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APPENDIX A: FuLL CONDITIONAL DISTRIBUTIONS

In this appendix, we describe some of the full conditional distributions for the model de-
scribed in the paper. Let y;;(d,t) denote a multivariate response corresponding to ENM
i (i =1,...,n) and replicate j (j = 1,...,m), at dose d = (dy,...,d,,) € [0,D] and time
t=(t1,...,t,,) € [0, T). Here D is the largest measured dose and 7 is the largest measured
exposure time. Let 8 = (a, 8, T,0.,03, A, 7, p) denote the full parameter vector, and let
0\s denote the vector containing all components of @ except for some parameter  in 6.
Moreover, we denote with y; the complete set of response values for particle i. Finally, let
hg denote a (M, x M;)-dimensional design vector, which can be defined as (B1(d)Bi(t),. ..,
By, (d) B, (t), ... Ba,(d)Bay, (1)) (§2.4), and X an n x p dimensional design matrix which in-
cludes the p covariates. Using the notation above we define the full conditional distributions

for all available parameters as follows.

A.1: Full conditional distributions for «; and 3;

Let n = m x ng x n; be the total sample size for any particle i. Also let y;‘j(d, t) = yi;(d, t) —
h',B;, where 3; = 0 if 7; = 0, we have
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Furthermore, defining 4;;(d, t) = y;;(d, t) — a;, we have
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where 35, = 03 (K4 ® K).



A.2: Full conditional distributions for ¢? and 7;

From A.1, let n = m X ng X ng,
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For each particle i, (i = 1,...,n), the variance inflation parameter 7; is
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where m;(d, t) is defined as before.

A.3: Full conditional distributions for other variance parameters

Mg M,
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A.4: Full conditional distributions for A\, and z;

The latent probit scores have conditional distribution:
zi | A pyyi=1~N (:c;p)\p, 1) I(z <0), z|XAp,v=0~N (a:;p)\p, 1) I(z; > 0).

Similarly, regression coefficients A, are
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0.1 A.5: Derivation of p(vy |y, 6\~)
Let ;;(d,t) = v;;(d,t) — a; and H; be a n x MyzM; matrix of tensor product spline bases.
Finally, define Qg, = (%H{HZ + 251) For each particle ¢ (i=1,... n), we have

(i | Gi0y) < (i | 6\s,)p(3i | X, p),

where the likelihood, marginalized with respect to 3,, is
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which gives the result in the manuscript (§3.2).

APPENDIX B: MODEL ASSESSMENT

In this appendix we discuss model assessment. First we assess goodness of fit using the condi-
tional predictive ordinate (cpo), as described by Geisser (1980). Next we plot the probability
integral transform (PIT) histogram, as a measure of predictive performance (Gneiting et al.

(2007)). Finally, we present some graphical posterior predictive checks.

B.1: Conditional Predictive Ordinate (CPO)

The conditional predictive ordinate (CPO) is a diagnostic tool for detecting observations

with poor model fit. If we let Y denote the complete set of responses, let Y_, denote



observation Y with the k-th component omitted, and let Y;?* denote the kth component of

observation Y, then C'PO,, can be defined as follows:

CPOy = (YY) = [ (Y| Yo w)n(w | Yoy de,
obs 1 1
(Y0 | Yo g, w) / @Y (1)
— = dw
(Y | w)

Here, w = (o, 3,7T,0.,08,A,7, p) denotes the full parameter vector. Given N MCMC
samples, n = 1, ..., N, from the posterior distribution P(w | Y'), we can obtain the harmonic
mean estimate of C'PO,, as follows:

s > 1/7r(§,:’”|w£”>)' 2)

n=1

The expression above is evaluated at posterior samples w,gl), e ,w,({N).

A plot of -log(C' POy) can be used to diagnose poor model fit. Large values of -log(C' POy,)
indicate observations that are not consistent with the model. The top panel of Figure 1,
provides a plot of -log(CPO;(d,t)) for the model and data described in the main article.
Overalll values of -log(C'PO;(d, t)) are relatively low, indicating good model fit. The middle
panel indicates that the largest values of -log(C'PO;(d, t)) tend to be observations with large
exposure times, This is to be expected, as cell death is followed after sometime by the

dissolution of cell nuclei, hindering the measurement of cellular responses.

B.2: Probability Integral Transform (PIT)

The probability integral transform (PIT), as described by Gneiting et al. (2007), is frequently
used as a measure of posterior predictive calibration. Here calibration is defined as the sta-
tistical consistency between the posterior predictive distribution and the observed responses
Y. The PIT is described as the value of the observed response Y, attained under the pre-

dictive cumulative distribution function. Using the same notation as above, the PIT can be



defined as follows:

PIT; = [ P(Yi < w)r(w)dw = P(Y3). 3)

Given N MCMC samples, n = 1,..., N, from the posterior distribution P(w | Y'), we can
estimated PIT as follows:

(Y, < 7). (4)

M=
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L
N

n=1

where Y,,E;;) « 1s a sample from the posterior predictive distribution.

A plot of the PIT histogram can be used to visually assess the calibration of the model.
Under good predictive performance of the model, the PIT histogram has a uniform distribu-
tion (see Diebold et al. (1997) for a formal proof). Inspection of the PIT histogram can also
indicate reasons for poor predictive performance. A hump-shaped PIT histogram indicates
prediction intervals that are, on average, to wide due to over dispersion of the predicative
distribution. A U-shaped PIT histogram indicates that the predictive distribution is too nar-
row. Finally, a triangle shaped PIT histogram corresponds to biased predictive distributions
(Gneiting et al. 2007).

The bottom panel of Figure 1 provides a plot of the PIT histogram for the entire model,

including all doses, times, and particles. Visual assessment indicates that the plot does tend

toward uniformity, indicating good overall predictive performance.

B.3: Posterior Predictive Diagnostics

A common tool for model checking in Bayesian inference involves posterior predictive checks.
The basic idea behind posterior predictive checking is that if the model is a good fit to
the data, then data replicated under the model should resemble the observed response Y.
In posterior predictive checking, replicate samples Y., are simulated from the posterior
predictive distribution and compared to the observed data Y. Potential problems with the

model can be detected by looking for systematic differences between the simulated posterior
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Figure 1: Graphical model diagnostics. (Top) Estimate of — log(cpo;(d,t)) for detecting
observations with poor model fit. (Middle) Plot of —log(cpo;(d,t)) as a function of dose
and time, indicating any relationship between outlying observations and the administered
dose or duration of exposure. (Bottom) Probability Integral Transform assessing empirical
calibration of the posterior predictive distribution.



predictive samples and the observed response. Using the same notation described above, the

posterior predictive distribution can be described as follows:
P(Yrep | Y) = /P(Yrep | w)P(w | Y)dw. (5)

Given N MCMC samples, n = 1,..., N, from the posterior distribution P(w | Y'), we can
draw samples Kg;?, n =1,...,N, from the posterior predictive distribution

Diagnostics of posterior predictive performance are obtained by comparing draws from the
posterior predictive distribution to the observed data, using both formal tests and graphical
checks. Graphical model checking involves the display of the simulated data from the pos-
terior predictive distribution alongside the observed data Y, and visually looking for large
discrepancies such as lack of coverage (Gelman et al. 2004).

Figures 3 and 4 provide plots of the distribution of the posterior predictive mean response
averaged across all doses and times of exposure (black), for each particle. The mean and
associated 95% posterior intervals for the posterior predictive distribution are marked using
vertical lines (black). Also included is the empirical mean response across all doses and
times of exposure (red). Figure 2, summarizes these results by plotting the mean and 95%
posterior intervals of the posterior predictive mean response (black), along with the the
empirical mean response across all doses and times (red), for each particle. In all cases
the empirical mean response is contained within the 95% posterior intervals of the posterior

predictive mean distribution, indicating relatively good posterior coverage across all doses

and times of exposure.
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Figure 2: Summary of posterior predictive mean coverage. Mean and 95% posterior
intervals of the posterior predictive mean response across all doses and times of exposure, for
all 24 particles.) Also included are the empirical mean responses across all doses and times
of exposure (red).
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Figure 3: Posterior predictive mean distributions for CuO, Al,O3, CeO,, CoO,
Fe; O3, Fe;O,, Mn,03, Gd,03, HfO,, ZnO, In,O3, and La,O; ENMs. For each
particle we plot the distribution of the posterior predictive mean response across all doses
and times of exposure (black), along with the mean (solid black line) and associated 95%
posterior intervals (dotted black lines) for this distribution. Also included is the empirical
mean response across all doses and times of exposure (red).
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Figure 4: Posterior predictive mean distributions for Co30,4, NiO, Sb,0O3, Cr,0s3,
SiOg, SnO,, Niy03, TiOs, WO3, Y503, YboO3, and ZrO, ENMs.] For each particle
we plot the distribution of the posterior predictive mean response across all doses and times
of exposure (black), along with the mean (solid black line) and associated 95% posterior
intervals (dotted black lines) for this distribution. Also included is the empirical mean
response across all doses and times of exposure (red).
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