

Dissecting Tensor Cores via Microbenchmarks

Citation for published version (APA):
Sun, W., Li, A., Geng, T., Stuijk, S., & Corporaal, H. (2023). Dissecting Tensor Cores via Microbenchmarks:
Latency, Throughput and Numeric Behaviors. IEEE Transactions on Parallel and Distributed Systems, 34(1),
246-261. Article 9931992. https://doi.org/10.1109/TPDS.2022.3217824

Document license:
TAVERNE

DOI:
10.1109/TPDS.2022.3217824

Document status and date:
Published: 01/01/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Jul. 2024

https://doi.org/10.1109/TPDS.2022.3217824
https://doi.org/10.1109/TPDS.2022.3217824
https://research.tue.nl/en/publications/44b46a8d-4c5a-4c51-90ca-1cd62811902f

Dissecting Tensor Cores via Microbenchmarks:
Latency, Throughput and Numeric Behaviors

Wei Sun , Ang Li , Tong Geng , Sander Stuijk , and Henk Corporaal

Abstract—Tensor Cores have been an important unit to accelerate Fused Matrix Multiplication Accumulation (MMA) in all NVIDIA

GPUs since Volta Architecture. To program Tensor Cores, users have to use either legacy wmma APIs or current mma APIs. Legacy

wmma APIs are more easy-to-use but can only exploit limited features and power of Tensor Cores. Specifically, wmma APIs support

fewer operand shapes and can not leverage the new sparse matrix multiplication feature of the newest Ampere Tensor Cores. However,

the performance of current programming interface has not been well explored. Furthermore, the computation numeric behaviors of low-

precision floating points (TF32, BF16, and FP16) supported by the newest Ampere Tensor Cores are also mysterious. In this paper, we

explore the throughput and latency of current programming APIs. We also intuitively study the numeric behaviors of Tensor Cores MMA

and profile the intermediate operations including multiplication, addition of inner product, and accumulation. All codes used in this work

can be found in https://github.com/sunlex0717/DissectingTensorCores.

Index Terms—GPU, tensor cores, numeric profiling, ampere, turing, microbenchmark

Ç

1 INTRODUCTION

GENERAL Matrix Multiplication (GEMM) is a fundamental
computation pattern in modern HPC applications and

especially deep learning applications. To meet the increas-
ing demands of high throughput GEMM, many commercial
hardware accelerators have been designed such as NVIDIA
Tensor Cores [33], Google TPUs [15], Intel Nervana [11] and
Xilinx Versal AI Engines [9]. NVIDIA introduced the Tensor
Cores Unit first in its Volta Architecture [33] and integrated
this special computation unit in the GPGPU architecture.
Tensor Cores can provide significant speed-up compared to
traditional CUDA cores and more numeric precision choices
to satisfy different demands [8], [10], [21], [26].

NVIDIA so far has released three generations of Tensor
Cores - Volta [33], Turing [32], and Ampere [30]. Now Ten-
sor Cores are becoming the standard components of all
NVIDIA GPU products including high-end server GPUs
(e.g., V100 and A100), Gaming GPUs (e.g., RTX20xx and

RTX30xx) as well as Embedded GPUs (e.g., Jetson Xavier
and Orin). However, the programming model and behav-
iors of the Tensor Cores are significantly different from pre-
viously well-explored CUDA cores. Furthermore, there are
also noticeable differences between different Tensor Cores
generations. For instance, Ampere Tensor Cores support
fine-grained N: M sparse acceleration for Sparse Matrix
Multiplication, which can only be programmed via the new
mma instructions instead of previously studied legacy
wmma instructions [23], [39]. There are also some incompat-
ible instructions between Ampere and prior generations.
For example, Ampere Tensor Cores do not support the
HMMA.884 Assembly instruction; the corresponding mma.
m8n8k4 PTX instruction is essentially compiled into a set of
Floating point unit (FPU) Assembly instructions that are
10x slower than the expected Tensor Cores performance. In
contrast, previous observations of the Volta Tensor
Cores [39] suggest that this HMMA.884 is the fundamental
machine code (SASS), and all legacy wmma.mma instruc-
tions will be compiled into a set of HMMA.884 SASS codes.
Therefore, it is vital to understand the programming model
and behavior of the Tensor Cores for achieving the best pos-
sible performance on different GPU architectures.

Despite the previous efforts on microbenchmarking Ten-
sor Cores [6], [13], [14], [23], [24], [39], [45] from performance
and numeric perspectives. There is no existingwork that eval-
uates the current programming APIs with instruction-level
microbenchmarking and numeric studies. Table 2 in Section 3
compares our work with previous Tensor Cores studies. Cur-
rent programmingAPIs have significant advantages over leg-
acy wmma APIs such as more flexible operand shapes, better
performance, and new sparse acceleration onAmpere Tensor
Cores. Therefore, a comprehensive and up-to-date study
based on the new programming interface is necessary to com-
plement the findings of existing literature. Our research ful-
fills this gap bymaking the following contributions:

� Wei Sun, Sander Stuijk, and Henk Corporaal are with the Electronic Sys-
tem Group, Eindhoven University of Technology, 5612 Eindhoven, AZ,
The Netherlands. E-mail: {w.sun, s.stuijk, h.corporaal}@tue.nl.

� Ang Li and Tong Geng are with Physical and Computational Sciences
Directorate, Pacific Northwest National Laboratory, Richland, WA 99354
USA. E-mail: {ang.li, tong.geng}@pnnl.gov.

Manuscript received 10 June 2022; revised 23 September 2022; accepted 21
October 2022. Date of publication 28 October 2022; date of current version 16
November 2022.
This work was supported in part by Dutch Research Council (NWO) Perspec-
tief Program ZERO-ARM P3, in part by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, ComPort:
Rigorous Testing Methods to Safeguard Software Porting, under Grant 78284.
The Pacific Northwest National Laboratory is operated by Battelle for the U.S.
Department of Energy under Contract DE-AC05-76RL01830.
(Corresponding author: Wei Sun.)
Recommended for acceptance by D. Li.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TPDS.2022.3217824, provided by the authors.
Digital Object Identifier no. 10.1109/TPDS.2022.3217824

246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2873-6418
https://orcid.org/0000-0003-2873-6418
https://orcid.org/0000-0003-2873-6418
https://orcid.org/0000-0003-2873-6418
https://orcid.org/0000-0003-2873-6418
https://orcid.org/0000-0003-3734-9137
https://orcid.org/0000-0003-3734-9137
https://orcid.org/0000-0003-3734-9137
https://orcid.org/0000-0003-3734-9137
https://orcid.org/0000-0003-3734-9137
https://orcid.org/0000-0002-3644-2922
https://orcid.org/0000-0002-3644-2922
https://orcid.org/0000-0002-3644-2922
https://orcid.org/0000-0002-3644-2922
https://orcid.org/0000-0002-3644-2922
https://orcid.org/0000-0002-2518-6847
https://orcid.org/0000-0002-2518-6847
https://orcid.org/0000-0002-2518-6847
https://orcid.org/0000-0002-2518-6847
https://orcid.org/0000-0002-2518-6847
https://orcid.org/0000-0003-4506-5732
https://orcid.org/0000-0003-4506-5732
https://orcid.org/0000-0003-4506-5732
https://orcid.org/0000-0003-4506-5732
https://orcid.org/0000-0003-4506-5732
https://github.com/sunlex0717/DissectingTensorCores
mailto:w.sun@tue.nl
mailto:s.stuijk@tue.nl
mailto:h.corporaal@tue.nl
mailto:ang.li@pnnl.gov
mailto:tong.geng@pnnl.gov
https://doi.org/10.1109/TPDS.2022.3217824
https://doi.org/10.1109/TPDS.2022.3217824

� A new set of microbenchmarks to explore the three
core PTX instruction sets closely related to Tensor
Cores — ldmatrix, mma, and mma.sp.

� Benchmarking the Tensor Cores instruction latency
and throughput. We provide in-depth analysis and
provide programming guidelines which are needed
to implement custom applications on Tensor Cores
that are not well supported by vendor libraries.

� Profiling the numeric behavior of low-precision
floating data types supported in newest Ampere
Tensor Cores - TF32, BF16, and FP16.

Our work provides comprehensive and up-to-date infor-
mation on the Tensor Cores. Our microbenchmarks cover
the programming interface, latency, and throughput of Ten-
sor Cores instructions as well as numeric behaviors of low-
precision floating point operations. To the best of our
knowledge, this paper is the first systematic study on recent
Tensor Cores generations (Turing and Ampere) using the
new programming interface.

The rest of the paper is organized as follows: Section 2 intro-
duces the background knowledge of NVIDIA GPUs and Ten-
sor Cores. Section 3 summarizes the related work and
highlights the differences between ourwork. Section 4 introdu-
ces the microbenchmark methodology used in this paper. Sec-
tions 5, 6 and 7 microbenchmark the performance of mma,
mma.sp and ldmatrix instructions respectively. Section 8
presents our numeric studies. Section 9 concludes our findings.

2 BACKGROUND OF TENSOR CORES GPUS

We first introduce the general architecture of modern Ten-
sor Cores GPU in Section 2.1, and then we compare the
three Tensor Cores generations and highlight their differen-
ces in Section 2.2.

2.1 Background of Modern GPU Architecture

Tensor Cores is a domain-specific computation unit inte-
grated into NVIDIA GPUs for accelerating matrix multipli-
cation (MM), which performs D = A � B + C, where A and
B are input matrices with the shape of m � k and k � n,
respectively; C is accumulator and D is the result.

Modern GPU architecture consists of a certain amount of
Streaming Multiprocessor (SM) which works as the

fundamental processing unit of the GPU. These SMs are fur-
ther connected to the GPU device memory/global memory
which is shared by all SMs. Each SM has its internal caches,
Shared Memory, Register File, CUDA cores, Tensor Cores,
Load Store units, and other special units. Fig. 1 illustrates
the abstract SM architecture of Tensor Cores integrated
GPUs. Each SM consists of four warp schedulers or four
sub-cores to issue four warp instructions simultaneously.
Tensor Cores use the same memory hierarchy as CUDA
cores. Both Tensor Cores and CUDA cores can fetch data
through direct addressing (ld instruction) from the Shared
Memory or global memory via the per-thread1 scheme. Ten-
sor Cores have two special load instructions – recent
ldmatrix and legacy wmma:load via the per-warp2 scheme.

In this paper, we exclude the microbenchmark experi-
ments and discussions on global memory access because 1)
Using Shared Memory as the buffer for global memory to
increase data reuse has been a standard optimization tech-
nique for accelerating GEMM-like applications on GPUs. 2)
The novel asynchronous global memory copy introduced in
Ampere Architecture facilitates the software data pipeline
by using Shared Memory as the staging storage to overlap
the computation with the data transfer from global memory
to Shared Memory [30]. 3) The ldmatrix PTX instruction can
only load data from Shared Memory. Therefore, without
losing generality, we assume the input data has already
been fetched into the Shared Memory from global memory
since our goal is to microbenchmark the Tensor Cores. We
present ablation experiments in Appendix A.1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2022.3217824
to further demonstrate the advantages of using shared
memory and asynchronous copy.

2.2 The Evolution of Tensor Cores

Up to date, there are three generations of Tensor Cores in
the market — Volta, Turing, and Ampere. NVIDIA recently
announced the fourth generation of Tensor Cores GPU
Architecture known as Hopper [31]. However, Hopper
GPUs are not publicly released yet.

Table 1 compares the three released Tensor Cores genera-
tions and preliminary features of the fourth-generation
Hopper Tensor Cores. Volta Tensor Cores are the first gen-
eration and support only FP16 as the input data type.
Turing Tensor Cores are the enhanced version of Volta Ten-
sor Cores and support three extra data types – INT8, INT4,
and Binary [21]. The third-generation Ampere Tensor Cores
introduce acceleration for sparse matrix multiplication with
fine-grained structured sparsity and a new machine learn-
ing data type called bfloat16 (BF16). Furthermore, Ampere
Architecture redesigns the micro-architecture of Tensor
Cores. Unlike Volta and Turing Architecture which have
eight Tensor Cores per SM and each Tensor Core performs
a 4�4�4 MM (i.e., m = n = k = 4), there are only four Tensor
Cores per SM and each Tensor Core performs an 8�4�8

Fig. 1. Simplified architecture overview of Tensor Cores GPU SM [30],
[32], [33]. Each SM consists of four sub-warps. Each sub-core has its
warp scheduler, register file, CUDA cores, and Tensor Cores.

1. Per-thread means the instruction is executed by a single thread
independently; both behavior and result of the thread are deterministic.

2. Per-warp means the instruction is executed by the 32 threads
within the same warp cooperatively; neither behavior nor the result of
individual thread is deterministic.

SUN ETAL.: DISSECTING TENSOR CORES VIA MICROBENCHMARKS: LATENCY, THROUGHPUTAND NUMERIC BEHAVIORS 247

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPDS.2022.3217824
http://doi.ieeecomputersociety.org/10.1109/TPDS.2022.3217824

MM. The fourth-generation Hopper will bring a new 8-bit
floating-point numeric precision (FP8) for accelerating cer-
tain machine learning applications that exhibit higher toler-
ance for training based on low-precision data types.
Furthermore, it seems INT4 and Binary are no longer dis-
cussed in the Hopper Whitepaper [31]. Section 8 will give
more discussions on the numeric behaviors of low-precision
floating-point data types of Tensor Cores (i.e., TF32,BF16
and FP16).

The programming of Tensor Cores has also evolved over
the generations. Fig. 2 illustrates the legacy and current pro-
gramming interface for Tensor Cores. The first step is to
load data from Shared Memory to the Register File and then
use Tensor Cores to accelerate the matrix computation. Leg-
acy wmma interface was introduced with first-generation
Volta Tensor Cores which have been extensively studied by
previous work [23], [24], [39], [45]. In general, the legacy
wmma programming interface can satisfy basic usage of
Tensor Cores and requires less programming efforts,
because wmma.load can help manage the special input
operand storage layout in the Register File for Tensor Cores.
However, wmma instructions can only leverage limited fea-
tures of the Tensor Cores [22]. Specifically, it can not use
sparse acceleration and has fewer choices of the matrix
operand shape. Furthermore, wmma.load instructions have
more strict requirements for the data layout in Shared

Memory which will be introduced in Section 7. By contrast,
the new programming interface provides access to all fea-
tures of the Tensor Cores (i.e., more matrix operand shapes
and novel sparse acceleration). The vendor’s library CUT-
LASS [29] also chose the new programming interface as the
underlying implementation for the best possible perfor-
mance. Therefore, users should use the new programming
interface when seeking for best possible performance or
exploiting the new sparse acceleration feature.

Fig. 3 uses an example to illustrate the differences
between legacy wmma.mma and current mma PTX instruc-
tions. Previous studies [14], [39], [45] reveal that on Volta
Tensor Cores, every wmma.mma instruction will be com-
piled to a set of HMMA.884 SASS instruction. By contrast,
when using a mma instruction on Ampere or Turing Tensor
Cores, it will be compiled to a single HMMA SASS instruc-
tion. On the other hand, when attempting to use the legacy
wmma.mma on Turing/Ampere Tensor Cores, it will be
compiled into several new HMMA instructions [13]. In the
example of Fig. 3, one legacy wmma.mma.m16n16k16 is
complied into two HMMA.16816 (corresponding to new

TABLE 1
Comparisons of the Properties of Different Generations of Tensor Cores

Architecture Representative
products

Numeric types TCs/
SM

m �
n�k

Sparse Acceleration Programmability

Volta V100, Jetson Xavier FP16 8 4�4�4 No wmma
Turing T4,RTX20x FP16, INT8, INT4, Binary 8 4�4�4 No wmma, ldmatrix, mma
Ampere A100, RTX30x, Jetson

Orin
FP16, BF16, TF32, FP64, INT8,

INT4, Binary
4 8�4�8 fine-grained 50%

sparsity
wmma, ldmatrix, mma,

mma.sp
Hopper H100 FP16, BF16, TF32, FP64, FP8, INT8 4 NA fine-grained 50%

sparsity
wmma, ldmatrix, mma,

mma.sp

Note that Hopper GPU is not available on the market at this moment, the features are preliminary and could be adjusted according to the vendor’s documenta-
tion [31]. NA means not being documented by the vendor yet.

Fig. 2. Legacy and current programming interface for Tensor Cores.
Fig. 3. The compilation from legacy and current PTX instructions to
SASS assembly codes [13], [14], [39], [45].

248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

mma.m16n8k16) instructions. Note that there is one special
instruction mma.m8n8k4. On Turing Tensor Cores, it will
be compiled into a couple of HMMA.884 instructions which
are similar to Volta Tensor Cores. However, on Ampere
Tensor Cores, it will be compiled into a set of FPU instruc-
tions which will eventually run on the CUDA cores and
lead to inferior performance than expected for the Tensor
Cores.

3 RELATED WORK

GPU evaluations and microbenchmarks [6], [13], [14], [20],
[23], [24], [25], [39], [43], [45] are important technique to
explore the unknown characteristics of GPU architecture
like memory hierarchy, throughput, latency and numeric
behaviors.

Table 2 summaries the existing Tensor Cores microbe-
nchmark studies and compares them with our work. [23]
studies the Volta Tensor Cores with legacy wmma program-
ming interface and benchmarks the vendor libraries [28], [29].
The authors also profile the numeric loss when using half
(FP16) precision on Volta Tensor Cores. [24] also benchmarks
the vendor libraries and further studies the software optimi-
zation techniques when using wmma APIs to program Volta
Tensor Cores. However, the experiments and evaluations of
these two work [23], [24] are only based on old Volta Tensor
Cores. Furthermore, they do not provide instruction-level
microbenchmarks (i.e., instruction latency and throughput)
or discussions (e.g., Assembly codes studies).

[14] and [13] explore the characteristics of Volta and
Turing GPUs respectively. They cover the vendor libraries
benchmarking and Assembly code studies of legacy wmma
APIs for Tensor Cores. However, these two works are
generic GPU studies. The discussions on Tensor Cores are
limited; the numeric behaviors and instruction-level perfor-
mance are not treated.

[45] demystifies Volta and Turing Tensor Cores through
Assembly code benchmarking and further optimizes the

half-precision matrix multiplication on Tensor Cores. The
authors focus on exploring the Assembly level optimiza-
tions for matrix multiplication performance on Tensor
Cores and achieve better performance than the vendor’s
library released at that moment. However, programming
Tensor Cores via Assembly codes (SASS) is miserable since
SASS codes are not officially documented by NVIDIA and
there is not an official Assembler. Although Assembly codes
may expose more optimization opportunities for certain
applications [18], users have to rely on third-party assem-
blers [46], [47] developed through reverse engineering,
which may be not stable and can be error-prone. In this
work, we focus our studies on the PTX level, since PTX
instructions are fully documented and supported by
NVIDIA.

[39] studies the legacy wmma instructions on Turing and
Volta Tensor Cores and proposes a Tensor Core model in
GPGPU-SIM [2], based on their findings that HMMA.884 is
the fundamental execution pattern of the Tensor Cores.
However, since there are significant differences between the
newest Ampere and older Turing/Volta Tensor Cores as
discussed in Section 2.2, the behaviors and performance of
Ampere Tensor Cores may not be simulated accurately by
the old model.

[6] focuses on the numeric behaviors of Tensor Cores and
explores the underlying rounding modes and subnormal
behaviors of TF32, BF16, and FP16 data types. However, the
performance (i.e., latency and throughput) of Tensor Cores
is not evaluated.

Compared with the aforementioned Tensor Cores stud-
ies, we make the following different contributions:

� We evaluate the current mma APIs (ldmatrix,
mma, and mma.sp) instead of legacy wmma APIs.
Current mma APIs provide more operand shapes
and new sparse matrix multiplication acceleration,
but have not been well studied by existing litera-
ture [6], [13], [14], [23], [24], [39], [45]. Our work
fulfills this gap.

TABLE 2
Comparisons with Previous Tensor Cores Microbenchmark Literature

Literature GPU Arch Dense
FMA

Sparse
FMA

Data
movement

Performance evaluations Numeric
studies

Assembly
studies

[23] Volta wmma.
mma

– wmma.load Vendor libraries benchmark FP16 –

[24] Volta wmma.
mma

– wmma.load Vendor libraries benchmark – –

[14] Volta wmma.
mma

– wmma.load Vendor libraries benchmark – ✓

[13] Turing wmma.
mma

– wmma.load Vendor libraries benchmark – ✓

[39] Turing Volta wmma.
mma

– wmma.load Instruction-level
microbenchmark

– ✓

[45] Turing Volta wmma.
mma

– wmma.load Instruction-level
microbenchmark

– ✓

[6] Ampere Turing
Volta

wmma.
mma

– wmma.load – TF32,BF16,
FP16

–

Ours Ampere Turing mma mma.sp ldmatrix Instruction-level
microbenchmark

TF32,BF16,
FP16

✓

Note that [13] and [14] are general microbenchmark studies and cover Tensor Cores as one Section. Others [6], [23], [24], [39], [45] are focusing on Tensor Cores.
[6] only studies the numeric behaviors and performance is not evaluated. Our work is the first comprehensive study that evaluates current mma programming
APIs and sparse Tensor Cores with instruction-level microbenchmarking and numeric studies.

SUN ETAL.: DISSECTING TENSOR CORES VIA MICROBENCHMARKS: LATENCY, THROUGHPUTAND NUMERIC BEHAVIORS 249

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

� We microbenchmark the instruction-level perfor-
mance (i.e., throughput and latency). Compared to
benchmarking vendor libraries [28], [29], our instruc-
tion-level studies can give insights and program-
ming guidelines that the latency of different mma
instructions with different operand shapes as well as
how maximum performance can be achieved. This
information is important to users who need to imple-
ment their applications, which are not well sup-
ported by libraries, on Tensor Cores [8], [21], [22],
[41].

� We intuitively study the numeric behaviors of three
low-precision floating points (FP16, BF16, and TF32)
w.r.t IEEE standard FP32 precision. We profile the
numeric errors of three operations including multi-
plication, the addition of inner product, and accumu-
lation. Our experiments complement findings in [6]
by comparing the error level and behaviors of the
three data types, which can help users to decide
which data types should be considered for their
applications.

4 MICROBENCHMARK METHODOLOGY

The goal of our microbenchmark is to offer the following
performance information for each instruction:

1) Latency: Latency is the duration (cycles) of starting to
issue the instructions to the execution pipeline until
the results become available for the next usage. Since
GPU is a parallel architecture, there can be multiple
instructions running simultaneously on each SM.
When there is only one instruction per warp and one
warp per SM, the measured latency is called comple-
tion/issue latency, which reveals the length of the
pipeline.

2) Throughput/bandwidth: For data movement instruc-
tion, throughput is measured as bytes/clock cycle
(clk)/SM. For computation instructions, throughput
is FMA/clk/SM where FMA stands for fused multi-
plication accumulation. As the definition, d = a � b

+c counts as one FMA, and m� n�k matrix multipli-
cation counts as m � n�k FMAs. Throughput/band-
width can be measured by dividing the workload
(i.e., bytes/SM or FMA/SM) by latency (cycles).

Fig. 4 shows the core code piece of how to measure the
latency of the instruction with different Instruction Level
Parallelism (ILP). Tensor Cores instructions (e.g., mma in
the example) are executed in a per-warp scheme so we use
warp-level synchronization at the end of each iteration to
avoid optimizations (i.e., parallelism) across different itera-
tions. The latency is then computed by taking the average of
ITERS iterations. If ILP = 1 and we only launch one CUDA
thread block with one warp (32 threads), the measured
latency will be the instruction completion/issue latency. By
increasing ILP and launching more warps per SM, we can
measure the throughput and latency under different paral-
lel configurations which can then give the architectural and
programming insights of the Tensor Cores.

In summary, we will conduct our microbenchmark
experiments for each instruction as follows:

1) Measure the completion/issue latency by choosing
ILP = 1 and launching one warp per SM.

2) Measure the throughput and latency under different
ILP and different warps per SM.

5 DENSE FMA

As introduced in Section 2.2, there are two approaches to
program dense Tensor Cores - legacy wmma.mma and cur-
rent mma instructions. We focus on the new mma instruc-
tions microbenchmarks since the legacy wmma.mma has
been extensively researched by previous work [6], [13], [14],
[23], [24], [39], [45].

Fig. 5 shows a mma instruction example. According to
the vendor’s documentation [35], for the BF16 data type,
there are two choices of matrix shapes – m16n8k8 and
m16n8k16. Depending on the shapes, the BF16 mma PTX
instructions will be compiled to HMMA.1688.FP32.BF16 or
to HMMA.16816.FP32.BF16 SASS assembly code. Since the
Tensor Cores support many different data types as shown
in Table 1, we present a detailed analysis for the BF16 data
type on A100 Ampere Tensor Cores. The analysis for other
data types is similar, so we provide the final results without
losing generality.

Experimental Results

Fig. 6 shows the measured throughput and throughput
latency of mma.m16n8k16 instruction on A100 Ampere Ten-
sor Cores GPU under different ILPs and #warps/SM (short-
ened as #warps). We start the experiments with ILP = 1 and

Fig. 4. Code piece showing how to microbenchmark the performance of
Tensor Cores. It contains a GPU timer (lines 3 and 24) and a for-loop to
execute the body code mma instructions depending on the ILP
configurations.

Fig. 5. The mma instruction performs a D = A � B + C MatMul. Segment
m16n8k16 defines The shape of A(m � k), B(k � n), C(m � n), and D(m
� n). The layout indicates the matrices are either row-major or col-major.
The final instruction segment indicates the numeric types of D, A, B, and
C respectively.

250 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

#warps = 1 and then increase the ILP and #warps until con-
vergence. Based on the results, we have findings as follows:

1) According to Section 4, the measured latency under
ILP = 1 and #warp = 1 is completion latency. The
instruction completion latency is therefore around 25
(cycles). The measured peak throughput is 1000
(FMA/clk/SM), almost matching the number of
1024 as claimed by the vendor [30].

2) By analyzing the latency and throughput under
#warp = 1 and different ILPs, we observe that the
peak throughput is 230 (FMA/clk/SM) and con-
verges at ILP = 3. Increasing ILP further will not lead
to higher throughput but significantly more latency
cycles. This is because the instructions of a specific
warp can not use idle hardware resources located in
other sub-cores even if they are within the same SM.
One warp can only claim the resources of one sub-
core.

3) When #warps � 4 (1, 2, 4), the throughput scales
with #warps but the latency keeps unchanged. This
observation confirms that the resources of the sub-
core are isolated and each SM can issue four warps
simultaneously. The maximum throughput can be
achieved when #warps = 8 and ILP � 2. Note that
#warps = 4 with ILP � 3 is also a convergence point,
but it can not achieve the same performance as
#warps = 8, ILP =2 (900 versus 1000). This observa-
tion indicates that allocating more than 1 warp per
sub-core helps overlap the intra-warp synchroniza-
tion stalls or other relevant overhead with starting
issuing the next warp.

4) By analyzing the latency and throughput under ILP
= 1 with different #warp, we observe that

instructions from different warps can run in the
same sub-core Tensor Cores computation pipeline.
Specifically, increasing #warps from 4 to 8 (4�2) and
12 (4�3) will only lead to one extra cycle latency, but
the latency increase significantly if #warp goes to 16.
This is because that 12 warp with ILP = 1 is equiva-
lent to four warps with ILP = 3 from the workload
perspective. Based on our previous observation in 3),
four warps with ILP = 3 can achieve the full Tensor
Cores usage and increasing ILP will not lead to
higher throughput but significantly longer latency.

5) #warps = 6 is a special case. First, the latency of #warps
= 6 and #warps = 8 are always the same under differ-
ent ILPs. Second, for ILP � 3, the throughput drops if
increasing #warps from 4 to 6. This is because when
there is 6 warps resident in an SM, the first four warps
will be issued to the Tensor Cores computation pipe-
line. Since the ILP = 3 is large enough to fulfill the
whole Tensor Cores computation pipeline, the second
two warps can not be issued until there are available
resources freed by the first four warps. When the sec-
ond two warps start to execute on two sub-cores, the
other two sub-cores are idle which causes the drop in
the overall throughput.

6) In general, to reach the peak performance when pro-
gramming Tensor Cores using mma.m16n8k16
instruction, #warp should be at least four and ideally
a multiple of 4. Although four warps with sufficient
ILP (i.e., � 3) can achieve near peak performance,
eight warps with ILP � 2 should be used whenever
possible

Fig. 7 presents the results of m16n8k8 instruction. Fol-
lowing the analysis of previous m16n8k16 instruction. We
provide additional observations as follows:

Fig. 6. Throughput and latency of mma.m16n8k16 instruction under dif-
ferent settings on A100 Tensor Cores.

Fig. 7. Throughput and latency of mma.m16n8k8 instruction under differ-
ent settings on A100 Tensor Cores.

SUN ETAL.: DISSECTING TENSOR CORES VIA MICROBENCHMARKS: LATENCY, THROUGHPUTAND NUMERIC BEHAVIORS 251

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

7) The instruction completion latency is around 18
cycles and the peak throughput is around 1000
FMA/clk/SM.

8) Like the observations in 3), there are two conver-
gence points – #warp = 4, ILP = 4 and #warp = 8, ILP
= 3. However, the throughput gap between these
two points is more significant (800 versus 1000). This
suggests that the intra-warp synchronization stalls
overhead of mma.m16n8k8 are significantly higher
than previously discussed mma.m16n8k16 (i.e., 900
versus 1000). Therefore, when choosing mma.
m16n8k8 to program Tensor Cores, at least eight

warps should be allocated to achieve ideal
performance.

Table 3 lists the rest of the data types supported in
Ampere Tensor Cores. We summarize their completion
latency and two key convergence points, one with 4 warps
and the other one with 8 warps. Note that all instructions
can achieve near peak performance except for the INT8 data
type with m8n8k16 shape, which can only achieve near half
peak performance. By comparing the performance of this
instruction on Turing Tensor Cores (Table 5), which can
achieve near peak performance. We find the reason can be
that m8n8k16 is an old shape optimized for Turing Tensor

TABLE 3
MMA Instructions with Different Data Types on A100 Tensor Cores

A/B C/D Shape Completion
Latency
(cycles)

(#warp,
ILP)

Latency
(cycles)

Throughput
(FMA/clk/

SM)

(#warp,
ILP)

Latency
(cycles)

Throughput
(FMA/clk/

SM)

FP16 FP32 m16n8k16 24.7 4,3 27.4 897.6 8,2 32.6 1004.2
FP16 FP32 m16n8k8 17.7 4,4 20.5 800.2 8,3 25.3 974.1
FP16 FP16 m16n8k16 24.4 4,3 27.1 907.1 8,2 32.9 996.6
FP16 FP16 m16n8k8 17.7 4,4 19.1 860.9 8,3 24.5 1002.6
TF32 FP32 m16n8k8 25 4,3 28.2 435.9 8,2 33.3 492.4
TF32 FP32 m16n8k4 18.1 4,4 20.9 392.6 8,3 25.7 477.5
INT8 INT32 m8n8k16 15.9 4,4 20.1 813.2 8,2 16.4 998.3
INT8 INT32 m16n8k32 24.7 4,3 27.1 1812.4 8,2 32.9 1986.5
INT8 INT32 m16n8k16 17.6 4,4 20.9 1570.1 8,3 25.1 1965.1
INT4 INT32 m16n8k32 18.1 4,4 22.1 2971.1 8,3 27.1 3630.0
INT4 INT32 m16n8k64 26.1 4,3 28.1 3497.9 8,2 35.8 3660.8
Binary INT32 m16n8k128 18.1 4,4 22.1 11884.3 8,3 27.1 14515.1
Binary INT32 m16n8k256 26.0 4,3 28.1 13985.4 8,2 35.8 14643.4

The peak performance of FP16, TF32, INT8, INT4 and Binary are 1024, 512, 2048, 4096, and 16384 FMA/clk/SM respectively [30].

TABLE 4
Tensor Cores Performance of RTX3070Ti Ampere GPU [36]

A/B C/D Shape Completion
Latency (cycles)

(#warp,
ILP)

Latency
(cycles)

Throughput (FMA/
clk/SM)

(#warp,
ILP)

Latency
(cycles)

Throughput
(FMA/clk/SM)

FP16 FP32 m16n8k16 33 4,1 33 248.2 8,1 64.8 252.7
FP16 FP32 m16n8k8 18.8 4,2 32.3 253.9 8,1 32.4 253.2
FP16 FP16 m16n8k16 24 4,2 32.2 509.4 8,1 32.3 506.9
FP16 FP16 m16n8k8 17.7 4,3 24 511.8 8,2 32.3 507.8
TF32 FP32 m16n8k8 33.3 4,1 33.4 122.6 8,1 64.6 126.8
TF32 FP32 m16n8k4 19.1 4,2 32.7 125.3 8,1 32.6 125.7
INT8 INT32 m8n8k16 15.9 4,4 19.3 848.9 8,2 16.2 1008.5
INT8 INT32 m16n8k32 24.3 4,2 32.2 1017.2 8,1 32.1 1023.2
INT8 INT32 m16n8k16 17.7 4,3 24.1 1018.2 8,2 32.6 1005.4
INT4 INT32 m16n8k32 17.3 4,3 24.9 1967.9 8,2 32.3 2031.7
INT4 INT32 m16n8k64 24.5 4,2 33.3 1967.9 8,1 32.5 2013.5
Binary INT32 m16n8k128 17.3 4,3 24.8 7908.3 8,2 32.3 8127.2
Binary INT32 m16n8k256 24.6 4,2 33.3 7871.9 8,1 32.5 8053.9

Unlike A100 which is designed for high-end servers. RTX3070Ti is for graphical applications and there are noticeable differences between these two GPUs.

TABLE 5
Tensor Cores Performance of RTX2080Ti Turing GPU [32]

A/B C/D Shape Completion Latency
(cycles)

(#warp,
ILP)

Latency
(cycles)

Throughput (FMA/
clk/SM)

(#warp,
ILP)

Latency
(cycles)

Throughput (FMA/
clk/SM)

FP16 FP32 m16n8k8 17.3 4,2 32.5 252.4 8,1 32.1 255.1
FP16 FP16 m16n8k8 14.7 4,2 17.5 467.9 8,1 16.1 509.4
INT8 INT32 m8n8k16 11 4,3 14.5 846.1 8,2 16.2 1012.6

252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

Cores, the Ampere Tensor Cores prefer new shapes with
m16n8 (i.e., m16n8k16 and m16n8k32).

Table 4 summarizes the dense Tensor Cores performance
on an RTX3070Ti Ampere GPU which is designed for video
gaming applications. Compared to high-end data center
A100 GPU, there are two key differences: First, the Tensor
Cores in RTX3070Ti are less powerful and offer less peak
throughput for all data types. Second, when using FP32 as
the data type of matrix C and D, the performance is half of
that of using FP16 as the data type. On the other hand, the
data type of matrix C/D will not affect the peak perfor-
mance of the A100 Tensor Cores. The differences suggest a
careful check and adjustment is necessary when using Ten-
sor Cores to accelerate gaming or video applications, espe-
cially if the original program is developed on a data center
A100 GPU, since the difference may lead to undesired
performance.

Table 5 presents the Tensor Cores performance on a
RTX2080 Turing GPU. The Turing Tensor Cores is the pre-
decessor of the Ampere Tensor Cores, it supports fewer
instruction shapes and data types. It is interesting to note
that the Dense FMA latency of Ampere Tensor Cores does
not improve compared to Turing Tensor Cores. For
instance, the latency of mma.m16n8k8 is 17.3 cycles on
RTX2080Ti Turing Tensor Cores, which is close to the num-
ber 17.7 cycles in A100 Ampere Tensor Cores.

To summarize, in this Section, we experimented on dif-
ferent mma PTX instructions on Ampere and Turing Tensor
Cores. Since Volta Tensor Cores only supports legacy pro-
gramming interfaces and has been extensively studied by

previous work as explained in Section 3, we do not include
the experiments of Volta GPU Tensor Cores. Based on our
experiments, we indicate how peak performance can be
achieved (i.e., i.e., how to choose proper #warps and ILP).

6 SPARSE FMA

Sparse matrix multiplication (SpMM) is an important com-
putation pattern in Deep Learning domains. Plenty of
efforts have been invested in optimizing SpMM software on
GPUs over the past years [1], [3], [4], [5], [17], [19], [27], [38],
[42], [44]. Although significant progress has been made, the
performance of SpMM software on GPUs is not satisfied in
terms of the hardware throughput bound. On the other
hand, due to the irregularity of non-zeros in sparse matrix,
it is extremely challenging to adjust GPGPU architecture to
accelerate SpMM via hardware approach with acceptable
overhead. Recently, fine-grained structured sparsity, espe-
cially N:M sparsity (i.e., there are N non-zeros for every M
consecutive elements), has shown a promising path to com-
press Deep Learning Models while maintaining a hard-
ware-friendly sparse pattern [12], [40], [48]. Ampere Tensor
Cores are the first general purpose hardware empowered
with this kind of fine-grained N:M sparse hardware
acceleration.

Unlike dense Tensor Cores which can be programmed by
both modern mma instruction and legacy wmma.mma
instruction, the sparse computation can only be exploited
by modern mma.sp instruction. Fig. 8 shows an example of
sparse instruction for BF16 computation. Fig. 9 illustrates
2:4 sparse Tensor Cores computation. To use the sparse Ten-
sor Cores correctly, programmers need to first compress the

Fig. 8. The mma.sp instruction performs D = sA � B + C sparse-dense
matrix multiplication. sA contains the non-zero values of fine-grained 2:4
sparse matrix A (m � k) and the shape of sA, therefore, is m � k/2.
Matrix B is still a dense matrix with the shape k � n. The final operand e
is the sparse metadata containing the indexes of Matrix A.

Fig. 9. Illustration of fine-grained 2:4 SpMM [30]. Matrix C is not shown
for simplification.

Fig. 10. Throughput and latency of mma.sp.m16n8k32 instruction under
different settings on A100 Tensor Cores.

SUN ETAL.: DISSECTING TENSOR CORES VIA MICROBENCHMARKS: LATENCY, THROUGHPUTAND NUMERIC BEHAVIORS 253

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

sparse matrix A into the non-zeros matrix (denoted as sA)
with the index metadata. The sparse pattern of matrix A
should strictly follow the 2:4 fine-grained sparsity which
means for every four consecutive elements along the K
dimension, there are two non-zero values. Therefore, after
compression, the shape of matrix A will become m � k/2.
The index metadata encodes the relative location of every
non-zero in 2 bits because 2 bits can represent all possibili-
ties of the four consecutive elements (00,01,10,11). On the
other hand, matrix B is still stored in the original dense for-
mat, the hardware selector determines which values should
participate in the computation on the fly based on the
indexes provided by metadata.

Experimental Results

Fig. 10 presents the latency and throughput of sparse
instruction with shape m16n8k32 instruction. Note there are
some interesting similarities between sparse m16n8k32 and
dense m16n8k16 (Fig. 6). We provide the following observa-
tions based on the experimental results:

1) The completion latency is 24.7 cycles which is the
same as its dense mma counterpart (mma.
m16n8k16). Furthermore, the latency results under
different settings are also almost the same as the
results of dense mma.m16n8k16 if we consider the
experimental deviations. This observation indicates
that the selector for matrix B is integrated with the
Tensor Cores hardware pipeline. Although dense
FMA operation does not need the selector, it will go
through the selector as sparse FMA operation which
therefore results in the same execution cycles.

2) The peak throughput achieves at 2000 which is 2x
higher than the dense one. The throughput graph
shows the same trend as the dense one, the only dif-
ference is that the numbers on Y-axis double. This
indicates that the improvement comes from skipping
the zero multiplication. It confirms that a sparse fea-
ture can improve the throughput but can not reduce
the latency.

Fig. 11 presents the results of mma.sp.m16n8k16.
According to the discussions of mma.sp.m16n8k32, the
behaviors of mma.sp.m16n8k16 should show similarities
with dense mma.m16n8k8. However, we notice that the
experimental results are not as expected:

3) The instruction completion latency is 17.9 cycles
which are close to the latency of dense m16n8k8 (i.e.,
17.7 cycles).

4) The throughput behaviors are not as expected. The
peak throughput can only reach 1300. There is a sig-
nificant gap compared to theoretical peak perfor-
mance 2000. Furthermore, measured throughput
under different settings is also significantly lower
than the expected values (i.e., twice the correspond-
ing dense throughput).

Table 6 lists sparse FMA instructions for the rest of the
data types and shapes on A100 Tensor Cores. For each data
type, there are two supported shapes with different k sizes.
Like the behavior of the BF16 data type in Fig. 11, sparse
FMA instructions with the smaller k can not reach the theo-
retical peak performance. To study whether this is a special
issue for A100 GPU or a general problem for Ampere Ten-
sor Cores, we check the results on an RTX3070Ti Ampere
GPU as presented in Table 7. Interestingly, the sparse Ten-
sor Cores performance of RTX3070Ti does not show the
same issue and the instruction with a smaller k can also
reach the same throughput as the instruction with a larger k.

To summarize, the sparse Tensor Cores in general can
provide twice throughput improvement compared to the
dense Tensor Cores but can not reduce the completion
latency. However, programmers and users must be careful
when deciding which PTX instruction should be used espe-
cially when the targeted platform is the data-center A100
GPUs. The instruction with a smaller k can not provide the
expected peak throughput. However, the vendor does not
document the reason for this issue.

7 DATA MOVEMENT

In this Section, we study the data movement instructions
related to Tensor Cores. As introduced in Section 2, before
using Tensor Cores instructions (mma and mma.sp), the
input data should be first loaded from Shared Memory to
the Register File via data movement instructions. This can
be done by special Tensor Cores instructions wmma.load
and ldmatrix or generic ld.shared instruction.

Fig. 12 illustrates the differences of these three instruc-
tions. The generic per-thread ld.shared instruction receives
a pointer (p) of an element in Shared Memory and loads it
to the destination register (r). For each warp, 32 elements
will be loaded from the Shared Memory and each thread
holds one register to store the element. On the other hand,

Fig. 11. Throughput and latency of mma.sp.m16n8k16 instruction under
different settings on A100 Tensor Cores.

254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

wmma.load and ldmatrix run in the per-warp scheme so the
32 threads of a specific warp will cooperatively complete the
job. For the legacy wmma.load instruction, there is only one
address pointer p to the starting element of the matrix. The
elements of the matrix will then be loaded to one or more
registers of each thread within the warp depending on the
loading shape specified by the instruction. For example,
when using wmma.load.a.m16n16k16.FP16, a warp loads
matrix A with 16�16 FP16 elements from the Shared Mem-
ory. Then each thread will use 16�16/32 = 8 registers to
store the elements.

The new ldmatrix instruction is a bit tricky. It runs in a
per-warp scheme like wmma.load, but it offers more flexi-
bility. Fig. 13 shows the functionality of ldmatrix instruc-
tion. It loads N�128 bytes per warp cooperatively from the
Shared Memory and stores it in the Register File where each
thread stores N�4 bytes. Compared to generic per-thread
ld.shared instruction, ldmatrix is less flexible because it
requires a group of four consecutive threads to load 16 con-
secutive bytes (as a group). However, ldmatrix requires
fewer source operands (each p will be broadcast to four
threads), and the data layout eventually fetched to the Reg-
ister File matches the arrangement of the inputs to the Ten-
sor Cores mma/mma.sp instructions [35]. Compared to
legacy per-warp wmma.load instructions, ldmatrix is more
flexible because the 16-bytes groups do not need to be

consecutive, while wmma.load requires the whole matrix
stored consecutively. By contrast, additional index compu-
tations are necessary if using generic ld.shared instruction,
which will cause extra overhead. The flexibility of ldmatrix
enables using some special data layouts to avoid bank con-
flict such as permuted data layout used in CUTLASS [29].
Furthermore, ldmatrix can be used to load matrix A, matrix
B, and matrix C, while wmma.load has dedicated instruc-
tions for different operands as shown in Fig. 14. We present
ablation experiments in Appendix A.2, available in the
online supplemental material to demonstrate how the flexi-
bility of ldmatrix can be exploited to improve performance.

Unlike mma and mma.sp instructions which are
designed for the novel Tensor Cores hardware, ldmatrix
instruction is an alternative instruction for using the exist-
ing hardware (i.e., loading data from the Shared Memory to
the Register File). Therefore, the previous study of GPU
Shared Memory [25] also applies to the ldmatrix instruction.

TABLE 6
Sparse Tensor Cores Performance of A100 Ampere GPU

A/B C/D Shape Completion Latency
(cycles)

(#warp,
ILP)

Latency
(cycles)

Throughput (FMA/
clk/SM)

(#warp,
ILP)

Latency
(cycles)

Throughput (FMA/
clk/SM)

FP16 FP32 m16n8k32 24.7 4,3 27.4 1791.9 8,2 33.1 1979.1
FP16 FP32 m16n8k16 17.8 4,3 20.4 1024.5 8,2 25.4 1290.5
FP16 FP16 m16n8k32 24.3 4,3 26.6 1850.9 8,2 32.4 2019.8
FP16 FP16 m16n8k16 17.6 4,3 19.8 1242.9 8,2 24.9 1318.2
TF32 FP32 m16n8k16 24.9 4,3 28.3 868.2 8,2 33.9 981.2
TF32 FP32 m16n8k8 18.2 4,3 20.6 597.8 8,2 25.5 643.6
INT8 INT32 m16n8k64 24.7 4,3 27.7 3544.7 8,2 33.1 3961.5
INT8 INT32 m16n8k32 17.9 4,3 20.4 2403.9 8,2 25.4 2665.2

TABLE 7
Sparse Tensor Cores Performance of RTX3070Ti Ampere GPU

A/B C/D Shape Completion Latency
(cycles)

(#warp,
ILP)

Latency
(cycles)

Throughput (FMA/
clk/SM)

(#warp,
ILP)

Latency
(cycles)

Throughput (FMA/
clk/SM)

FP16 FP32 m16n8k32 33 4,1 33 496.5 8,1 64.1 511.2
FP16 FP32 m16n8k16 18.8 4,2 32.3 507.8 8,1 32.4 506.2
FP16 FP16 m16n8k32 24.3 4,2 32 1022.2 8,1 32.1 1022.3
FP16 FP16 m16n8k16 17.7 4,3 24.2 1013.4 8,2 32 1023.1
TF32 FP32 m16n8k16 33.2 4,1 33.2 247 8,1 64.2 255.1
TF32 FP32 m16n8k8 19 4,2 32.5 252.5 8,1 32.4 253.2
INT8 INT32 m16n8k64 24.3 4,2 64.2 2040.2 8,1 32.1 2039.5
INT8 INT32 m16n8k32 17.7 4,3 24.2 2028.8 8,2 32.3 2031.8

Fig. 12. Differences of three data movement instructions.

Fig. 13. Functionality overview. p is the source operand and is provided
by threads. If N = 4, then every thread will provide a valid p. if N < 4, par-
tial threads (e.g., T0 - T7 for N = 1) will provide a valid p, and other
threads’ p will be ignored.

SUN ETAL.: DISSECTING TENSOR CORES VIA MICROBENCHMARKS: LATENCY, THROUGHPUTAND NUMERIC BEHAVIORS 255

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

For instance, the Shared Memory of modern NVIDIA GPUs
(e.g., Ampere, Turing, Volta) has 32 banks and the width of
each bank is 4 bytes which give 32�4 = 128 bytes/clk as the
theoretical bandwidth. This number is also the bandwidth
bound of ldmatrix instruction.

Table 8 lists the instruction workload of ldmatrix and ld.
shared. Since traditional ld.shared offers better granularity,
we microbenchmark both ldmatrix and ld.shared and make
comparisons for better understanding.

Experimental Results

Fig. 15 presents the results of ldmatrix.x4 on A100 GPU.
Note ldmatrix has three options - ldmatrix.x1, ldmatrix.x2
and ldmatrix.x4 as introduced in Fig. 13. We use ldmatrix.
x4 as the example to provide in-depth analyses:

1) The completion latency of ldmatrix.x4 is 29 cycles.
The measured peak throughput of ldmatrix.x4 can
achieve the peak theoretical performance offered by
hardware (128 bytes/clk/SM).

2) If there is only one warp, the peak measured
throughput is only around 64 and can be achieved
with ILP = 4. To reach the maximum throughput
offered by hardware, at least two warps should be
used. This indicates there could be two data move-
ment units for ldmatrix.x4 instruction between
Shared Memory and Register File.

3) Allocating 6 warps will not cause the same problem
observed in the experiments of Tensor Cores compu-
tation instructions mma and mma.sp. This also con-
firms that the data movement units are not located in
the sub-core.

Table 9 lists the completion latency and performance of
two convergence points of three ldmatrix instructions. If
choosing ldmatrix.x1 as the data movement instruction,
then at least 8 warps should be launched, while for ldma-
trix.x2 and ldmatrix.x4, 4 warps are sufficient.

According to the definition of Shared Memory bank con-
flict, Shared Memory can serve at most 32 threads with a 4
byte/thread access request, which gives 128 byte/clk/
warp. Therefore, as shown in Table 8, ldmatrix.x2 and ldma-
trix.x4 should intrinsically cause 2-way and 4-way bank

conflicts respectively (i.e., two/four memory transactions
are needed). However, the NVIDIA official profiler [34]
does not detect Shared Memory conflicts for both ldmatrix.
x2 and ldmatrix.x4 instructions. We further profile the effect
of bank conflicts for ld.shared instruction as listed in
Table 10. By comparing results to the completion latency of
ldmatrix in Table 9, we have the following observations:

1) The completion latency of ldmatrix.x1, ldmatrix.x2,
and ldmatrix.x4 are close to the latency of ld.shared.
u32 with bank conflict-free, two-way, and four-way
bank conflicts respectively. This observation indi-
cates that ldmatrix.x2 and ldmatrix.x4 intrinsically
causes bank conflicts and requires more Shared
Memory transactions to sequentially serve the mem-
ory access.

2) The bank conflict penalty for modern GPUs is
around 2 cycles/way, which matches the previous
study on older GPUs like Maxwell Architecture [25].

In summary, ldmatrix instructions perform the function
of loading data from the Shared Memory to the Register File
for Tensor Cores. ldmatrix and ld.shared instructions have
similar intrinsic behaviors and performance. The major dif-
ference is the layout of destination registers which store the
fetched data from Shared Memory. ldmatrix is designed for
Tensor Cores computations while ld.shared is preferable for
CUDA cores programming.

8 NUMERIC BEHAVIORS

Mixed-precision FMA and low-precision float point data
types are becoming increasingly important for Deep Learn-
ing applications and some HPC applications. The third gen-
eration Ampere Tensor Cores enable tensor computations
with three low-precision float point data types: TF32 (19bit),

Fig. 14. wmma.load and ldmatrix [35]. ldmatrix can be used for loading a,
b, and c operands but wmma has dedicated instruction for each of the
operands.

TABLE 8
The Loading Bytes per Instruction of Ldmatrix and Ld.Shared

bytes/warp bytes/thread

ldmatrix.x1 128 4
ldmatrix.x2 256 8
ldmatrix.x4 512 16
ld.shared.u32 128 4
ld.shared.u64 256 8

Fig. 15. Throughput and latency of ldmatrix.x4 instruction under different
settings on A100 Tensor Cores.

256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

BF16 (16bit), and FP16 (16bit). Table 11 shows different pre-
cision formats. Compared to IEEE standard FP32, TF32 and
BF16 have the same 8bit exponent but fewer mantissa bits,
so they have the same range as FP32 but lower accuracy
(fewer mantissa bits). Note that although TF32 only has 19
bits (1+8+10), it stores in the 32-bit register in GPU, which
means using TF32 to replace FP32 will not lead to a reduced
memory footprint.

Note that we exclude the discussions and experimental
results of Integer data type of Tensor Cores, since our
experiments show that Integer computations on Tensor
Core give 0 errors compared to CPU implementation (i.e.,
The results of GPU and CPU baseline are the same) as long
as the initialization values are within the data type range
(e.g., for INT8, the input data should be initialized within
[-128,127]). If the initialization data is out of range, then
type casting has to be performed by either a user-defined
casting function or C++ default type casting. As long as the
casting is the same for the GPU (i.e., Tensor Cores) and CPU
baseline, the numeric results are still the same.

Although low-precision computation offers significant
performance gains as discussed in Sections 5 and 6. Low
precision will cause numeric errors compared to FP32 preci-
sion. When using low-precision computation to accelerate
applications, it is important to understand the numeric
behaviors of Tensor Cores. In this Section, we present a set
of numeric benchmarks to reveal the properties of low-pre-
cision float points operations of Tensor Cores.

8.1 Element-Wise Numeric Profiling

Tensor Cores instruction performsD =A� B + C,which con-
sists of three types of operation: 1) multiplication, 2) addition
of inner product, and 3) accumulation. To understand the
numeric behavior at the lowest possible level, we use three
experiments to profile the three operations separately.

Figs. 16a, 16b and 16c illustrate the ideas of profiling mul-
tiplication, addition of inner product, and accumulation,
respectively. When profiling multiplication numeric preci-
sion, we randomly generate the first element in the first row
of matrix A and the first element in the first column of
matrix B and set other values as 0.0. Then the matrix FMA
D = A � B+C becomes d0 = a0�b0 as shown in Fig. 16a. By
comparing the result to the FP32 result on CPU as the base-
line, we can get the numeric errors of the low-precision
floating-point data types used in Tensor Cores. Following
the same ideas, we can further profile the addition opera-
tion of inner product and addition operation of accumula-
tion. Note that we use a random generator of the normal
distribution with m ¼ 0:0 and s ¼ 1:0, and use the same ran-
dom seed for all experiments so the sequences of random
values are the same. This setting helps to compare the preci-
sion between different numeric types since they will get the
same random initialization values.

8.1.1 BF16

For BF16 Tensor Core operations, the data type for A/B and
C/D on Tensor Cores are BF16 and FP32 respectively. We

TABLE 9
Performance of Three Ldmatrix Instructions on A100 GPU

Bytes/warp Completion
Latency (cycles)

(#warp,ILP)Latency (cycles) Throughput
(bytes/clk/SM)

(#warp,ILP)Latency (cycles) Throughput
(bytes/clk/SM)

ldmatrix.x1 128 23.1 4,5 26.8 95.4 8,4 32.1 127.7
ldmatrix.x2 256 25.1 4,4 32.1 127.8 8,2 32.1 127.7
ldmatrix.x4 512 29.3 4,2 32.2 127.3 8,1 32.6 125.9

TABLE 10
Latency of Ld.Shared Instructions under Different Bank

Conflicts

no-conflict 2-way 4-way 8-way

ld.shared.u32 23.0 25.0 29.0 37.0
ld.shared.u64 NA 25.1 29.1 37.0

TABLE 11
Different Precision Formats and Storage in GPUs

data types sign exponent mantissa register

FP32 1 8 23 32b
TF32 1 8 10 32b
FP16/half 1 5 10 16b
BF16 1 8 7 16b
FP8-E4M3 1 4 3 8b
FP8-E5M2 1 5 2 8b

Note that TF32 has 19bits (1+8+10), but it is stored in the 32-bit registers.
Two FP8 types will be supported by the forthcoming Hopper Tensor Cores. Fig. 16. Profiling of three operations.

SUN ETAL.: DISSECTING TENSOR CORES VIA MICROBENCHMARKS: LATENCY, THROUGHPUTAND NUMERIC BEHAVIORS 257

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

have two initialization strategies, the first is to initialize the
data with FP32 precision and convert it to BF16 when copy-
ing to GPU. However, this will introduce conversion preci-
sion loss. The second approach is to initialize the data with
FP16 precision to eliminate the conversion precision loss.
After eliminating the conversion loss, we can discover the
computation precision used in Tensor Cores by comparing
it to the result of FP32 computation precision on CPU[7].

Table 12 shows the average errors under different initiali-
zation types. When initializing the data with FP32, all opera-
tions have numeric errors. By contrast, when choosing BF16
as the initialization type, multiplication and inner product
addition will not cause any numeric errors. This observation
indicates that the computation of A � B inside the Tensor
Cores is using high-precision [6] otherwise it can not give
the same result as FP32 computation on the CPU. On the
other hand, accumulation error indicates that the accumula-
tion of [A � B] + C is performed with relative low precision.

8.1.2 FP16

Half/FP16 Tensor Cores operation offers two data type
choices - FP32 and FP16 for accumulation matrix C and
result matrix D. Instead of just comparing to the FP32 result
of CPU, we also compare to the CPU FP16 result converted
from CPU FP32 result when using FP16 as the data type for
matrix C and matrix D.

Table 13 shows the profiling results of using FP32 as the
data type of matrices C and D. When initializing with FP16,
there are no numeric errors for all three operations. When
initializing with FP32, numeric errors occur due to type con-
version like the observations in BF16 profiling. However,
the error level(E-04) of FP16 is lower than the error level of
BF16 (E-03) since FP16 has more mantissa bits and is more
accurate as long as the values are within the FP16 range.

Table 14 shows the profiling results of using FP16 as the
data type of matrix C and D. Since the result matrix D is in
FP16, there are always numeric errors when compared to
the CPU FP32 baseline. Interestingly, if we compare the
CPU FP16 results, the errors are zero when using FP16 as
the initialization data type. This observation suggests that

even though the matrix D is in FP16, the hardware conducts
the computation in high-precision and only converts the
final result to low-precision FP16 in the end.

8.1.3 TF32

The profiling code for TF32 Tensor Cores is similar to the
one for the BF16 data type. Table 15 presents the results of
TF32 Tensor Cores operations. Note that if we compare
FP16 results in Table 13, we can find that TF32 and FP16
give the same level of error because they have the same
number of mantissa bits (10 bits).

8.2 Chain Matrix Multiplication

We use a simple application - chain matrix multiplication, to
evaluate the effect of low-precision FMA. Chain matrix mul-
tiplication is a simplified computation pattern of modern
deep learning applications which consists of many layers
and the results of the previous layer will be the input of the
next layer. In this computation pattern, both range (expo-
nent bits) and precision (mantissa bits) are important and
will affect the final accuracy. Fewer mantissa bits will result
in larger accumulative errors for the final result of the chain.
Fewer exponent bits give a smaller valid range and will
result in overflow (infinity) earlier.

The initialization data type can be either FP32 or low-pre-
cision type (BF16/FP16). For each node of the chain, we first
compute D = A � B. The result matrix D will be assigned to
matrix A for the next computation, and matrix B will be
assigned new random values. Unlike the element-wise pro-
filing in Section 8.1 where we only evaluate the errors of
one element, we evaluate the numeric errors of the whole
matrix D with shape m � n. Based on our study in Section 5,
we choose mma instructions with shape m16b8k8 since this
common shape is supported by BF16, FP16, and TF32. After
completion the chain computations, we evaluate the l2 rela-
tive errors between CPU results DFP32 and Tensor Cores
low-precision resultsDl with equation 1.

TABLE 12
The Numeric Profiling Results of BF16 on Tensor Cores W.R.T

FP32 on CPU

init_BF16 init_FP32

multiplication 0.0 1.29E-03
add - Inner product 0.0 1.72E-03
accumulation 1.89E-08 1.13E-03

TABLE 13
The Numeric Profiling Results of FP16 on Tensor Cores W.R.T

FP32 on CPU

FP32 as C/D init_FP16 init_FP32

multiplication 0.00 1.59E-04
add - Inner Product 0.00 2.18E-04
accumulation 0.00 1.36E-04

Matrix C and D are in FP32 data type.

TABLE 14
The Numeric Profiling Results of FP16 on Tensor Cores W.R.T

FP32 on CPU

CPU_FP32 CPU_FP32cvtFP16

FP16 as C/D init_FP16 init_FP32 init_FP16 init_FP32

multiplication 1.22E-04 1.94E-04 0.00 1.67E-04
add - inner product 1.81E-04 2.99E-04 0.00 2.21E-04
accumulation 1.81E-04 2.99E-04 0.00 2.21E-04

Matrix C and D are in FP16 data type.

TABLE 15
The Numeric Profiling Results of TF32 on Tensor Cores W.R.T

FP32 on CPU

init_TF32 init_FP32

multiplication 0.0 1.59E-04
add - Inner Product 0.0 2.17E-04
accumulation 0.0 1.36E-04

258 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

RelativeErr ¼
ffiPm

i¼1

Pn
j¼1 jDl

ij �DFP32
ij j2

q
ffiPm

i¼1

Pn
j¼1 jDl

ijj2
q (1)

Fig. 17 shows the results of three data types of chain
matrix multiplication with different chain lengths (N). We
have the following observations:

1) In general the errors increase with the length of the
chain. This increase is more significant for the BF16
data type compared to TF32 and FP16, this is because
BF16 has fewer mantissa bits and will suffer more
from accumulative errors.

2) The results of FP16 give the same error levels as
using TF32 because FP16 and TF32 have the same
number of mantissa bits which gives the same level
of precision, but it will run into overflow (infinity)
after N � 10 since it has fewer exponent bits which
result in a less range of numbers can be represented.

3) Using FP32 as an initialization strategy always
causes higher errors since it introduces type conver-
sion precision loss. When using a low-precision type
for initialization, the error is almost zero when chain
length is one because the internal computations are
conducted in high-precision as discovered in Sec-
tion 8.1 and there is no conversion precision loss.

In summary, FP16 offers the same level of precision as
TF32 as long as the numbers are within the valid range that
can be represented by FP16. BF16 has the same valid range
as TF32 but it suffers more seriously from accumulative pre-
cision loss. The users should consider both numeric behav-
iors and the performance benefits studied in Sections 5 and
6 when choosing the target data type for accelerating their
applications on Tensor Cores.

9 CONCLUSION

We dissect NVIDIA Tensor Cores, especially the newest
Ampere Tensor Cores through a set of microbenchmarks
and numeric profiling experiments. We summarize our
main findings as follows:

� When programming Ampere Tensor Cores. Using
the new ldmatrix + mma instructions is favorable
compared to the legacy wmma.load + wmma.mma
instructions. The ablation experiments in the Appen-
dix A, available in the online supplemental material
demonstrate the advantages of using the new
instructions. Specifically, by levering the flexibility
of the new ldmatrix instruction, it can reduce the
number of corresponding GPU clock cycles by more
than 60% .

� Sparse acceleration introduced in Ampere Tensor
Cores can only be programmed through mma APIs.
Sparse operation doubles the throughput by accept-
ing larger input matrices than dense ones while
using the same number of execution cycles.

� It is well known that four warps should be allocated
on a GPU SM since there are four warp schedu-
lers [30], [39]. Our experiments show that for some
instructions (e.g., Fig. 7), peak performance can only
be achieved when there are at least eight warps .

� For each data type, there are two mma.sp instructions
with different k sizes. In general, the instructions with
larger k can achieve the expected performance on both
data-center A100 and Gaming RTX3070Ti Tensor
Cores. However, the instructions with smaller k give
an undesired performance on A100 Tensor Cores (i.e.,
can not achieve peak throughput).

� The performance of different GPUs with the same
Architecture generation may not be consistent. For
instance, RTX3070Ti Tensor Cores favor FP16 as an
accumulation data type from a performance perspec-
tive, but there is no difference no matter whether
using FP16 or FP32 on A100 Tensor Cores.

� The performance of BF16 and FP16 instructions on
Tensor Cores are the same, which confirms the obser-
vations in previous work [6]. On the other hand, our
experiments intuitively show that FP16 suffers from a
smaller range and BF16 suffers from higher numeric
errors. For machine learning applications that have a
relatively high tolerance for numeric precision loss,
BF16 is favorable since it has the same range as F32
and therefore the same overflow behavior.

In conclusion, our work provides comprehensive and
up-to-date information on the Tensor Cores, especially the
instruction-level evaluations. To the best of our knowledge,
this paper is the first systematic study on recent Tensor
Cores generations (Turing and Ampere) using the new pro-
gramming interface. We believe our contributions can help
users to implement their own Tensor Cores applications
and facilitate accurate Tensor Cores modeling.

REFERENCES

[1] P. N. Q. Anh, R. Fan, and Y. Wen, “Balanced hashing and efficient
GPU sparse general matrix-matrix multiplication,” in Proc. Int.
Conf. Supercomput., 2016, pp. 1–12.

Fig. 17. Numeric profiling of chain matrix multiplication with different data
types -TF32, BF16, and FP16. All values are randomly generated by nor-
mal distribution with m ¼ 0 and s ¼ 1. The errors are taken on average
with 1000 measurements. Note that the line of FP16 stops at N = 10 due
to overflow (infinity).

SUN ETAL.: DISSECTING TENSOR CORES VIA MICROBENCHMARKS: LATENCY, THROUGHPUTAND NUMERIC BEHAVIORS 259

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

[2] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
2009, pp. 163–174.

[3] Y. Chen, K. Li, W. Yang, G. Xiao, X. Xie, and T. Li, “Performance-
aware model for sparse matrix-matrix multiplication on the sun-
way taihulight supercomputer,” IEEE Trans. Parallel Distrib. Syst.,
vol. 30, no. 4, pp. 923–938, Apr. 2019.

[4] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix–
matrix multiplication for the GPU,” ACM Trans. Math. Softw.,
vol. 41, pp. 1–20, 2015.

[5] M. Deveci, C. Trott, and S. Rajamanickam, “Multithreaded sparse
matrix-matrixmultiplication formany-core andGPUarchitectures,”
Parallel Comput., vol. 78, pp. 33–46, 2018.

[6] M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh, “Numerical
behavior of NVIDIA tensor cores,” PeerJ Comput. Sci., vol. 7, 2021,
Art. no. e330.

[7] B. Feng, Y. Wang, G. Chen, W. Zhang, Y. Xie, and Y. Ding,
“Egemm-tc: Accelerating scientific computing on tensor cores
with extended precision,” in Proc. ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., 2021, pp. 278–291.

[8] B. Feng, Y. Wang, T. Geng, A. Li, and Y. Ding, “APNN-TC: Accel-
erating arbitrary precision neural networks on ampere GPU ten-
sor cores,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., 2021, pp. 1–13.

[9] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx
adaptive compute acceleration platform: Versaltm architecture,”
in Proc. ACM/SIGDA Int. Symp. Field-Prog. Gate Arrays, 2019,
pp. 84–93.

[10] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing
GPU tensor cores for fast FP16 arithmetic to speed up mixed-pre-
cision iterative refinement solvers,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2018, pp. 603–613.

[11] B. Hickmann, J. Chen, M. Rotzin, A. Yang, M. Urbanski, and S.
Avancha, “Intel nervana neural network processor-T (NNP-T)
fused floating point many-term dot product,” in Proc. IEEE 27th
Symp. Comput. Arithmetic, 2020, pp. 133–136.

[12] I. Hubara, B. Chmiel, M. Island, R. Banner, J. Naor, and D. Soudry,
“Accelerated sparse neural training: A provable and efficient
method to find n: M transposable masks,” in Adv. Neural Informat.
Process. Syst., 2021, pp. 21099–21111.

[13] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting the
nvidia turing T4 GPU via microbenchmarking,” 2019, arXiv:
1903.07486.

[14] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting
the nvidia volta GPU architecture via microbenchmarking,”
2018, arXiv: 1804.06826.

[15] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. Annu. Int. Symp. Comput. Archit., 2017,
pp. 1–12.

[16] D. B. Kirk and W. H. Wen-Mei, Programming Massively Parallel
Processors: A Hands-on Approach. San Mateo, CA, USA: Morgan
Kaufmann, 2016.

[17] R. Kunchum, A. Chaudhry, A. Sukumaran-Rajam, Q. Niu, I. Nisa,
and P. Sadayappan, “On improving performance of sparse
matrix-matrix multiplication on GPUs,” in Proc. Int. Conf. Super-
Comput., 2017, pp. 1–11.

[18] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 4013–4021.

[19] J. Lee, S. Kang, Y. Yu, Y.-Y. Jo, S.-W. Kim, and Y. Park,
“Optimization of GPU-based sparse matrix multiplication for
large sparse networks,” in Proc. IEEE 36th Int. Conf. Data Eng.,
2020, pp. 925–936.

[20] A. Li et al., “Evaluating modern GPU interconnect: PCIe, NVLink,
NV-SLI, NVSwitch and GPUdirect,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 1, pp. 94–110, Jan. 2020.

[21] A. Li and S. Su, “Accelerating binarized neural networks via bit-
tensor-cores in turing GPUs,” IEEE Trans. Parallel Distrib. Syst.,
vol. 32, no. 7, pp. 1878–1891, Jul. 2021.

[22] J. Liu, D. Yang, and J. Lai, “Optimizing winograd-based convolu-
tion with tensor cores,” in Proc. 50th Int. Conf. Parallel Process.,
2021, pp. 1–10.

[23] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“Nvidia tensor core programmability, performance & precision,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2018,
pp. 522–531.

[24] M. Martineau, P. Atkinson, and S. McIntosh-Smith, “Benchmarking
the nvidia v100 GPU and tensor cores,” in Proc. Eur. Conf. Parallel
Process., 2018, pp. 444–455.

[25] X. Mei and X. Chu, “Dissecting GPU memory hierarchy through
microbenchmarking,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 1, pp. 72–86, Jan. 2017.

[26] P. Micikevicius et al., “Mixed precision training,” 2017, arXiv:
1710.03740.

[27] Y. Niu, Z. Lu, H. Ji, S. Song, Z. Jin, and W. Liu, “TileSpGEMM: A
tiled algorithm for parallel sparse general matrix-matrix multipli-
cation on GPUs,” in Proc. 27th ACM SIGPLAN Symp. Princ. Pract.
Parallel Program., 2022, pp. 90–106.

[28] Nvidia, “cublas,” 2022. [Online]. Available: https://docs.nvidia.
com/cuda/cublas/index.html

[29] Nvidia, “Cutlass,” 2022. [Online]. Available: https://github.com/
NVIDIA/cutlass

[30] Nvidia, “Nvidia ampere architecture white paper,” 2020. [Online].
Available: https://resources.nvidia.com/en-us-genomics-ep/
ampere-architecture-white-paper

[31] Nvidia, “Nvidia hopper architecture white paper,” 2022. [Online].
Available: https://resources.nvidia.com/en-us-tensor-core/gtc22-
whitepaper-hopper

[32] Nvidia, “Nvidia turing architecture white paper,” 2018. [Online].
Available: https://www.nvidia.com/content/dam/en-zz/Solutions/
design-visualization/technologies/turing-architecture/NVIDIA-
Turing-Architecture-Whitepaper.pdf

[33] Nvidia, “Nvidia volta architecture white paper,” 2017. [Online].
Available: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

[34] Nvidia, “Nvidiansight,” 2022. [Online]. Available: https://docs.
nvidia.com/nsight-compute/ProfilingGuide/index.html

[35] Nvidia, “PTX ISA,” 2022. [Online]. Available: https://docs.
nvidia.com/cuda/parallel-thread-execution/index.html

[36] Nvidia, Nvidia ampere ga102 GPU architecture, 2021. [Online].
Available: https://www.nvidia.com/content/PDF/nvidia-
ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

[37] Nvidia, Developing cuda kernels to push tensor cores to the abso-
lute limit on nvidia a100, 2022. [Online]. Available: https://www.
nvidia.com/en-us/on-demand/session/gtcsj20-s21745/

[38] M. Parger, M. Winter, D. Mlakar, and M. Steinberger, “Speck:
Accelerating GPU sparse matrix-matrix multiplication through
lightweight analysis,” in Proc. 25th ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., 2020, pp. 362–375.

[39] M. A. Raihan, N. Goli, and T. M. Aamodt, “Modeling deep learn-
ing accelerator enabled GPUs,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw., 2019, pp. 79–92.

[40] W. Sun et al., “Dominosearch: Find layer-wise fine-grained n: M
sparse schemes from dense neural networks,” in Proc. Adv. Neural
Informat. Process. Syst., 2021, pp. 20721–20732.

[41] Y. Wang, B. Feng, and Y. Ding, “TC-GNN: Accelerating sparse
graph neural network computation via dense tensor core on
GPUs,” 2021, arXiv:2112.02052.

[42] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Stein-
berger, “Adaptive sparse matrix-matrix multiplication on the
GPU,” in Proc. 24th Symp. Princ. Pract. Parallel Program., 2019,
pp. 68–81.

[43] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A.
Moshovos, “DemystifyingGPUmicroarchitecture throughmicrobe-
nchmarking,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
2010, pp. 235–246.

[44] Z. Xie, G. Tan, W. Liu, and N. Sun, “A pattern-based
SpGEMM library for multi-core and many-core architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 1, pp. 159–175,
Jan. 2022.

[45] D. Yan, W. Wang, and X. Chu, “Demystifying tensor cores to opti-
mize half-precision matrix multiply,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2020, pp. 634–643.

[46] D. Yan, W. Wang, and X. Chu, “Optimizing batched winograd
convolution on GPUs,” in Proc. 25th ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., 2020, pp. 32–44.

[47] X. Zhang, G. Tan, S. Xue, J. Li, K. Zhou, and M. Chen,
“Understanding the GPU microarchitecture to achieve bare-metal
performance tuning,” in Proc. 22nd ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., 2017, pp. 31–43.

[48] A. Zhou et al., “Learning N: M fine-grained structured sparse neu-
ral networks from scratch,” 2021, arXiv:2102.04010.

260 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://resources.nvidia.com/en-us-genomics-ep/ampere-architecture-white-paper
https://resources.nvidia.com/en-us-genomics-ep/ampere-architecture-white-paper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s21745/
https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s21745/

Wei Sun is currently working toward the third-
year PhD degree with Electronic System group,
Eindhoven University of Technology, the Nether-
lands. His research interests include deep learn-
ing, sparse neural networks, performance
evaluations and optimizations of parallel com-
puter architecture and applications.

Ang Li is a senior computer scientist with Physi-
cal and Computational Sciences Directorate of
Pacific Northwest National Laboratory (PNNL).
His research interests include system and
architecture design for heterogeneous High-per-
formance computing, quantum computing and
binarized neural networks.

Tong Geng received the PhD degree in com-
puter engineering from Boston University in
2020. He is a tenure-track assistant professor
with the ECE and CS departments of the Univer-
sity of Rochester (UR). Before joining Rochester,
He worked with the Physical and Computational
Sciences Directorate (PCSD), Pacific Northwest
National Laboratory (PNNL) operated by the
Department of Energy of the US government for
2 years. His research interests are at the inter-
section of computer architecture and systems,

machine learning, graph intelligence, and high-performance computing.
He is the finalist for the Best Thesis Award of BU and the recipient of the
Outstanding Postdoc Award at PNNL. He has published more than 50
papers and his papers have appeared in many prestigious conferences
and journals including MICRO, HPCA, DAC, SC, TPDS, TC, etc.

Sander Stuijk received the MSc degree (with
honors) in electrical engineering in 2002 and the
PhD degree from the Eindhoven University of
Technology in 2007. He is currently an associate
professor with the Department of Electrical Engi-
neering, the Eindhoven University of Technology.
His research focuses on design trajectories for
embedded signal processing application that are
used in a variety of high-tech systems such as
industrial manufacturing systems, automotive, and
health-care monitoring. The goal is to develop

novel edge compute architectures and high-level compilation strategies
that transform applications into efficient code for execution on modern low-
power edge platforms.

Henk Corporaal received the MSc degree in the-
oretical physics from the University of Groningen,
Groningen, The Netherlands, and the PhD degree
in electrical engineering, in the area of computer
architecture from the Delft University of Technol-
ogy, Delft, The Netherlands. He is currently a pro-
fessor of embedded system architectures with the
Eindhoven University of Technology (TU/e), Eind-
hoven, The Netherlands. He has coauthoredmore
than 500 journal and conference papers. Further-
more he invented a new class of VLIW architec-

tures, the Transport Triggered Architectures, which is used in several
commercial products, and by many research groups. His research inter-
ests include low power multi-processor, heterogenous processing archi-
tectures, their programmability, and the predictable design of softand
hard real-time systems. This includes research and design of embedded
system architectures, including CGRAs, SIMD, VLIW and GPUs, on
accelerators, the exploitation of all kinds of parallelism, fault-tolerance,
approximate computing, architectures for machine and deep learning,
optimizations and mapping of deep learning networks, and the (semi-)
automatedmapping of applications to these architectures.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SUN ETAL.: DISSECTING TENSOR CORES VIA MICROBENCHMARKS: LATENCY, THROUGHPUTAND NUMERIC BEHAVIORS 261

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2024 at 12:56:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

