the network-induced error cannot grow unbounded. Moreover,
ŵ ∈ W which is compact. Lastly, Πη(AH) = {0}, therefore, η
emains bounded over the trajectories of the hybrid system due
o the ISpS properties. Hence, there exists a q ≥ 0 such that for
ll (maximal) solutions with |ξ (0, 0)| ≤ p, |ξ (t, j)| ≤ q for all
t, j) ∈ dom ξ . Thus, item vi) of Assumption 2 holds, and all items
f Assumption 2 are satisfied. ■

.2.2. Decentralized strategy including time-regularization for undi-
ected graphs (Dolk et al., 2019)

Here we consider the setup of Dolk et al. (2019) without trans-
mission delays to avoid blurring the exposition with too many
technicalities. For this case we consider an undirected, connected
graph. For the scheme of Dolk et al. (2019), we require that each
agent has an internal clock, τi ∈ R≥0, such that τ̇i = 1 on flows
nd τ+

i = 0 at any triggering instant of agent i, i.e., the clock is
eset if agent i transmits its state. We denote the hybrid system
n which these clocks are integrated in H with Hclock. Hence, the
state for the hybrid system can be written as ξ = (χ, τ , η) where
χ = (x, e, ŵ) is as before in (11), and τ := (τ1, τ2, . . . , τN ).

To prove that Assumption 2 holds in order to be able to apply
Theorem 1 and Corollary 1, we analyze the Lyapunov function
candidate W (x) =

1
2x

⊤Lx for any x ∈ RN . Based on a similar
procedure as in Section 6.2.1, we can deduce that

⟨∇W (x), f (x, e, ŵ)⟩
≤

∑
−(1 − 2aN )u2

+
1N

(
e2 + ŵ2

)
(53)
i∈N i i a i i i
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∇W (x), f (x, e, ŵ)⟩
≤

∑
i∈N −(1 − 2aNi)u2

i +
1
aNi

(
e2i + ŵ2

i

)
. (54)

Combining the two inequalities (53) and (54) results in

⟨∇W (x), f (x, e, ŵ)⟩
≤

∑
i∈N −diz2i − σiu2

i + (γ 2
i − µi)e2i +

1
aNiŵ

2
i , (55)

ee also (Dolk et al., 2019), with di := ϱ(1−2aNi), σi := (1−ϱ)(1−

aNi) and γi :=

√
1
aNi + µi and where a ∈ (0, 1

2Ni
), ϱ ∈ (0, 1) and

µi ∈ R>0 are tuning parameters. Additionally, we define

ωi(τi) :=

⎧⎨⎩
{1}, when τi ∈ [0, τ iMIET),
[0, 1], when τi = τ iMIET,

{0}, when τi > τ iMIET,

(56)

with constant τ iMIET as

τ iMIET = −

√
αiσi

γi
arctan

(
(λ2i − 1)

√
αiσi

λi(αiσi + 1)

)
, (57)

where αi, λi ∈ (0, 1) are tuning parameters.
We show again that Assumption 2 holds.

Proposition 4. Assumption 2 holds for (22) and (47) with

A⋆
=

{
(χ, τ ) ∈ R2N

× W × RN
≥0 | xi = xm for all

i,m ∈ N ∧ e = 0 ∧ τ ∈ RN
≥0

}
, (58)

βi (̃ei, τi) = (1 − ωi(τi)) × γ 2
i

(
1
αiσi
λ2i + 1

)
ẽ2i and δi(oi) = (1 −

i)σiu2
i , where di, ϱ, σi, γi come from (55) and τi, ωi from (56) and

57), respectively.

Proposition 4 implies that, for any bounded measurement
oise as defined by Assumption 1, the ETMs defined by Theorem 1
ender the hybrid system Hclock ISpS w.r.t. AHclock = {(χ, τ , η) ∈

R2N
× W × RN

≥0 × RN
≥0 | (χ, τ ) ∈ A⋆

∧ η = 0}. Let us note
that, due to the inclusion of the timer-dependent function ωi in
he triggers, the system has a GiMIET (instead of a SGiMIET) in
his particular case, and, as it cannot have finite escape times, is
herefore persistently flowing. Additionally, there is no require-
ent (i.e., no lower bound) on the space-regularization constants

i, and, in fact, if ci = 0 for all i ∈ N , we obtain ISS w.r.t.
Hclock (instead of ISpS). The specific choice of ωi where ωi(τi)

s set-valued when τi = τ iMIET makes the function outer semi-
ontinuous, which ensures well-posedness of the hybrid system,
ee Goebel et al. (2012, Theorem 6.30). The fact that ωi is set-
alued does not matter for solutions, as ωi is only set-valued at
measure zero set, hence via Carathéodory’s existence theorem
e still have solutions in the extended sense, i.e., any solution
atisfies the differential equation almost everywhere.

roof. We are interested in the stability of the set A⋆ in (58).
To this end, we analyze the Lyapunov function, for any (χ, τ ) ∈

R2N
× W × RN

≥0,

U(χ, τ ) = W (x) +

∑
i∈N

γiφi(τi)e2i (59)

with
dφi

dτi
= −ωi(τi)γi

( 1
αiσi

φ2
i (τi) + 1

)
(60)

nd initial condition φi(0) = λ−1
i where λi ∈ (0, 1) is a tuning

arameter. Strictly speaking U is Lipschitz and not continuously
ifferentiable and the generalized Clarke derivative should be
 i

10
sed here. However, as τ̇i = 1,
⟨
∇U(χ, τ ), Fχ (χ )

⟩
exists almost

verywhere, and thus Proposition 1 holds almost everywhere,
ence we continue with slight abuse of notation by writing the
erivative of U as if it was continuously differentiable. The con-
tant τ iMIET is chosen such that φi(τ iMIET) = λi, which ensures that
φi(τi) ≥ λi for all τi ∈ R≥0. As stated in Dolk et al. (2019), there
exist α1, α2 ∈ K∞ such that α1(|χ |A) ≤ U(ξ ) ≤ α2(|χ |A), hence,
tem (i) of Assumption 2 holds. For any (χ, τ ) ∈ R2N

×W ×RN
≥0,⟨

∇U(χ, τ ), Fχ (χ )
⟩

≤ ⟨∇W (x), f (x, e, ŵ)⟩ +

∑
i∈N

γi
dφi

dτi
e2i + 2γiφieiui

≤

∑
i∈N

−diz2i − σiu2
i + (γ 2

i − µi)e2i +
1
a
Niŵ

2
i

+ γi
dφi

dτi
e2i + γ 2

i
1
αiσi

φ2
i e

2
i + αiσiu2

i

≤

∑
i∈N

−diz2i − µie2i +
1
a
Niŵ

2
i

− (1 − αi)σiu2
i + (1 − ωi(τi))γ 2

i

( 1
αiσi

λ2i + 1
)
e2i .

(61)

Due to (10), we can upper-bound e2i as

e2i = (̃ei − ŵi + wi)2

= ẽ2i + ŵ2
i + w2

i − 2̃eiŵi + 2̃eiwi − 2ŵiwi
= ẽ2i + ŵ2

i + w2
i − 2(̃ei + ŵi − wi)ŵi

+2(̃ei + ŵi − wi)wi − 2ŵiwi
= ẽ2i − ŵ2

i − w2
i + 2ŵiwi − 2eiŵi + 2eiwi

≤ ẽ2i − ŵ2
i − w2

i + ŵ2
i + w2

i + 2κie2i +
1
κi

(
ŵ2

i + w2
i

)
ẽ2i + 2κie2i +

1
κi

(
ŵ2

i + w2
i

)
(62)

for any κi ∈ R≥0. Then, we select κi such that

κi :=
ϑiµi

2

(
γ 2
i

( 1
αiσi

λ2i + 1
))−1

(63)

or some ϑi ∈ (0, 1). With this, we deduce from (61) that⟨
∇U(χ, τ ), Fχ (χ )

⟩
≤

∑
i∈N −diz2i − µie2i +

1
aNiŵ

2
i − (1 − αi)σiu2

i

+ (1 − ωi(τi))γ 2
i

(
1
αiσi
λ2i + 1

)
e2i

≤
∑

i∈N −diz2i − (1 − ϑi)µie2i +
1
aNiŵ

2
i +

1
κi

(
ŵ2

i + w2
i

)
− (1 − αi)σiu2

i + (1 − ωi(τi))γ 2
i

(
1
αiσi
λ2i + 1

)̃
e2i

≤ α(|χ |A⋆ ) +ϖ (|w|) +
∑

i∈N −(1 − αi)σiu2
i

+ (1 − ωi(τi))γ 2
i

( 1
αiσi

λ2i + 1
)̃
e2i . (64)

for some ϖ ∈ K, and, indeed, item (ii) of Assumption 2 holds.
Additionally, for any (χ, τ ) ∈ R2N

× W × RN
≥0 and (g, τ+) ∈

Gχ (χ,w),

U(g, τ+) − U(χ, τ ) = −γiλie2i ≤ 0, (65)

and item (iii) of Assumption 2 also holds. To prove that item (iv)
of Assumption 2 holds, we refer to the proof of Proposition 3, as
the set S := {x ∈ RN

| x̄ =
1
N

∑
i∈N xi} is also forward invariant

for fixed x̄ in this case.
The terms related to ŵi have been absorbed in the functionϖ ,

s its L∞-norm can be bounded as

ŵi∥∞ ≤ ∥wi∥∞, (66)

ence, we can obtain a similar condition as (3) based on ∥wi∥∞.
The fact that τi in theory may grow unbounded as t → ∞

s not an issue, as the value of U(χ, τ ) is not affected by τ when
i
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i > τ iMIET. Hence, we could take the dynamics of τi as τ̇i = ωi( 12τi),
hich would not affect the system behavior, but it would ensure
hat τi ∈

[
0, 2τ iMIET

]
. Since, in that case, all states would remain

ounded, the satisfaction of item (iv) of Assumption 2 is not
ffected by our initial choice of the dynamics for τi and the fact
hat A∗ is unbounded in τ .

Due to the inclusion of the timer ωi in the function βi, by
efinition Ψi(oi) ≥ 0 for all τi ∈ [0, τ iMIET], hence, the system
as a GiMIET. Thus, the system is persistently flowing and Hclock
s IS(p)S w.r.t. AHclock . Moreover, due to the GiMIET, we do not
equire the lower-bound on ci. When ci = 0 is selected for all
∈ N , the system Hclock is ISS. ■

emark 8. Eq. (65) in the proof of Proposition 4 implies that we
an modify the reset of ηi as
+

i (oi) := ηi + γiλi (max [|̃ei| − 2w, 0])2 . (67)

s a result we use an estimated lower bound for ei, i.e.,

ηi(oi)+ ≤ ηi + γiλie2i , (68)

so that item (iii) of Assumption 2 still holds, while only using
locally available information (i.e. ẽi and not ei). This may be
of interest, as increasing ηi after a reset directly increases the
inter-event times. Hence, by modifying the reset, the average
inter-event time may become significantly larger when the initial
condition is sufficiently far from the consensus set.

6.2.3. Decentralized strategy for weight-balanced digraphs (Berneb-
urg & Nowzari, 2019)

In the case of Berneburg and Nowzari (2019), we consider a
network topology described by weight-balanced digraphs. Hence,
this scheme requires a less restrictive network topology com-
pared to Sections 6.2.1 and 6.2.2.

Proposition 5. Assumption 2 holds for (22) and (47) with A

as defined in (48), βi(s) =

(
d2i
ϑi

+ γi

)
s2 for any s ≥ 0 and

i(oi) = σi(1 − ϑi)u2
i , where di denotes the degree of agent i,

ϑi :=
∑

j∈V out
i
αijϱij, γi :=

∑
j∈V in

i

αji
ϱji
, and with ϱij > 0 (chosen

uch that ϑi ∈ (0, 1)) and σi ∈ (0, 1) tuning parameters.

roof. We start by analyzing the Lyapunov function V (χ ) =
1
2x

⊤L⊤x for any χ ∈ R2N
×W . Due to the properties of L, item (i)

f Assumption 2 holds. Additionally, item (iii) holds trivially. Note
hat from Berneburg and Nowzari (2019, (13)), we know that for
ny additive disturbance ε ∈ RN and any x ∈ RN , it holds that⟨
∇V (χ ), Fχ (x, ϵ, 0N )

⟩
≤

∑
i∈N

−(1 −
1
2ϑi)u2

i − diεiui +
1
2γiε

2
i (69)

ith ϑi :=
∑

m∈V out
i
αimϱim, di the degree of agent i, γi :=

m∈V in
i

αmi
ϱmi

and where ϱim > 0 are tuning parameters. Recall
hat αim denotes the weights corresponding to the graph. By
ubstitution of ε = e + ŵ = ẽ + w in (69), we obtain⟨
∇V (χ ), Fχ (χ )

⟩
≤

∑
i∈N

−(1 −
1
2ϑi)u2

i − di (̃ei + wi)ui +
1
2γi (̃ei + wi)2. (70)

y applying Young’s inequality, we derive⟨
∇V (χ ), Fχ (χ )

⟩
≤

∑
−(1 − ϑi)u2

i +
1
2

(
d2i
ϑ

+ γi

)
(̃ei + wi)2.

(71)
i∈N i

11
s, for any p, q ∈ R, it holds that 1
2 (p + q)2 ≤ p2 + q2, we obtain⟨

∇V (χ ), Fχ (χ )
⟩

≤

∑
i∈N

−(1 − ϑi)z2i +

(
d2i
ϑi

+ γi

)
ẽ2i +

(
d2i
ϑi

+ γi

)
w2

i ,
(72)

here zi = Lix with Li the ith row of matrix L. Note that the
onstants ϱij are chosen such that ϑi ∈ (0, 1). Then, for any
i ∈ (0, 1), it holds that

∇V (χ ), Fχ (χ )
⟩
≤

∑
i∈N

−(1 − σi)(1 − ϑi)z2i +

(d2i
ϑi

+ γi

)
w2

i

−σi(1 − ϑi)u2
i +

(d2i
ϑi

+ γi

)̃
e2i , (73)

nd item (ii) of Assumption 2 also holds with δi(oi) and βi(s) as
pecified in Proposition 5. To prove that item (iv) of Assumption 2
olds we refer to the proof of Proposition 3 (due to the graph
eing weight-balanced, x̄ is also invariant under the dynamics in
his case). Hence, all items of Assumption 2 are satisfied. ■

A comparison between the original ETM and robustified one
or measurement noise of several examples in this section are
ummarized in Table 1.

. Numerical examples

We illustrate our results through several numerical examples.
n all simulations, we use piecewise constant noise signals that
re generated using a uniform probability distribution, i.e., after
0−4 seconds have elapsed, we generate a new random number
rom a uniform distribution to obtain a new value for the distur-
ances and noises ν. Thereby, the generated signals are random
nd discontinuous.

.1. Lorenz attractor

We consider the controlled Lorenz model of fluid convection
n Abdelrahim, Postoyan, Daafouz, and Nešić (2016) affected by
xternal disturbances and measurement noise. The system has
ynamics

:

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = −ax1 + ax2 + v1

ẋ2 = bx1 − x2 − x1x3 + u + v2

ẋ3 = x1x2 − cx3 + v3

y = x1

(74)

ith parameters a, b, c related to some physical constants, all
egin strictly positive. This system is controlled by the static
utput feedback controller

= −

(p1
p2

a + b
)
y (75)

where p1, p2 > 0. We select fh = 0 in (8), i.e., we apply a ZOH,
and are interested in stabilizing the origin of the system, i.e., we
are interested in the stability of the set A := {χ ∈ Rnx ×Rny ×W |

x = 0}.

Proposition 6. Consider system (74) with controller (75). All
conditions of Assumption 2 are met for A := {χ ∈ Rnx ×Rny ×W |

x = 0} with β(s) =
2
µp2

(
p1a + p2b

)2s2 for s ≥ 0, δ(o) =
1
2σap1̃y

2

for ỹ ∈ Rny and V (χ ) = p1x21 + p2x22 + p2x23.

Proof. Let V (χ ) := p1x21 + p2x22 + p2x23 for all χ ∈ Rnx ×

Rny × W . Item (i) of Assumption 2 holds, as min{p1, p2}|χ |
2
A ≤

V (χ ) ≤ max{p , p }|χ |
2 . Computing the derivative of V along
1 2 A
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he trajectories of χ , we obtain for any χ ∈ Rnx × Rny × W and
∈ V, after some simplification and recalling that e+ŵ = ẽ+w,

∇V (χ ), Fχ (χ, ν)⟩ = − 2ap1x21 − 2p2x22 − 2cp2x23
+ 2p1v1x1 + 2p2v2x2 + 2p2v3x3
− 2(ap1 + bp2)x2 (̃e + w).

(76)

y applying Young’s inequality, the right-hand side of (76) can be
ounded as

∇V (χ ), Fχ (χ, ν)⟩ ≤ −ap1x21 − p2x22 − cp2x23
1
ap1v

2
1 + 2p2v22 +

1
c p2v

2
3 − 2(ap1 + bp2)x2 (̃e + w).

(77)

Since, due to Young’s inequality, for any µ > 0 it holds that

−2(ap1 + bp2)x2 (̃e + w) ≤ µp2x22 +
1
µp2

(
p1a + p2b

)2 (̃e + w)2

≤ µp2x22 +
2
µp2

(
p1a + p2b

)2 (̃e2 + w2)

nd for all w, x1 ∈ R it holds that

x21 = −x21 − w2
+ w2

≤ −
1
2 (x1 + w)2 + w2,

we conclude that

⟨∇V (χ ), Fχ (χ, ν)⟩ ≤ −α|x|2A + γ |ν|2

+
2
µ

( p1
p2
a + b

)̃
e2 −

1
2σap1(x1 + w)2 (78)

where σ ,µ ∈ (0, 1), and for some sufficiently small α > 0 and
sufficiently large γ > 0, hence item (ii) of Assumption 2 holds
with β(s) =

2
µp2

(
p1a + p2b

)2s2 for s ≥ 0 and δ(o) =
1
2σap1̃y

2

or ỹ ∈ Rny . Since V (χ ) only involves x, which is not affected by
umps, item (iii) of Assumption 2 is naturally satisfied. For item
iv) of Assumption 2, we use the results of Lemma 1, as Π x(A) is
ompact and fh = 0. ■

We simulate the results of Proposition 6. We set the parameter
alues to a = 10, b = 28, c = 8/3, and we take p1 = 3 and p2 =

a as in Abdelrahim et al. (2016). We select the tuning parameters
= 0.8, σ = 0.75 and the function ϕ(η) := ϵηη with ϵη = 0.05.
e select vi as a piecewise constant function generated by taking

alues of vi every 10−4 time units from a uniform probability
istribution in the interval [−2, 2]. Hence, ∥vi∥∞ ≤ 2 for all
∈ {1, 2, 3}. Moreover, for the measurement noise we choose

w = 1 · 10−4, and it is generated via the procedure described at
the start of Section 7. Lastly, we select the space-regularization
parameter c = 0.1, which satisfies c > β(2w) = 0.0025.
We demonstrate the results of Theorem 1, i.e., we implement a
dynamic triggering scheme with trigger dynamics

η̇ =
1
2σap1̃y

2
−

2
µp2

(ap1 + bp2)2̃e2 + c − ϵηη (79)

and do pure dynamic triggering, i.e., we set θ = 0 and trigger
when η = 0. The resulting trajectories and inter-event times are
plotted in Fig. 2.

From Fig. 2 we deduce that, close to the attractor, inter-event
times are several orders of magnitude larger than the minimum
inter-event time. Hence, sparse communication is preserved in
the presence of measurement noise, while (practical) stability is
preserved.

7.2. Consensus

In this section, we illustrate the results of Sections 6.2.1-2
with N = 8 agents that are connected as described in Fig. 3. In
both cases we set wi = 10−4 for all i ∈ N , i.e., wi is generated
ia the procedure described at the start Section 7, and its values
re taken from a uniform probability distribution in the interval
−10−4, 10−4

].
12
Fig. 2. Evolution of the states (top) and inter-event times (bottom) of the
Lorenz oscillator using the dynamic trigger obtained by applying Theorem 1
to Proposition 6 with c = 0.1 and initial condition x(0, 0) = (−20,−20, 30).

Fig. 3. The undirected communication topology used in the numerical examples.

7.2.1. Decentralized static ETM of Proposition 3
To illustrate the results of Proposition 3, we select σi = 0.5

for all i ∈ N and a = 0.1. Note that, for these parameters,
axi(βi(2wi)) = 1.2 · 10−6, hence we select ci > 1.2 · 10−6 to

guarantee Zeno-freeness. We demonstrate the results of Corol-
lary 1, i.e., we apply static triggering. Two cases are simulated,
first with no space-regularization for all i ∈ N (i.e. ci = 0),
to demonstrate that we indeed obtain Zeno-like behavior, and
second with ci = 2 · 10−6 > maxi(βi(2wi)). In Fig. 4, the
evolution of the states xi, i ∈ N and the corresponding inter-event
times for ci = 0 are shown for the initial condition x(0, 0) =

(8, 6, 4, 2,−2,−4,−6,−8), e(0, 0) = 0N and ŵ(0, 0) = w(0).
Fig. 5 depicts the same simulations for ci = 2 · 10−6.

We note that when ci = 0 for all i ∈ N , we indeed obtain
‘‘Zeno-like’’ behavior, see, e.g., Yang et al. (2015), Yu et al. (2021),
i.e., the inter-event times converge to the times where noise
signal is discontinuous when close to the consensus set. If the
space-regularization constant ci is designed properly (e.g., as in
Fig. 5), we can see that indeed the inter-event times close to the
consensus set remain relatively large, and desirable behavior for
the overall system is obtained.

7.2.2. Decentralized dynamic ETM of Proposition 4
For the simulation of the dynamic triggering condition of

Proposition 4, the tuning parameters of Dolk et al. (2019) are
used, i.e., ϱ = µi = ϵη,i = 0.05, a = 0.1 and αi = 0.5 for all
i ∈ N . We thus obtain γi = 4.478 and σi = 0.76 for agents i ∈ N
with two neighbors (i.e., Ni = 2, thus agents P1, P4, P6 and P7) and
γi = 5.482 and σi = 0.665 for agents i ∈ N with three neighbors

(i.e., Ni = 3, thus agents P2, P3, P5 and P8). We choose λi = 0.2 for
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Fig. 4. Evolution of the states (top) and inter-event times (bottom) of the MAS
using the static trigger obtained by applying Corollary 1 to Proposition 3 with
ci = 0 and initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

Fig. 5. Evolution of the states (top) and inter-event times (bottom) of the MAS
using the static trigger obtained by applying Corollary 1 to Proposition 3 with
ci = 2 · 10−6 and initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

ll agents. For these values, we obtain τ iMIET = 0.1562 for agents
∈ N for which Ni = 2 and τ iMIET = 0.1180 for agents i ∈ N for
hich Ni = 3.
We demonstrate the results of Theorem 1, i.e., we apply dy-

amic triggering. Two cases are simulated, first with no space-
egularization for all i ∈ N , for which we obtain ISS w.r.t. the
onsensus set, second with space-regularization constant ci =

· 10−5 for all i ∈ N , for which we have ISpS w.r.t. the con-
ensus set. To compare with the results to Dolk et al. (2019) (not
onsidering measurement noise), in all cases we select θi = 0.
In Fig. 6, the evolution of the states xi, i ∈ N , with ci = 0
and the corresponding inter-event times are shown for the initial
condition x(0, 0) = (8, 6, 4, 2,−2,−4,−6,−8), e(0, 0) = 0N ,ˆ(0, 0) = w(0), τ (0, 0) = 0N and η(0, 0) = 0N . Fig. 7 depicts
he same simulations for ci = 1 · 10−7.

From Figs. 6 and 7 we can make a few observations. For
= 0, close to the consensus set the inter-event times are
i

13
Fig. 6. Evolution of the states (top) and inter-event times (bottom) of the MAS
using the dynamic trigger obtained by applying Theorem 1 to Proposition 4 with
ci = 0 and initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

Fig. 7. Evolution of the states (top) and inter-event times (bottom) of the MAS
using the dynamic trigger obtained by applying Theorem 1 to Proposition 4 with
ci = 1 · 10−7 and initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

generally close to τ iMIET. This can be explained from the obser-
vation that, in these cases, η+

i = 0 and ui is generally small,
nd consequently, the increase in ηi for τ ∈ [0, τ iMIET) is limited.
dditionally, we observe that by selecting a ci > 0, the inter-
vent times are generally significantly larger than the enforced
inimum inter-event time. Moreover, because there is no lower-
ound on ci, a relatively small ci is often sufficient to obtain
esirable average inter-event times. We want to stress that this is
beneficial aspect of this particular scheme, since in general there
re constraints on the minimum size of the space-regularization
onstants ci to ensure Zeno-freeness.
Even though the inclusion of ci leads to ISpS instead of ISS

roperties, applying space-regularization leads to triggering con-
itions that are not only robust to measurement noise, but also
ave, on average, larger inter-event times for the considered sim-
lations. Since ISS only leads to asymptotic behavior of the con-
ensus set for vanishing noise, and since most measurement noise
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Fig. 8. Distance of agents to the consensus set A.

s non-vanishing, practical stability or ISpS with larger inter-
vent times may be more desirable when having communication
imitations in mind.

In Fig. 8, the distance of the solution to the consensus set is
epicted. We note that even though the inter-event times are
ore favorable if we apply space-regularization, the remaining
istance to the consensus set has the same order of magnitude,
hich underlines the effectiveness of applying both space- and
ime-regularization at the same time.

. Conclusions

In this paper, we presented a general ‘‘prescriptive’’ approach
or set stabilization of event-triggered control systems affected
y measurement noise. It is shown how, by careful design, to
btain both dynamic and static triggering conditions that render
closed set input-to-state (practically) stable with a guaranteed
ositive (semi-)global individual minimum inter-event time. Key
o obtaining this approach is a novel hybrid model that describes
he behavior of event-triggered control systems and the careful
pplication of space-regularization. Due to this model and the
pace-regularization, differentiability conditions are not required
n the measurement noises, as opposed to the existing works
n the literature. The strengths and generality of the approach
ere demonstrated on several interesting event-triggered control
roblems, such as the stabilization of the origin for single-plant
ystems and consensus problems for multi-agent systems, robus-
ifying them for measurement noise. The approach presented in
his paper is focused on to CETC, but the main concepts can be
sed as a starting point for the development of PETC schemes
hat are robust to noises as well, in the sense that communication
ccurs sparsely rather than reducing to (approximately) periodic
ommunication with the inter-event times equal to the sampling
eriod, when the state is close to the desired stability set.

ppendix A. Proofs

The first step in proving Theorem 1 and Lemma 1 is to ensure
he satisfaction of the Lyapunov conditions in Proposition 1. To
his end, we introduce the Lyapunov function candidate U , de-
fined for all ξ ∈ X, where we recall that X = Rnx ×Rny ×W×RN

≥0,
as

U(ξ ) := V (x) +

∑
i∈N

ηi. (A.1)

The following lemma will be useful in the sequel.

Lemma 2. Consider system H as given by (12), (15), (17), (19),
and (28). When Assumption 1 and items (i)-(iii) of Assumption 2
are satisfied, items (i)-(iv) of Proposition 1 are also satisfied.

Proof. Recall that V is continuously differentiable by Assump-

tion 2, hence the function U is also continuously differentiable.

14
Since Πξ (C∪D) ⊆ X and U is continuously differentiable, item (i)
of Proposition 1 holds. Recall that AH := {ξ ∈ X | χ ∈ A∧η = 0}.
Due to item (i) of Assumption 2, there exist functions α1, α2 ∈ K∞

such that for all ξ ∈ X

α1(|ξ |AH ) ≤ U(ξ ) ≤ α2(|ξ |AH ) (A.2)

and thus item (ii) of Proposition 1 holds. Next, we have for all
ξ ∈ X and ν ∈ V,

⟨∇U(ξ ), F (ξ, ν)⟩ ≤
⟨
∇V (χ ), Fχ (χ, ν)

⟩
+

∑
i∈N

Ψ̄i(oi)

(13),(26),(28)
≤ −α(|χ |A) + γ (|ν|) +

∑
i∈N

(
ci − ϕi(ηi)

)
≤ −αd(|ξ |AH ) + γ (|ν|) + c (A.3)

with c :=
∑

i∈N ci and for some αd
∈ K∞. Hence, item (iii) of

Proposition 1 holds. In view of (19) and (27), we note that for all
(ξ, ν) ∈ D and g ∈ G(ξ, ν),

U(g) − U(ξ ) ≤ 0, (A.4)

thus, item (iv) of Proposition 1 also holds. ■

Since we have not established that the system is persistently
flowing, we cannot claim that AH is IS(p)S, however, the bound
(3) of Definition 3 holds w.r.t. AH as long as the solution is
efined (i.e., for all (t, j) ∈ dom ξ ). A similar argument can be
onstructed for the hybrid system Hs given by (21), (22), (30) and
he static triggering condition (32).

.1. Proof of Theorem 1

Due to Lemma 2, we are left with proving that all maximal
olutions to H are complete and that H has a SGiMIET, which
mplies that H is persistently flowing. We continue with proving
ompleteness of maximal solutions first.

.1.1. Completeness of maximal solutions
To prove that all maximal solutions are complete, we use the

ollowing proposition, which is taken from (Heemels et al., 2021,
roposition 9), using closedness of C.

roposition 7.
Consider the hybrid system H in Section 4 where Ψi is given by

28). Given an input ν ∈ PCV, there exists a non-trivial solution φ
o H with φ(0, 0) = ξ ∈ X if and only if (ξ, ν(0)) ∈ D or

(VC) there exist ϵ > 0 and an absolutely continuous function z :

[0, ϵ] → Rnx such that z(0) = ξ , ż(t) ∈ F (z(t), w(t)) for
almost all t ∈ [0, ϵ] and (z(t), w(t)) ∈ C for all t ∈ [0, ϵ].

If (VC) holds for all ξ ∈ Rnx and all ν ∈ PCV with (ξ, ν(0)) ∈ C \D,
then for all ν ∈ PCV every maximal solution φ ∈ SH(ν) satisfies
exactly one of the following properties:

(a) φ is complete;
(b) φ is not complete and ‘‘ends with flow’’: domφ is bounded

and the interval I J := {t : (t, J) ∈ domφ} with J =

supj domφ is open to the right, and there does not exist an
absolutely continuous function z : I J → X satisfying ż(t) ∈

F (z(t), ν(t)) for almost all t ∈ I J and (z(t), ν(t)) ∈ C for all
t ∈ int I J , and such that z(t) = φ(t, J) for all t ∈ I J ;

(c) φ is not complete and ‘‘ends with a jump’’ or a ‘‘discontinuity’’
of w: domφ is bounded with (T , J) := sup domφ ∈ domφ,
(φ(T , J), ν(T )) ̸∈ C ∪ D.
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Let ν ∈ PCV and (ξ, ν(0)) ∈ C \ D be given. To ensure
ompleteness of φ ∈ SH(ν), we first prove that (VC) holds. Let
1 > t0 = 0 denote the time at which the first discontinuity
n ν occurs. There exists an ϵ1 ∈ (0, t1) such that v and w

re continuous on [0, ϵ1]. Since F in (12) is continuous in both
he state and time, we can use Peano’s existence theorem to
onclude that there exist (possibly multiple) solutions z to ż(t) ∈

(z(t), ν(t)) with z(0) = ξ defined on [0, ϵ2] where ϵ2 ≤ ϵ1.
ext, we have to show that the solutions z(·) remain in C on
0, ϵ] for some ϵ ∈ (0, ϵ2]. We write z = (x, e, ŵ, η). Observe
hat if we have for all i ∈ N that ηi(0) > 0, |ŵi(0)| < wi and
i(0) + θiΨi(oi(0)) > 0 then certainly the solution will remain
n Ci for some nontrivial time window due to the ‘‘gap’’ to the
oundary of C in (15) and continuity of solutions. Consider all

⊆ N for which one of these inequalities does not hold and
et i ∈ M. For i ∈ M and since ξ ∈ C \D we can distinguish three
ases, which may or may not hold simultaneously:

(1) ηi(0) + θiΨi(oi(0)) = 0 and Ψi(oi(0)) > 0 (implying that
θi = 0),

(2) ηi(0) = 0 and ηi(0) + θiΨi > 0 (implying that Ψi > 0),
(3) |ŵi(0)| = wi.

For cases (1) and (2), we note that η̇i(0) = Ψ̄i(ηi(0), oi(0)) =

i(oi(0)) > 0. Recall that x, e, ŵ, η and w are continuous on the
nterval [0, ϵ2]. Since ηi(0) = 0, Ψ̄i is continuous, and Ψi(oi) > 0
for some nontrivial time window, we find that ηi ≥ 0 on this time
window by means of the comparison lemma, and consequently
ηi + θiΨi(oi) ≥ 0 on some time window. For case (3), we note
that, in view of (8), ˙̂w = 0. Consequently, in all cases, there exists
ϵ′

i ∈ [0, ϵ2] such that z(t) ∈ Ci for any t ∈ [0, ϵ′

i ]. Since C is the
intersection of C1, . . . , CN with N ∈ N>0, there exists ϵ > 0 such
that z(t) ∈ C for any t ∈ [0, ϵ].

Since (VC) holds for (ξ, ν(0)) ∈ C \ D and ν ∈ PCV, there
exists a non-trivial solution to H for any ξ and ν ∈ PCV with
(ξ, ν(0)) ∈ C ∪ D. Hence, any maximal φ satisfies exactly one of
the three cases (a)–(c) in Proposition 7.

Item (b) cannot occur due to item (iv) of Assumption 2, as the
states of the hybrid system remain bounded for all (t, j) ∈ domφ,
hence, there are no finite escape times.

Item (c) only occurs if either G(D) × V ̸⊂ C ∪ D or if
(ξ (T , J), ν(T )) ̸∈ C∪D due to a discontinuity in w. For the former,
we note that C∪D = X×V. In view of (19), we note that ŵ+

i = wi
if i broadcasts its state and ŵ+

i = ŵi otherwise. Additionally,
η+

i = ηi. Consequently, G(D) × V ⊂ C ∪ D. Furthermore, since
C ∪ D = X × V, item (c) cannot occur due to a discontinuity
in signal w, since by Assumption 1, w(t) ∈ W for all t ≥ 0.
Thus we deduce that φ is complete. Since ν and φ ∈ SH(ν)
have been arbitrarily selected, we have proved that all maximal
solutions are complete. Next we show that maximal solutions are
also t-complete.

A.1.2. t-Completeness and SGiMIET
We prove t-completeness by showing that system H has the

SGiMIET property. We proceed by examining the time between
two successive jumps generated by triggering condition i ∈ N .
To do so, note that the ‘‘static triggering condition’’ Ψi(oi) ≤

0 always holds when the (mixed) dynamic triggering condition
ηi + θiΨi(oi) ≤ 0∧Ψi(oi) ≤ 0 is satisfied. Let ν ∈ PCV, ∆ ≥ 0 and
φ ∈ SH(ν,B) with B = {Ξ ∈ X | |Ξ | ≤ ∆}. Since ηi(t, j) ≥ 0 for
all (t, j) ∈ domφ, we analyze when Ψi(oi) ≤ 0, i.e., when

δi(oi) + ci − βi(|̃ei|) ≤ 0 (A.5)

holds to under-estimate the inter-event times generated by trig-
gering condition i. Since δ takes non-negative values only, we can
i
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under-estimate the inter-event times for triggering condition i by
analyzing when

ci ≤ βi(|̃ei|), (A.6)

i.e., when |̃ei| ≥ β−1
i (ci). Note that we can upper-bound the

right-hand side of the latter inequality, in view of Assumption 1,
as

β−1
i (ci) ≤ |̃ei| ≤ |ei| + |wi| + |ŵi| ≤ |ei| + 2wi. (A.7)

Hence, we can under-estimate the inter-event times by analyzing
when

β−1
i (ci) − 2wi = |ei|. (A.8)

ecall that, by the condition on ci in Theorem 1, we have ci >
i(2wi), thus, the left-hand side of (A.8) is strictly positive. In view

of (A.8), we define

c i := β−1
i (ci) − 2wi > 0. (A.9)

Since |ei| is set to 0 after a transmission due to triggering rule
i, the inter-event time for triggering rule i is lower bounded by
the time it takes for |ei| to grow from 0 to c i in view of (A.8).
Note that the bound in (A.9) is not dependent on actual values
of wi, only on the upper-bounds presented in Assumption 1.
In the following, we provide a lower-bound on this inter-event
time. In view of Lemma 2, we have that there exists a q > 0
such that |φ(t, j)| ≤ q for all (t, j) ∈ domφ. Since F in (12)
is continuous and ∥ν∥∞ is finite by Assumption 1, there exists
µ > 0 such that |F (φ(t, j), ν(t))| ≤ µ for all (t, j) ∈ domφ.
Thus, for almost all j ∈ N≥0 and almost all t ∈ I j where
I j = {t : (t, j) ∈ dom ξ}, d|ei(t)|

dt ≤ µ. Consequently, the time
etween any two transmissions generated by triggering rule i is
arger than or equal to c i/µ. Hence, H has the SGiMIET property
nd all maximal solutions are t-complete. In other words, H is
ersistently flowing.
Since the system is persistently flowing, combined with the

esult of Lemma 2, we also have that H is ISpS w.r.t. the set AH
ccording to Proposition 1. ■

.2. Proof of Lemma 1

Let ν ∈ PCV and p > 0 be given. Using Lemma 2, we establish
that for all ξ ∈ SH(ν,B) with B := {Ξ ∈ X | |Ξ | ≤ p},
|ξ (t, j)|AH ≤ λ for all (t, j) ∈ dom ξ , where λ > 0 depends on
p, ∥ν∥∞ and c in (A.3). For the first case, i.e., when A is compact
(and thus AH is compact), the set S := {Ξ ∈ X | |Ξ |AH ≤ λ} is
ompact. Since ξ (t, j) ∈ S for all (t, j) ∈ dom ξ , there exists q > 0
uch that |ξ (t, j)| ≤ q for all (t, j) ∈ dom ξ , hence, item (iv) of
ssumption 2 is satisfied. For the second case, i.e., when Π x(A)
s compact and a ZOH is employed, we have that |x(t, j)|Πx(A) ≤ λ

or all (t, j) ∈ dom ξ due to (3). Hence, since Π x(A) is compact,
here exists a r > 0 such that |x(t, j)| ≤ r for all (t, j) ∈ dom ξ .
ince all maps gp,i in (4) are continuous, there exists s > 0
uch that |y(t, j)| ≤ s for all (t, j) ∈ dom ξ , and, consequently,
ỹ(t, j)| ≤ s̄ for all (t, j) ∈ dom ξ , where s̄ = s + wi. Moreover,
due to the ZOH, ei(t, j) is the difference between two points on
the trajectories of ỹi(t, j) after the first jump. Consequently, there
exists a ς > 0 (possibly dependent on e(0, 0)) such that |e(t, j)| ≤

ς for all e(0, 0) ∈ Π e(B) and all (t, j) ∈ dom ξ . Lastly, ŵ ∈ W ,
which is compact, and |η(t, j)| ≤ λ due to (3) (as Πη(AH) is
compact). Thus, since ξ = (x, e, ŵ, η), there exists q > 0 such
that |ξ (t, j)| ≤ q for all (t, j) ∈ dom ξ . ■
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