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Optimal Spatial Prediction Using Ensemble
Machine Learning

Molly M. Davies and Mark J. van der Laan

Abstract

Spatial prediction is an important problem in many scientific disciplines. Su-
per Learner is an ensemble prediction approach related to stacked generalization
that uses cross-validation to search for the optimal predictor amongst all convex
combinations of a heterogeneous candidate set. It has been applied to non-spatial
data, where theoretical results demonstrate it will perform asymptotically at least
as well as the best candidate under consideration. We review these optimality
properties and discuss the assumptions required in order for them to hold for spa-
tial prediction problems. We present results of a simulation study confirming
Super Learner works well in practice under a variety of sample sizes, sampling
designs, and data-generating functions. We also apply Super Learner to a real
world dataset.



1. INTRODUCTION

Optimal prediction of a spatially indexed variable is a crucial task in many scientific disci-

plines. Numerous algorithmic approaches have been proposed (see Cressie (1993) and Sch-

abenberger and Gotway (2005) for reviews), but selecting the best approach for a given data

set remains a difficult statistical problem. One particularly challenging aspect of spatial pre-

diction is that location is often used as a surrogate for large sets of unmeasured spatially

indexed covariates. In such instances, effective prediction algorithms capable of capturing lo-

cal variation must make strong, mostly untestable assumptions about the underlying spatial

structure of the sampled surface and can be prone to overfitting. Ensemble predictors that

combine the output of multiple predictors can be a useful approach in these contexts, allow-

ing one to consider multiple aggressive predictors. There have been some recent examples of

the use of ensemble approaches in the spatial and spatiotemporal literature. For example,

Zaier et al. (2010) used ensembles of artificial neural networks to estimate the ice thickness

of lakes and Chen and Wang (2009) used stacked generalization to combine support vec-

tor machines classifying land-cover types in hyperspectral imagery. Ensembling techniques

have also been used to make spatially indexed risk maps. For example, Rossi et al. (2010)

used logistic regression to combine a library of four base learners trained on a subset of the

observed data to obtain landslide susceptibility forecasts for the central Umbrian region of

Italy. Kleiber et al. (2011) have developed a Bayesian model averaging technique for obtain-

ing locally calibrated probabilistic precipitation forecasts by combining output from multiple

deterministic models.

The Super Learner prediction algorithm is an ensemble approach that combines a user-

supplied library of heterogeneous candidate learners in such a way as to minimize ν-fold

cross-validated risk (Polley and van der Laan, 2010). It is a generalization of the stacking

algorithm first introduced by Wolpert (1992) within the context of neural networks and

later adapted by Breiman (1996) to the context of variable subset regression. LeBlanc and

Tibshirani (1996) discuss stacking and its relationship to the model-mix algorithm of Stone
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(1974) and the predictive sample-reuse method of Geisser (1975). The library on which Super

Learner trains can include parametric and nonparametric models as well as mathematical

models and other ensemble learners. These learners are then combined in an optimal way in

the sense that the Super Learner predictor will perform asymptotically as well as or better

than any single prediction algorithm in the library under consideration. Super Learner has

been used successfully in nonspatial prediction (see for example Polley et al. (2011)). In this

paper, we review its optimality properties and discuss the assumptions necessary for these

optimality properties to hold within the context of spatial prediction. We also present the

results of a simulation study, demonstrating that Super Learner works well in practice under

a variety of spatial sampling schemes and data-generating distributions. In addition, we apply

Super Learner to a real world dataset, predicting water acidity for a set of 112 lakes in the

Southeastern United States. We show Super Learner is a practical, data-driven, theoretically

supported way to build an optimal spatial prediction algorithm from a large, heterogeneous

set of predictors, protecting against both model misspecification and over-fitting.

2. PROBLEM FORMULATION

Consider a random spatial process indexed by location over a fixed, continuous, d-dimensional

domain,
{
Y (s) : s ∈ D ⊂ Rd

}
. For a particular set of distinct sampling points {S1, ..., Sn} ⊂

D, We observe {(Si, Y ∗i ) : i = 1, . . . , n} , where Y ∗ = Y (Si)+εi and εi represents measurement

error for the ith observation. For all i, we assume E[Y ∗i |Si = s] = Y (s). Our objective is to

predict Y (s′) for unobserved locations s′ ⊂ D. Thus, our parameter of interest is the spatial

process itself. We do not make any assumptions about the functional form of the spatial

process. We do, however, assume that one of the following is true: for all i, either

(1) (Si, Y
∗
i ) are independently and identically distributed (i.i.d.), or

(2) (Si, Y
∗
i ) are independent but not identically distributed, or

(3) Y ∗i are independent given S1, . . . ,Sn; and E[Y ∗i |S1, . . . ,Sn] = E[Y ∗i |Si] = Y (Si). This

corresponds to a fixed design.
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Each of these sets of assumptions imply that any measurement error is mean zero conditional

on Si, or in the case of fixed design, conditional on S1, . . . ,Sn. It is important to note that S

could consist of both location and some additional covariates W, i.e. S = (X,W), where X

refers to location. In such cases, it may be that measurement error is mean zero conditional

on location and covariates, but not on location alone.

While these are reasonable assumptions for many spatial prediction problems, they are

nontrivial and may not always be appropriate. For instance, instrumentation and calibration

error within sensor networks can result in spatially structured measurement error that is not

mean zero given S1, . . . ,Sn. There has been an effort on the part of researchers to develop

ways to adapt the cross-validation procedure so as to minimize the effects of this kind of

measurement error when choosing parameters such as bandwidth in local linear regression

or smoothing parameters for splines. Interested readers should consult Opsomer et al. (2001)

and Francisco-Fernandez and Opsomer (2005) for overviews.

3. THE SUPER LEARNER ALGORITHM

Suppose we have observed {Oi}ni=1, drawn from the random variable O with true data-

generating distribution P0 ∈ M, where the statistical model M contains all possible data

generating distributions for O. The empirical distribution for our sample is denoted Pn.

Define a parameter Ψ : M → R ≡ {Ψ(P ) : P ∈ M} in terms of a risk function R as

follows: Ψ(P ) = argminψ∈ΨR(ψ, P ). In this paper, we will limit our discussion to so-called

linear risk functions, where R(ψ, P ) = PL(ψ) =
∫
L(ψ)(o)dP (o) for some loss function

L. For a discussion of nonlinear risk functions, see van der Laan and Dudoit (2003). We

write our parameter of interest as ψ0 = Ψ(P0) = argminψR(ψ, P0), a function of the true

data generating distribution P0. For many spatial prediction applications, the Mean-Squared

Error (MSE) is an appropriate choice for the risk function R, but this needn’t necessarily be

the case.

Define a library of J base learners of the parameter of interest ψ0, denoted {Ψ̂j : Pn →

Ψ̂j(Pn)}Jj=1. We make no restrictions on the functional form of the base learners. For exam-
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ple, within the context of spatial prediction, a library could consist of various Kriging and

smoothing splines algorithms, Bayesian hierarchical models, mathematical models, machine

learning algorithms, and other ensemble algorithms. We make a minimal assumption about

the size of the library: it must be at most polynomial in sample size. Given this library of

base learners, we consider a family of combining algorithms {Ψ̂α = f({Ψ̂j : j}, α) : α} in-

dexed by a Euclidean vector α for some function f . One possible choice of combining family

is the family of linear combinations, Ψ̂α =
∑J

j=1 α(j)Ψ̂j. If it is known that ψ0 ∈ [0, 1], one

might instead consider the logistic family, log[Ψ̂α/(1 − Ψ̂α)] =
∑J

j=1 α(j) log[Ψ̂α/(1 − Ψ̂α)].

In either of these families, one can also constrain the values α can take. In this paper, we

constrain ourselves to convex combinations, i.e. for all j, α(j) ≥ 0 and
∑

j α(j) = 1.

Let {Bn} be a collection of length n binary vectors that define a random partition of the

observed data into a training set {Oi : Bn(i) = 0} and a validation set {Oi : Bn(i) = 1}. The

empirical probability distributions for the training and validation sets are denoted P 0
n,Bn

and

P 1
n,Bn

, respectively. The estimated risk of a particular estimator Ψ̂ : Pn → Ψ̂(Pn) obtained

via cross-validation is defined as

EBn

[
R
(

Ψ̂
[
P 0
n,Bn

]
, P 1

n,Bn

)]
= EBn

[
P 1
n,Bn

L
(

Ψ̂
[
P 0
n,Bn

])]
= EBn

[∫
L
(

Ψ̂
[
P 0
n,Bn

]
, y
)
dP 1

n,Bn

]
.

Given a particular class of candidate estimators indexed α, the cross-validation selector

selects the candidate which minimizes the cross-validated risk under the empirical distribu-

tion Pn, denoted

αn ≡ argmin
α

{
EBn

[
R
(

Ψ̂α

[
P 0
n,Bn

]
, P 1

n,Bn

)]}
.

The Super Learner estimate of ψ0 is denoted Ψ̂αn(Pn).

3.1 Key Theoretical Results

Super Learner’s aggressive use of cross-validation is informed by a series of theoretical results

originally presented in van der Laan and Dudoit (2003) and expanded upon in van der Vaart
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et al. (2006). We provide a summary of these results below. For details and proofs, the reader

is referred to these papers.

First, we define a benchmark procedure called the oracle selector, which selects the can-

didate estimator that minimizes the cross-validated risk under the true data generating dis-

tribution P0. We denote the oracle selector for estimators based on cross-validation training

sets of size n(1− p), where p is the proportion of observations in the validation set, as

α̃n ≡ argmin
α

{
EBn

[
R
(

Ψ̂α

[
P 0
n,Bn

]
, P0

)]}
.

van der Laan and Dudoit (2003) present an oracle inequality for the cross-validation

selector αn in the case of random design regression. Let L(·) be a uniformly bounded loss

function with M1 ≡ supψ,O |L(ψ)[O]−L(ψ0)[O]| <∞. Let dn(ψ, ψ0) = P0 [L(ψ)− L(ψ0)] be

a loss-function based risk dissimilarity between an arbitrary predictor ψ and the parameter

of interest ψ0, where the risk dissimilarity dn(·) is quadratic in the difference between ψ

and ψ0, i.e. P0[L(ψ) − L(ψ0)]
2 ≤ M2P0[L(ψ − ψ0)]. Suppose the cross-validation selector

αn defined above is a minimizer over a grid of Kn different α-indexed candidate estimators.

Then for any real-valued δ > 0,

E
[
dn

(
Ψ̂αn

[
P 0
n,Bn

]
, ψ0

)]
≤ (1 + 2δ) E

[
min
α

EBndn

(
Ψ̂α[P 0

n,Bn
], ψ0

)]
+ C(M1,M2, δ)

logKn

n
,

(1)

where C(·) is a constant defined in van der Vaart et al. (2006) (see also Appendix B for a

definition within the context of fixed regression). Thus if the proportion of observations in

the training set, p, goes to zero as n→∞, and

1

n log n
E
[
min
α

EBndn

(
Ψ̂α

[
P 0
n,Bn

]
, ψ0

)]
n→∞−−−→ 0,

it follows that Ψ̂αn , the estimator selected by the cross-validation selector, is asymptotically

equivalent to the estimator selected by the oracle, Ψ̂α̃n , when applied to training samples of
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size n(1− p), in the sense that

EBn

[
d
(

Ψ̂αn

[
P 0
n,Bn

]
, ψ0

)]
EBn

[
d
(

Ψ̂α̃n

[
P 0
n,Bn

]
, ψ0

)] n→∞−−−→ 1.

The oracle inequality as presented in equation (1) shows us that if none of the base

learners in the library are a correctly specified parametric model and therefore do not con-

verge at a parametric rate, the cross-validation selector performs as well in terms of expected

risk dissimilarity from the truth as the oracle selector, up to a typically second order term

bounded by (logKn)/n. If one of the base learners is a correctly specified parametric model

and thus achieves a parametric rate of convergence, the cross-validation selector converges

(with respect to expected risk dissimilarity) at an almost parametric rate of (logKn)/n.

For the special case where Y ∗ = Y and the dimension of S is two, the cross-validation

selector performs asymptotically as well as the oracle selector up until a constant factor

of (logKn)/n. When Y ∗ = Y and the dimension of S is greater than two, the rates of

convergence of the base learners will be n−1/d. This is slower than n−1/2, the rate for a

correctly specified parametric model, so the asymptotic equivalence of the cross-validation

selector with the oracle selector applies.

The original work of van der Laan and Dudoit (2003) used a random regression formula-

tion. Spatial prediction problems where we have assumed either (2) or (3) in section 2 above

require a fixed design regression formulation. We provide a proof of the oracle inequality for

the fixed design regression case in Appendix B.

The key message is that Super Learner is a data-driven, theoretically supported way to

build the best possible prediction algorithm from a large, heterogeneous set of predictors. It

will perform asymptotically as well as or better than the best candidate prediction algorithm

under consideration. Expanding the search space to include all convex combinations of the

candidates can be an important advantage in spatial prediction problems, where location is

often used as a surrogate for unmeasured spatially indexed covariates. Super Learner allows
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one to consider sufficiently complex, flexible functions while providing protection against

overfitting.

4. CROSS-VALIDATION AND SPATIAL DATA

The theoretical results outlined above depend on the training and validation sets being inde-

pendent. When this is not the case, there are generally no developed theoretical guarantees

of the asymptotic performance of any cross-validation procedure (Arlot and Celisse, 2010).

Bernstein’s inequality, which van der Laan and Dudoit (2003) use in developing their proof

of the oracle inequality, has been extended to accommodate certain weak dependency struc-

tures, so it may be that there are ways to justify certain optimality properties of ν-fold

cross-validation in these cases. There have also been some extensions to potentially use-

ful fundamental theorems that accommodate other specific dependency structures. Lumley

(2005) proved an empirical process limit theorem for sparsely correlated data which can be

extended to the multidimensional case. Jiang (2009) provided probability bounds for uniform

deviations in data with certain kinds of exponentially decaying one-dimensional dependence,

although it is unclear how to extend these results to multidimensional dependency structures

where sampling may be irregular. Neither of these extensions is immediately applicable to

the general spatial case, where sampling may or may not be regular and the extent of spatial

correlation cannot necessarily be assumed to be sparse. There has been some attention in the

spatial literature to the use of cross-validation within the context of Kriging and selecting

the best estimates for the parameters in a covariance function, most of it urging cautious

and exploratory use (Cressie, 1993; Davis, 1987). Todini (2001) has investigated methods to

provide accurate estimates of model-based Kriging error when the covariance structure has

been selected via leave-one-out cross-validation, although this remains an open problem.

Recall from section 2 above that our parameter of interest is the spatial process Y (s)

and we have assumed E[Y ∗|S = s] = Y (s). Even if Y (s) is a spatially dependent stochastic

process such as a Gaussian random field, the true parameter of interest in most cases is not

the full stochastic process, but rather the particular realization from which we have sam-
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f4 f5 f6

−4

−2

0

2

4

Figure 1: The six spatial processes used in the simulation study. All surfaces were simulated once
on the domain [0, 1]2. Process values for all surfaces were scaled to [−4, 4] ⊂ R.

pled. Conditioning on this realization removes all randomness associated with the stochastic

process, and any remaining randomness comes from the sampling design and measurement

error. So long as the data conform to one of the statistical models outlined above in section 2,

the optimality properties outlined above will apply.

5. SIMULATION STUDY

We applied the Super Learner prediction algorithm to six data sets with known data gener-

ating distributions simulated on a grid of 128 × 128 = 16, 384 points in [0, 1]2 ⊂ R2. Each

spatial process was simulated once, hence samples of stochastic processes were taken from a

common realization. All simulated processes were scaled to [−4, 4] before sampling.
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f1(·) is a mean zero stationary GRF with Matérn covariance function (Matérn, 1986)

C(h, θ) = σ2

[
21−ν

Γ(ν)

(
h

φ

)ν
Kν

(
h

φ

)]
+ τ 2,

θ =
(
σ2 = 5, φ = 0.5, ν = 0.5, τ 2 = 0

)
,

where h is a distance magnitude between two spatial locations, σ2 is a scaling parameter,

φ > 0 is a range parameter influencing the spatial extent of the covariance function and τ 2 is

a parameter capturing micro-scale variation and/or measurement error. Kν(·) is a modified

Bessel function of the third order and ν > 0 parametrizes the smoothness of the spatial

covariation. Learners were given spatial location as covariates.

f2(·) is a smooth sinusoidal surface used as a test function in both Huang and Chen (2007)

and Gu (2002), f2 (s) = 1 + 3 sin (2π [s1 − s2]− π). Learners were given spatial location as

covariates.

f3(·) is a weighted nonlinear function of a spatiotemporal ”cyclone” Gaussian random

field and an exponential decay function of distances to a set of randomly chosen points in

[−0.5, 1.5]2 ⊂ R2. In addition to spatial location, learners were given the distance to the

nearest point as a covariate.

f4(·) is defined by the piecewise function f4(s, w) =
[
|s1−s2|+w

]
I(s1 < s2)+

[
3s1 sin

(
5π[s1−

s2]
)

+w
]
I(s1 ≥ s2), where w is Beta distributed with non-centrality parameter 3 and shape

parameters 4 and 1.5. Learners were given spatial location and w as covariates.

f5(·) is a sum of several surfaces on [0, 1] ⊂ R2; a nonlinear function of a random partition

of [0, 1]2; a piecewise smooth function; and w2 ∼ uniform(−1, 1). Learners were given spatial

location, partition membership (w1) and w2 as covariates.

f6(·) is a weighted sum of a spatiotemporal GRF with five time-points, a distance decay

function of a random set of points in [0, 1]2, and a beta-distributed random variable with

non-centrality parameter 0 and shape parameters both equal to 0.5. Learners were given

spatial location, the five GRFs and the beta-distributed random variable as covariates.

9

Hosted by The Berkeley Electronic Press



Table 1: A list of R packages used to build the Super Learner library for spatial prediction.

Algorithm class R library Reference(s)

DSA DSA Neugebauer and Bullard (2010)
GAM GAM Hastie (2011)

GP kernlab Karatzoglou et al. (2004)
GBM GBM Ridgeway (2010)

GLMnet glmnet Friedman et al. (2010)
KNNreg FNN Li (2012)
Kriging geoR Diggle and Ribeiro (2007); Ribeiro and Diggle (2001)

Polymars polspline Kooperberg (2010)
Random Forest randomForest Liaw and Wiener (2002)

SVM kernlab Karatzoglou et al. (2004)
TPS fields Furrer et al. (2011)

5.1 Spatial Prediction Library

The library provided to Super Learner consisted of either 83 (number of covariates = 2) or

85 (number of covariates > 2) base learners from 13 general classes of prediction algorithms.

We provide a brief description of each, and list the parameter values used in the libraries.

All algorithms were implemented in R (R Development Core Team, 2012). The names of the

R packages used are listed in table 1.

Deletion/Substitution/Addition (DSA) performs data-adaptive polynomial regression

using ν-fold cross-validation and the L2 loss (Sinisi and van der Laan, 2004). Both the

number of folds in the algorithm’s internal cross-validation and the maximum number of

terms allowed in the model (excluding the intercept) were fixed to five. The maximum order

of interactions was k ∈ {3, 4}, and the maximum sum of powers of any single term in the

model was p ∈ {5, 10}.

Generalized Additive Models (GAM) assume the data are generated by a model of the

form E[Y |X1, . . . , Xp] = α+
∑p

i=1 fi(Xi), where Y is the outcome, (X1, . . . , Xp) are covariates

and each fi(·) is a smooth nonparametric function (Hastie, 1991). In this simulation study,

the fi(·) are cubic smoothing spline functions parametrized by desired equivalent number

of degrees of freedom, df ∈ {2, 3, 4, 5, 6}. To achieve a uniformly bounded loss function,

predicted values were truncated to the range of the sampled data, plus or minus one.
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Table 2: Kernels implemented in the simulation library. 〈x,x′〉 is an inner product.

Kernel Function k(x,x′) Parameter values

Bessel
Jν+1 (σ||x− x′||)
(||x− x′||)−d(ν+1)

Jν+1 is a Bessel function of 1st kind, (σ, ν, d) ∈ 1×
{0.5, 1, 2} × 2

Radial Basis Function (RBF) exp(−σ‖x− x′‖2) Inverse kernel width σ estimated from data.

linear 〈x,x′〉 None

polynomial (α〈x,x′〉+ c)
d

(σ, α, d) ∈ {1, 3} × {0.001, 0.1, 1} × 1

hyberbolic tangent tanh(α〈x,x′〉+ c) (α, c) ∈ {0.005, 0.002, 0.01} × {0.25, 1}

Gaussian Processes (GP) assume the observed data are normally distributed with a

covariance structure that can be represented as a kernel matrix (Williams, 1999). Various

implementations of the Bessel, Gaussian radial basis, linear and polynomial kernels were

used. See table 2 for details about the kernel functions and parameter values. Predicted

values were truncated to the range of the observed data, plus or minus one, to achieve a

uniformly bounded loss function.

Generalized Boosted Modeling (GBM) combines regression trees, which model the re-

lationship between an outcome and predictors by recursive binary splits, and boosting, an

adaptive method for combining many weak predictors into a single prediction ensemble

(Friedman, 2001). The GBM predictor can be thought of as an additive regression model

fitted in a forward stage-wise fashion, where each term in the model is a simple tree. We used

the following parameter values: number of trees = 10,000; shrinkage parameter λ = 0.001;

bag fraction (subsampling rate) = 0.5; minimum number of observations in the terminal

nodes of each tree = 10; interaction depth d ∈ {1, 2, 3, 4, 5, 6}, where an interaction depth of

d implies a model with up to d-way interactions.

GLMnet is a GLM fitted via penalized maximum likelihood with elastic-net mixing

parameter α ∈ {1/4, 1/2, 3/4} (Friedman et al., 2010).

K-Nearest Neighbor Regression (KNNreg) assumes the unobserved spatial process at a

prediction point s′ can be well-approximated by an average of the observed spatial process

values at the k nearest sampled locations to s′, k ∈ {1, 5, 10, 20}. When k = 1 and S are
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spatial locations only, this is essentially equivalent to Thiessen Polygons.

Kriging is perhaps the most commonly used spatial prediction approach. A general

formulation of the spatial model assumed by Kriging can be written as Y (s) = µ(s) +

δ(s), δ(s) ∼ (0, C(θ)). The first term represents the large-scale mean trend, assumed to

be deterministic and continuous. The second term is a Gaussian random function with

mean zero and positive semi-definite covariance function C(θ) satisfying a stationarity as-

sumption. The Kriging predictor is given as a linear combination of the observed data,

Ψ̂(s′) =
∑n

i=1wi(s
′)Y ∗ (si) . The weights {wi}ni=1 are chosen so that Var

[
Ψ̂(s′)− Y (s′)

]
is

minimized, subject to the constraint that the predictions are unbiased. Thus, given a para-

metric covariance function with known parameters θ and a known mean structure, a Kriging

predictor computes the best linear unbiased predictor of Y (s′). For the Kriging base learners,

the parametric covariance function was assumed to be spherical,

C(h, θ) = τ 2 + σ2

1− 2

π

sin−1
(
h

φ

)
+
h

φ

√
1−

(
h

φ

)2
 I (h < φ) .

The nugget τ 2, scale σ2, and range φ were estimated using Restricted Maximum Likelihood

(for details about REML, see for example Gelfand et al. (2010), chapter 4, pp 48-49). The

trend was assumed to be one of the following: Constant (traditional Ordinary Kriging, OK); a

first order polynomial of the locations (traditional Universal Kriging, UK); a weighted linear

combination of non-location covariates only (if any); a weighted linear combination of both

locations and non-location covariates (if any). All libraries contained the first and second

Kriging algorithms. Libraries for simulated processes with additional covariates contained

the third and fourth algorithms as well.

Multivariate adaptive polynomial spline regression (Polymars) is an adaptive regression

procedure using piecewise linear splines to model the spatial process, and is parametrized by

the maximum size m = min
{

6n1/3, n/4, 100
}

, where n is sample size (Stone et al., 1997).

The Random Forest algorithm proposed by Breiman (2001) is an ensemble approach
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that averages together the predictions of many regression trees constructed by drawing B

bootstrap samples and for each sample, growing an unpruned regression tree where at each

node, the best split among a subset of q randomly selected covariates is chosen. In our

implementation, B was set to 1000, the minimum size of the terminal nodes was 5, and the

number of randomly sampled variables at each split was b√pc, where p was the number of

covariates.

The library contained a number of Support Vector Machines (SVM), each implementing

one of two types of regression (epsilon regression, ε = 0.1; or nu regression, ν = 0.2), and

one of five kernels: Bessel, Gaussian radial basis, linear, polynomial, and hyperbolic tangent.

The kernels are described in table 2. Predicted values were truncated to plus or minus one

the range of the observed data to ensure a bounded loss, and the cost of constraints violation

was fixed at 1.

Thin-plate splines (TPS) is another common approach to spatial prediction. The ob-

served data are presumed to be generated by a deterministic process Y (s) = g(s), where

g(·) is an m times differentiable deterministic function with m > d/2 and dim(s) = d. The

estimator of g(·) is the minimizer of a penalized sum of squares,

ĝ = argmin
g∈G

n∑
i=1

(Yi − g (si))
2 + λJm(g), (2)

with d-dimensional roughness penalty

Jm(g) =

∫
Rd

∑
{(v1,...,vd)}

(
m

v1, . . . , vd

)(
∂mg(s)

∂sv11 . . . ∂svdd

)2

ds,

where the sum in (5.1) is taken over all nonnegative integers (v1, . . . , vd) such that
∑d

i=1 vi =

m (Green and Silverman, 1994). The tuning parameter λ ∈ [0,∞) in (2) controls the permit-

ted degree of roughness for ĝ. As λ tends to zero, the predicted surface approaches one that

exactly interpolates the observed data. Larger values of λ allow the roughness penalty term to

dominate, and as λ approaches infinity, ĝ tends toward a multivariate least squares estimator.
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In our library, the smoothing parameter was either fixed to λ ∈ {0, 0.0001, 0.001, 0.01, 0.1}

or estimated data-adaptively using Generalized Cross-validation (GCV) (see Craven and

Wahba (1979) for a description of the GCV procedure). Predicted values were truncated to

plus or minus one of the range of the observed data to ensure a bounded loss.

The library also contained a main terms Generalized Linear Model (GLM) and a simple

empirical mean function.

5.2 Simulation Procedure

Our simulation study examined the effect of sample size (n ∈ {64, 100, 529}), signal-to-noise

ratio (SNR), and sampling scheme. SNR was defined as the ratio of the sample variance of the

spatial process and the variance of additive zero-mean normally distributed noise representing

measurement error. Processes were simulated with either no added noise or with noise added

to achieve a SNR of 4. We examined three sampling schemes: simple random sampling (SRS),

random regular sampling (RRS), and stratified sampling (SS). Random regular samples were

regularly spaced subsets of the 16, 384 point grid with the initial point selected at random.

Stratified random samples were taken by first dividing the domain [0, 1]2 into n equal-area

bins and then randomly selecting a single point from each bin.

The following procedure was repeated 100 times for each combination of spatial process,

sample size, SNR level, and sampling design, giving a total of 10,800 simulations:

1. Sample n locations and any associated covariates and process values from the grid of

16, 384 points in [0, 1]2 ⊂ R2 according to one of the three sampling designs described

above.

2. For those simulations with SNR = 4, draw n i.i.d. samples of the random variable

ε ∼ N(0, σ2
ε) and add them to the n sampled process values {Y1, . . . , Yn}, where σ2

ε has

been calculated to achieve an SNR of 4.

3. Pass the sampled values to Super Learner, along with a library of base learners on

which to train. The number of folds ν used in the cross-validation procedure depended

14
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on n: if n = 64, then ν = 64; if n = 100, then ν = 20; if n = 529, then ν = 10.

Super learner uses cross-validation and the L2 loss function to estimate the risk of each

candidate predictor and returns an estimate of the optimal convex combination of the

predictions made by all base learners according to their cross-validated risk.

4. For each base learner in the library and for the trained Super Learner, predict the

spatial process under consideration at all unsampled points. Calculate mean squared

errors (MSEs) and then divide these by the variance of the spatial process. We re-

fer to this measure of performance as the Fraction of Variance Unexplained (FVU).

This makes it reasonable to compare prediction performances across different spatial

processes.

5.3 Simulation Results

Table A.1 in Appendix A lists the average performance for each individual base learner in

the library, and table 3 summarizes prediction performance for each algorithm class in the

library and for Super Learner itself. Super learner was clearly the best predictor overall

when comparing across broad classes, with an average FVU of 0.24 (SD = 0.22). The next

best performing algorithmic class was thin-plate splines using GCV to choose the roughness

penalty, with an average FVU of 0.42 (SD = 0.36). Universal Kriging (FVU = 0.44), random

forest (FVU = 0.35), and Ordinary Kriging (FVU = 0.45) all performed similarly, which was

slightly less well than TPS (GCV). Super Learner was also the best performer across noise

conditions, sampling designs, and sample sizes, with performance improving markedly as

sample size increased.

Table 4 breaks algorithmic class performance down by simulated surface. f1 was a mean-

zero GRF, something we would expect both Kriging and thin-plate splines algorithms to

predict well. TPS (GCV) and Super Learner were the best performers, with nearly identical

average FVUs of 0.11 (sd = 0.06). The other TPS algorithms and Universal Kriging faired

slightly less well, with an average FVU of 0.15. Ordinary Kriging had an average FVU of

0.26, which was actually greater than the average FVUs for Random Forest (0.16), K-nearest

15
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Table 3: Average FVUs (standard deviations in parentheses) from the simulation study for each
algorithm class. SRS is Simple Random Sampling, RRS is Random Regular Sampling, and
SS is Stratified Sampling. FVUs were calculated from predictions made on all unsampled
points at each iteration. Algorithms are ordered according to overall performance.

Sample Size SNR Sampling Design

Algorithm Class Overall 64 100 529 None 4 SRS RRS SS

Super Learner 0.24 0.40 0.25 0.07 0.22 0.27 0.26 0.25 0.22
(0.22) (0.26) (0.15) (0.06) (0.22) (0.22) (0.23) (0.24) (0.18)

TPS (GCV) 0.42 0.58 0.44 0.24 0.40 0.45 0.46 0.41 0.40
(0.36) (0.39) (0.35) (0.25) (0.37) (0.35) (0.38) (0.37) (0.34)

Krige (UK) 0.44 0.59 0.51 0.21 0.42 0.46 0.42 0.53 0.36
(0.30) (0.28) (0.27) (0.20) (0.31) (0.29) (0.30) (0.31) (0.28)

Random Forest 0.45 0.56 0.49 0.29 0.44 0.46 0.48 0.42 0.45
(0.26) (0.24) (0.25) (0.21) (0.26) (0.26) (0.27) (0.24) (0.26)

Krige (OK) 0.45 0.62 0.53 0.21 0.43 0.47 0.41 0.59 0.36
(0.32) (0.29) (0.28) (0.20) (0.32) (0.31) (0.29) (0.33) (0.28)

KNNreg 0.50 0.67 0.56 0.27 0.47 0.53 0.53 0.48 0.49
(0.34) (0.34) (0.33) (0.21) (0.35) (0.33) (0.35) (0.33) (0.34)

TPS 0.53 0.64 0.56 0.37 0.49 0.56 0.58 0.49 0.52
(0.37) (0.40) (0.37) (0.30) (0.38) (0.37) (0.40) (0.35) (0.37)

GBM 0.54 0.69 0.57 0.36 0.53 0.55 0.55 0.54 0.54
(0.30) (0.26) (0.25) (0.29) (0.30) (0.30) (0.30) (0.30) (0.30)

DSA 0.61 0.68 0.62 0.54 0.60 0.63 0.64 0.60 0.60
(0.28) (0.31) (0.26) (0.23) (0.26) (0.29) (0.31) (0.26) (0.26)

GAM 0.65 0.70 0.65 0.60 0.64 0.66 0.68 0.63 0.64
(0.30) (0.31) (0.30) (0.29) (0.30) (0.31) (0.32) (0.29) (0.30)

GLMnet 0.69 0.71 0.69 0.67 0.69 0.69 0.70 0.69 0.69
(0.25) (0.24) (0.25) (0.24) (0.25) (0.25) (0.25) (0.24) (0.24)

GLM 0.69 0.71 0.69 0.67 0.69 0.69 0.70 0.68 0.69
(0.25) (0.25) (0.25) (0.24) (0.25) (0.25) (0.25) (0.24) (0.24)

Polymars 0.73 0.84 0.78 0.56 0.71 0.74 0.76 0.70 0.71
(0.36) (0.40) (0.33) (0.29) (0.34) (0.38) (0.40) (0.34) (0.34)

SVM 0.76 0.83 0.80 0.66 0.76 0.77 0.78 0.76 0.76
(0.30) (0.30) (0.31) (0.27) (0.30) (0.30) (0.31) (0.30) (0.30)

GP 0.77 0.89 0.80 0.61 0.74 0.80 0.80 0.76 0.76
(0.67) (0.68) (0.60) (0.69) (0.62) (0.71) (0.67) (0.68) (0.66)

Mean 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.00 1.00
(0.01) (0.02) (0.01) (0.00) (0.01) (0.01) (0.02) (0.01) (0.01)
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Table 4: Average FVU (standard deviation in parentheses) by spatial process.

Average FVU
Algorithm Class f1 f2 f3 f4 f5 f6
Super Learner 0.11 (0.06) 0.09 (0.11) 0.30 (0.11) 0.43 (0.36) 0.22 (0.14) 0.31 (0.19)

TPS (GCV) 0.11 (0.06) 0.07 (0.09) 0.30 (0.11) 0.42 (0.36) 0.91 (0.17) 0.72 (0.23)
Krige (UK) 0.15 (0.11) 0.25 (0.33) 0.37 (0.20) 0.46 (0.32) 0.68 (0.23) 0.47 (0.28)

Random Forest 0.16 (0.06) 0.31 (0.18) 0.41 (0.12) 0.89 (0.15) 0.47 (0.14) 0.46 (0.09)
Krige (OK) 0.26 (0.31) 0.24 (0.33) 0.39 (0.24) 0.45 (0.32) 0.70 (0.23) 0.47 (0.28)

KNNreg 0.19 (0.10) 0.29 (0.26) 0.44 (0.16) 0.92 (0.29) 0.47 (0.34) 0.70 (0.19)
TPS 0.15 (0.07) 0.23 (0.24) 0.38 (0.14) 0.60 (0.35) 1.01 (0.23) 0.78 (0.19)

GBM 0.22 (0.07) 0.65 (0.36) 0.49 (0.13) 0.97 (0.08) 0.47 (0.24) 0.46 (0.08)
DSA 0.25 (0.05) 0.72 (0.25) 0.53 (0.08) 1.03 (0.15) 0.68 (0.11) 0.48 (0.08)
GAM 0.24 (0.02) 1.05 (0.08) 0.49 (0.04) 1.02 (0.09) 0.62 (0.08) 0.49 (0.12)

GLMnet 0.37 (0.01) 1.01 (0.02) 0.67 (0.03) 0.99 (0.03) 0.67 (0.03) 0.44 (0.03)
GLM 0.37 (0.01) 1.02 (0.03) 0.67 (0.02) 0.98 (0.03) 0.67 (0.03) 0.44 (0.03)

Polymars 0.28 (0.10) 0.94 (0.30) 0.60 (0.19) 1.11 (0.25) 0.78 (0.20) 0.64 (0.34)
SVM 0.49 (0.28) 0.87 (0.27) 0.71 (0.20) 1.05 (0.15) 0.80 (0.19) 0.66 (0.33)
GP 0.28 (0.10) 0.64 (0.42) 0.57 (0.20) 1.31 (0.61) 1.01 (0.63) 0.81 (1.02)

Mean 1.00 (0.01) 1.01 (0.01) 1.01 (0.01) 1.00 (0.01) 1.01 (0.01) 1.01 (0.01)

neighbors regression (0.19), GBM (0.22), GAM (0.24), and DSA (0.25).

f2 was a simple sinusoidal surface, another functional form where we would expect thin-

plate splines to excel, provided the samples properly captured the periodicity of the process.

TPS (GCV) had the best overall performance, with an average FVU of 0.07 (sd = 0.09).

Super Learner performed only slightly less well, with an average FVU of 0.09 (sd = 0.11).

The other TPS algorithms (0.23), Ordinary Kriging (0.24) and Universal Kriging (0.25)

performed substantially less well on average.

f3 was a relatively complex function involving a ”cyclone” Gaussian random field and a

distance decay function of randomly selected points. Once again, the average performances

of TPS (GCV) and Super Learner were nearly identical (FVU = 0.30, sd- 0.11).

f4 was a smooth, heterogeneous process. TPS (GCV) (average FVU = 0.42), Super

Learner (0.43), Ordinary Kriging (0.45), and Universal Kriging (0.46) all performed similarly.

f5 was a clustered, rough surface we would expect to be well-suited to K nearest neighbors,

GBM, and Random Forest. In fact, all three of these algorithmic classes had nearly identical

performances, with an average FVU of 0.47. Super Learner, however, had an average FVU

of 0.22 (sd = 0.14), which was dramatically better than any of the other algorithmic classes.
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The Ordinary (average FVU = 0.70) and Universal (0.68) Kriging algorithms had similar

average performances to GAM (0.62), GLM (0.67), GLMnet (0.67), and DSA (0.68). Not

surprisingly, TPS (GCV) and TPS with fixed λ did poorly, with average FVUs of 0.91 and

1.01, respectively.

f6 was a somewhat rough surface constructed from a Gaussian random field and point-

source distance decay functions. As expected, Kriging with trend w1, . . . , w6 had the best

performance on average, with an FVU of 0.25 (sd = 0.14), closely followed by Kriging with

trend s, w1, . . . , w6 (average FVU = 0.26, sd=0.15). Super Learner had the next best average

performance, with an average FVU of 0.31 (sd = 0.19). GLM, GLMnet, GBM, Random

Forest, the Ordinary and Universal Kriging algorithms, and DSA all performed similarly

slightly less well, with average FVUs from 0.44 to 0.48. The TPS (GCV) and TPS with fixed

λ were at a disadvantage given the roughness of the surface, with average FVUs of 0.72 and

0.78, respectively.

These simulation results clearly illustrate some of the chief advantages of Super Learner

as a spatial predictor. For surfaces that were perfectly suited for one or more base learners

in the library, Super Learner either performed almost as well as the best base learner, or

it outperformed its library. For more complex, rougher surfaces, Super Learner performed

significantly better than any single base learner in the library. It had the best overall perfor-

mance even at the smallest sample size, and appeared to be relatively insensitive to sampling

strategy.

6. PRACTICAL DATA EXAMPLE: PREDICTING LAKE ACIDITY

We applied Super Learner to a lake acidity data set previously analyzed by Gu (2002) and

Huang and Chen (2007). Increases in water acidity are known to have a deleterious effect

on lake ecology. Having an accurate estimate of the spatial distribution of lake acidity is an

essential first step toward crafting effective regulatory interventions to control it. The data

were sampled by the U.S. Environmental Protection Agency during the Fall of 1984 in the

Blue Ridge region of the Southeastern United States (Ellers et al., 1988), and consist of
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longitudes and latitudes (in degrees), calcium ion concentrations (in milligrams per liter),

and pH values. The EPA used a systematic stratified sampling design which we treated as

fixed here. Because only one sample per lake was collected, we assume some measurement

error that is independent of lake pH, calcium ion concentration, and spatial location. The

data are freely available in the R package gss (Gu, 2012). We used the same nearly equal

area projection as Gu (2002) and Huang and Chen (2007),

x1 = cos((πxlat)/180) sin(π(xlon − xlon)/180)

x2 = sin(π(xlat − xlat)/180),

where xlat and xlon are the midpoints of the latitude and longitude ranges, respectively.

Let xi = (xi,1, xi,2) denote the ith sampling location; wi denote the calcium ion concen-

tration observed at the ith sampling location; and Y ∗i be the pH value observed at the ith

sampling location. We assume that E[Y ∗i |Si = s] = Y (s), where Si = (xi, wi). Our objective

is to learn the lake pH spatial process from the data.

The library used to predict lake acidity was similar in composition to the simulation

library described in subsection 5.1, with some important differences. We reduced the number

of parameterizations for some of the algorithm classes in the library. We used one DSA

learner, which used 10-fold cross-validation and considered polynomials of up to five terms

(m = 5), each term being at most a two-way interaction (k = 2) with a maximum sum of

powers p = 3. We used a reduced the number of parameterizations of GAM, GBM, TPS, GP,

and SVM learners, as well. We also included screening algorithms that allowed us to train

learners on specific subsets of covariates: x, w, logw, (x, w), and (x, logw). We considered

the L2 loss function, and the predictions from all base learners were truncated to the observed

pH range in order to ensure a uniformly bounded loss.

Table A.2 in Appendix A provides a detailed list of the library and shows performance

results for each base learner as well as Super Learner. Figure 2 provides graphical represen-

tations of Super Learner’s pH predictions. Many of the algorithms in the library performed
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slightly better when given logw as opposed to w, but for those algorithms like GBM and

Random Forest that were not attempting to fit some kind of polynomial trend, logging the

calcium ion concentration made little difference in performance. As expected, most algo-

rithms had cross-validated risk estimates that were worse than their empirical risk estimates

calculated from predictions made after training on the full data set. The Kriging algorithms,

for instance, were all exact interpolators when trained on the full data, and thus had esti-

mated empirical MSEs of 0, whereas their MSEs estimated via cross-validation ranged from

0.07 (FVU = 0.46) to 0.11 (FVU = 0.72). The Gaussian processes with RBF kernel had the

most pronounced differences between the two risk estimates. For example, GP (RBF) trained

on the covariates (x, w) had an empirical MSE of 0.01 (FVU = 0.08) and a cross-validated

MSE of 0.22 (FVU = 1.46).

The Super Learner algorithm gave non-zero weights to the predictions of eight base learn-

ers from five different algorithm classes: GBM, KNNreg, Kriging, Random Forest, and SVM

(polynomial kernel). While the largest weight went to an exactly interpolating algorithm

(Kriging with trend term logw, β = 0.58), Super Learner pH predictions are a slightly

smoothed version of the observed data, with attenuated predictions for the highest and

lowest observations.

7. CONCLUSION/DISCUSSION

In this article, we have demonstrated the use of an ensemble learner for spatial prediction

that uses cross-validation to optimally combine the predictions from multiple, heterogeneous

base learners. We have reviewed important theoretical results giving performance bounds

that imply Super Learner will perform asymptotically at least as well as the best candidate

in the library. We discussed the assumptions required for these optimality properties hold.

These assumptions are reasonable for many measurement error scenarios and commonly im-

plemented spatial sampling designs, including various forms of stratified and random regular

sampling. In this paper, we have not addressed dependent sampling designs, where sampling

at one point changes the probability of sampling at another point. This is an important
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Figure 2: (a) A map of Super Learner’s pH predictions, and (b) a plot of Super Learner’s predic-
tions as a function of the observed data. Super Learner mildly attenuated the pH values
at either end of the range, but otherwise provided a fairly close fit to the data.

area for future research. We also limited our scope to the case where measurement error is

at least conditionally mean-zero. Spatially structured measurement error that is not condi-

tionally mean zero is a common problem in many spatial prediction applications, and there

have been a number of attempts to alter the cross-validation procedure to accommodate it

(Francisco-Fernandez and Opsomer, 2005; Carmack et al., 2009). These proposed techniques

generally require one to estimate the error correlation structure from the data or to know it

a priori. How well these algorithms perform if the correlation extent is substantially under-

estimated is unknown. Ideally, it would be best to have a stronger theoretical understanding

of how the degree of dependence between training and validation sets affects cross-validated

risk estimates both asymptotically and in finite samples. This is an important future area

for research.
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APPENDIX A. TABLES

Table A.1: Simulation results for full library. For each algorithm, average Fraction of Variance
Unexplained, (Avg FVU, standard deviation in parentheses) is the FVU averaged
over all spatial processes, sample sizes, sampling designs, and noise condidtions. At
each iteration, MSEs were calculated using all unsamped locations. Note that of the
eight Kriging algorithms, only two were used to predict all spatial processes.

Algorithm Parameters Avg FVU
Super Learner 0.24 (0.22)

DSA (v, m, k, p) (5, 5, 3, 10) 0.62 (0.29)
(5, 5, 3, 5) 0.61 (0.26)
(5, 5, 4, 10) 0.62 (0.28)
(5, 5, 4, 5) 0.61 (0.26)

GAM (degree) 2 0.65 (0.28)
3 0.64 (0.29)
4 0.65 (0.30)
5 0.65 (0.31)
6 0.66 (0.32)

GBM (degree) 1 0.64 (0.28)
2 0.56 (0.28)
3 0.53 (0.30)
4 0.52 (0.30)
5 0.51 (0.31)
6 0.50 (0.31)

GLM 0.69 (0.25)

GLMnet (α) 0.25 0.69 (0.25)
0.5 0.69 (0.25)
0.75 0.69 (0.25)

GP (Bessel) (1, 0.5, 2) 1.12 (1.52)
(1, 1, 2) 0.81 (0.81)
(1, 2, 2) 0.74 (0.67)

(linear) 0.69 (0.25)

(poly) (1, 0.001, 1) 0.69 (0.25)
(1, 0.01, 1) 0.69 (0.25)
(1, 0.1, 1) 0.69 (0.25)
(1, 1, 1) 0.69 (0.25)
(3, 0.001, 1) 0.66 (0.27)
(3, 0.01, 1) 0.65 (0.29)
(3, 0.1, 1) 0.83 (0.65)
(3, 1, 1) 0.84 (0.68)

(RBF) 0.92 (0.90)

KNNreg (k) 1 0.53 (0.38)
5 0.40 (0.31)
10 0.48 (0.32)
20 0.60 (0.33)

Kriging (trend) s 0.46 (0.34)
f3, f4 only s, w1 0.41 (0.26)

f5 only s, w1, w2 0.51 (0.15)
f6 only s, w1, . . . , w6 0.26 (0.15)

none 0.49 (0.35)
f3, f4 only w1 0.42 (0.28)

f5 only w1, w2 0.52 (0.16)
f6 only w1, . . . , w6 0.25 (0.14)

Algorithm Parameters Avg FVU
Mean 1.01 (0.01)

Polymars 0.73 (0.36)

Random Forest 0.45 (0.26)

SVM (Bessel; eps) (1, 1, 1) 0.65 (0.27)
(1, 1, 2) 0.57 (0.28)
(1, 2, 1) 0.66 (0.27)
(1, 2, 2) 0.59 (0.27)

(Bessel; nu) (1, 1, 1) 0.67 (0.27)
(1, 1, 2) 0.62 (0.27)
(1, 2, 1) 0.68 (0.27)
(1, 2, 2) 0.63 (0.27)

(linear; eps) 0.71 (0.25)
(linear; nu) 0.72 (0.28)

(poly; eps) (1, 0.001, 1) 0.92 (0.12)
(1, 0.1, 1) 0.71 (0.25)
(1, 1, 1) 0.71 (0.25)
(3, 0.001, 1) 0.85 (0.17)
(3, 0.1, 1) 0.64 (0.28)
(3, 1, 1) 0.83 (0.61)

(poly; nu) (1, 0.001, 1) 0.97 (0.08)
(1, 0.1, 1) 0.71 (0.25)
(1, 1, 1) 0.72 (0.28)
(3, 0.001, 1) 0.91 (0.14)
(3, 0.1, 1) 0.66 (0.29)
(3, 1, 1) 0.92 (0.71)

(RBF; eps) 0.48 (0.34)
(RBF; nu) 0.50 (0.32)

(tanh; eps) (0.01, 0.25) 0.76 (0.21)
(0.01, 1) 0.82 (0.18)
(0.005, 0.25) 0.81 (0.19)
(0.005, 1) 0.87 (0.16)
(0.002, 0.25) 0.88 (0.15)
(0.002, 1) 0.93 (0.11)

(tanh; nu) (0.01, 0.25) 0.82 (0.19)
(0.01, 1) 0.88 (0.16)
(0.005, 0.25) 0.88 (0.16)
(0.005, 1) 0.93 (0.12)
(0.002, 0.25) 0.94 (0.11)
(0.002, 1) 0.98 (0.07)

TPS (λ) (GCV) 0.42 (0.36)
0 0.52 (0.45)
0.0001 0.44 (0.39)
0.001 0.44 (0.35)
0.01 0.54 (0.33)
0.1 0.69 (0.28)
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Table A.2: Lake acidity results for full library. S denotes the variable subset each algorithm was
given. Risks were estimated via cross-validation (CV) or on the full dataset (Full). β
are the convex weights assigned to each algorithm in the Super Learner predictor.

M̂SE
(
F̂VU

)
Algorithm S CV Full β

Super Learner 0.00 (0.03)

DSA
x, w 0.13 (0.85) 0.12 (0.80) 0
x, w` 0.09 (0.57) 0.07 (0.46) 0

GAM (degree)
2 x, w 0.09 (0.58) 0.07 (0.49) 0

x, w` 0.08 (0.51) 0.07 (0.45) 0
3 x, w 0.08 (0.54) 0.07 (0.43) 0

x, w` 0.08 (0.51) 0.06 (0.41) 0
4 x, w 0.08 (0.53) 0.06 (0.40) 0

x, w` 0.08 (0.50) 0.06 (0.39) 0

GBM (degree)
2 x, w 0.07 (0.49) 0.05 (0.32) 0

x, w` 0.07 (0.49) 0.05 (0.32) 0
4 x, w 0.08 (0.50) 0.04 (0.29) 0

x, w` 0.07 (0.49) 0.05 (0.32) 0
6 x, w 0.07 (0.49) 0.04 (0.28) 0.12

x, w` 0.07 (0.49) 0.04 (0.29) 0

GLM
x, w 0.11 (0.74) 0.10 (0.67) 0
x, w` 0.08 (0.54) 0.08 (0.50) 0

GLMnet (α)
0.25 x, w 0.12 (0.79) 0.10 (0.67) 0

x, w` 0.08 (0.55) 0.08 (0.50) 0
0.5 x, w 0.11 (0.73) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0
0.75 x, w 0.11 (0.75) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0

GP (Bessel)
(1, 0.5, 2) x, w 0.13 (0.83) 0.04 (0.25) 0

x, w` 0.16 (1.03) 0.03 (0.21) 0
(1, 1, 2) x, w 0.14 (0.90) 0.04 (0.27) 0

x, w` 0.15 (0.97) 0.03 (0.22) 0
(1, 2, 2) x, w 0.16 (1.08) 0.04 (0.29) 0

x, w` 0.17 (1.10) 0.04 (0.25) 0

GP (linear)
x, w 0.11 (0.74) 0.10 (0.67) 0
x, w` 0.08 (0.54) 0.08 (0.50) 0

GP (RBF)
x, w 0.22 (1.45) 0.02 (0.16) 0
x, w` 0.22 (1.46) 0.01 (0.08) 0

GP (poly.)
(1, 0.001, 1) x, w 0.11 (0.74) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0
(1, 0.01, 1) x, w 0.11 (0.74) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0
(1, 0.1, 1) x, w 0.11 (0.74) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0
(1, 1, 1) x, w 0.11 (0.74) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0

M̂SE
(
F̂VU

)
Algorithm S CV Full β

KNNreg (k)
1 x 0.17 (1.12) 0.00 (0.00) 0.02

x, w 0.11 (0.73) 0.00 (0.00) 0.08
5 x 0.12 (0.76) 0.08 (0.52) 0

x, w 0.08 (0.55) 0.06 (0.38) 0.04
10 x 0.11 (0.73) 0.09 (0.61) 0

x, w 0.08 (0.53) 0.07 (0.43) 0
20 x 0.11 (0.72) 0.10 (0.66) 0.03

x, w 0.09 (0.56) 0.08 (0.50) 0
Kriging

(OK) 0.11 (0.71) 0.00 (0.00) 0
w 0.09 (0.56) 0.00 (0.00) 0
w` 0.07 (0.46) 0.00 (0.00) 0.58

(UK) x 0.11 (0.72) 0.00 (0.00) 0
x, w 0.09 (0.60) 0.00 (0.00) 0
x, w` 0.08 (0.51) 0.00 (0.00) 0

Mean 0.15 (1.00) 0.15 (1.00) 0

Polymars
x, w 0.10 (0.63) 0.04 (0.27) 0
x, w` 0.08 (0.56) 0.05 (0.36) 0

RF
x, w 0.08 (0.50) 0.02 (0.11) 0.06
x, w` 0.08 (0.50) 0.02 (0.12) 0

SVM (Bessel; eps)
(1, 1, 2) x, w 0.09 (0.57) 0.06 (0.43) 0

x, w` 0.08 (0.55) 0.06 (0.42) 0
(1, 2, 1) x, w 0.09 (0.56) 0.08 (0.51) 0

x, w` 0.08 (0.52) 0.07 (0.46) 0
(1, 2, 2) x, w 0.09 (0.56) 0.07 (0.45) 0

x, w` 0.08 (0.55) 0.07 (0.44) 0
SVM (Bessel; nu)

(1, 1, 2) x, w 0.09 (0.57) 0.07 (0.48) 0
x, w` 0.09 (0.61) 0.07 (0.46) 0

(1, 2, 1) x, w 0.1 (0.64) 0.08 (0.56) 0
x, w` 0.08 (0.56) 0.07 (0.48) 0

(1, 2, 2) x, w 0.09 (0.59) 0.07 (0.49) 0
x, w` 0.09 (0.58) 0.07 (0.47) 0

SVM (poly, eps)
(1, 0.001, 1) x, w 0.15 (0.97) 0.14 (0.96) 0

x, w` 0.14 (0.94) 0.14 (0.92) 0
(1, 0.1, 1) x, w 0.12 (0.78) 0.10 (0.69) 0

x, w` 0.08 (0.52) 0.08 (0.50) 0
(1, 1, 1) x, w 0.12 (0.78) 0.11 (0.69) 0

x, w` 0.08 (0.53) 0.08 (0.50) 0.08
(3, 0.001, 1) x, w 0.14 (0.92) 0.13 (0.89) 0

x, w` 0.12 (0.81) 0.12 (0.78) 0
SVM (poly, nu)
(1, 0.001, 1) x, w 0.15 (0.98) 0.15 (0.97) 0

x, w` 0.15 (0.97) 0.14 (0.95) 0
(1, 0.1, 1) x, w 0.11 (0.73) 0.11 (0.70) 0

x, w` 0.08 (0.55) 0.08 (0.53) 0
(1, 1, 1) x, w 0.11 (0.74) 0.11 (0.70) 0

x, w` 0.08 (0.54) 0.08 (0.52) 0
(3, 0.001, 1) x, w 0.14 (0.94) 0.14 (0.92) 0

x, w` 0.13 (0.89) 0.13 (0.87) 0

TPS (GCV) x 0.11 (0.71) 0.08 (0.53) 0
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APPENDIX B. ORACLE INEQUALITY FOR INDEPENDENT, NONIDENTICAL

EXPERIMENTS AND QUADRATIC LOSS

Let On = (O1, . . . , On) ∼ P n
0 be a vector of independent, nonidentical observations, where

each Oi = (Xi, Yi) consists of two components: a d-dimensional covariate vector Xi ∈ Rd, and

a univariate outcome Yi ∈ R. We associate with each Oi an index si ∈ S. The true unknown

data generating distribution for each Oi is denoted P0,Oi
(O) = P0,O|S(O|si) ∈ {P0,O|s : s ∈ S}.

Let Ps,O be the joint distribution of (S,O), defined by a degenerate marginal distribution of

S, I(S = s), and the conditional distribution of O given S = s, PO|s. We can formulate On as

n independent draws (Si, Oi) ∼ P0,(si,Oi), i = 1, . . . , n, with empirical probability distribution

Pn. LetM be a set of possible probability distributions of PO|S. Define a parameter Ψ :M→

Ψ, and let ψ0 = Ψ(P0,O|S) be the true value of that parameter. Let Bn ∈ {0, 1}n be a random

vector indicating splits into a training sample, {i : Bn(i) = 0}, and validation sample, {i :

Bn(i) = 1}. Let p =
∑n

i=1 Bn(i) be the proportion of observations in the validation sample,

and let P 0
n,Bn

and P 1
n,Bn

be the empirical distributions of the training and validation samples,

respectively. Define an average joint distribution: P
1

0,Bn
= (np)−1

∑
i:Bn(i)=1 P0,(si,Oi). Let

L(ψ)(S,O) be a loss function such that for all i, P0,(si,O)L(ψ0) = minψ∈Ψ P0,(si,Oi)L(ψ). Let

{Ψ̂k(Pn) : k = 1, . . . , Kn} be a set of Kn estimators of ψ0. Assume P(Ψ̂k(Pn) ∈ Ψ) = 1 for

all k = 1, . . . , Kn. We write the true cross-validated risk of ψ0 as Θ̃opt = EBn

[
P

1

0,Bn
L(ψ0)

]
.

We denote the true conditional cross-validated risk of any estimator Ψ̂k as

Θ̃n(1−p)(k) ≡ EBn

[
P

1

0,Bn
L
(

Ψ̂k

[
P 0
n,Bn

])]
= EBn

[
1

np

∑
i:Bn(i)=1

P0,(Oi|si)L
(

Ψ̂k

[
P 0
n,Bn

])
(si, Oi)

]
,

and a benchmark (oracle) selector as k̃n(1−p) = argminkΘ̃n(1−p)(k).

We denote the cross-validated risk of any estimator Ψ̂k as

Θ̂n(1−p)(k) ≡ EBn

[
P 1
n,Bn

L
(

Ψ̂
[
P 0
n,Bn

])]
= EBn

 1

np

∑
i:Bn(i)=1

L
(

Ψ̂
[
P 0
n,Bn

])
(si, Oi)

 ,
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and the cross-validation selector as kn = argmink Θ̂n(1−p)(k). Finally, we define a loss-based

dissimilarity dn(ψ, ψ0) ≡ EBn

[
P

1

0,Bn

(
L[ψ]− L[ψ0]

)]
.

Assumptions.

A1. There exists a real-valued M∗
1 <∞ such that

supψ∈Ψ

{
supi,si,Oi

∣∣L(ψ)(si, Oi)− L(ψ0)(si, Oi)
∣∣} ≤ M∗

1 , where the supremum over Oi

is taken over the support of the distribution P0,Oi|si of Oi.

A2. There exists a real-valued M2 <∞ such that

sup
i,ψ∈Ψ

{
VarP0,(si,Oi)

[
L(ψ)− L(ψ0)

]
(S,O)

EP0,(si,Oi)

[
L(ψ)− L(ψ0)

]
(S,O)

}
≤M2.

Definitions. We define the following constants:M1 = 2M∗
1 ; C(M1,M2, δ) ≡ 2(1+δ)2

(
M1

3
+ M2

δ

)
.

Finite sample result. For any δ > 0, we have

E
[
dn

(
Ψ̂kn

[
P 0
n,Bn

]
, ψ0

)]
≤ (1 + 2δ) E

[
dn

(
Ψ̂k̃n(1−p)

[
P 0
n,Bn

]
, ψ0

)]
+ 2 C(M1,M2, δ)

1 + logKn

np
.

(B.1)

Asymptotitic implications. (B.1) has the following asymptotic implications:

logKn

np E
[
Θ̃n(1−p)

(
k̃n(1−p)

)
− Θ̃opt

] n→∞−−−→ 0 =⇒
E
[
Θ̃n(1−p) (kn)− Θ̃opt

]
E
[
Θ̃n(1−p)

(
k̃n(1−p)

)
− Θ̃opt

] n→∞−−−→ 1.

logKn

np
(

Θ̃n(1−p)

(
k̃n(1−p)

)
− Θ̃opt

) p−→ 0 =⇒
Θ̃n(1−p) (kn)− Θ̃opt

Θ̃n(1−p)

(
k̃n(1−p)

)
− Θ̃opt

p−→ 1. (B.2)

(B.2) follows from the fact that, given a sequence of random variables X1, X2, . . ., and a

positive function g[n], E|Xn| = O(g[n]) implies Xn = OP (g[n]). This is a direct consequence

of Markov’s inequality.
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Proof of theorem. We have

0 ≤ Θ̃n(1−p)(kn)− Θ̃opt (B.3a)

= EBn

[
P

1

0,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
− (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
+ (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
≤ EBn

[
P

1

0,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3b)

− (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
+ (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂k̃n(1−p)

[
P 0
n,Bn

])
− L(ψ0)

}]
= EBn

[
P

1

0,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3c)

− (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3d)

+ (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂k̃n(1−p)

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3e)

− (1 + 2δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂k̃n(1−p)

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3f)

+ (1 + 2δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂k̃n(1−p)

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3g)

(B.3a) follows from the definition of Θ̃opt. (B.3b) follows from the definition of the cross-

validation selector kn, such that for all k, Θ̂n(1−p)(kn) ≤ Θ̂n(1−p)(k). Let Rn,kn represent the

first two terms in the last expression, (B.3c) and (B.3d). Let Tn,k̃n(1−p)
represent the second

two terms of the last expression, (B.3e) and (B.3f). The last term, (B.3g), is the benchmark

and can be written as (1 + 2δ)
[
Θ̃n(1−p)

(
k̃n(1−p) − Θ̃opt

)]
. Hence,

0 ≤ Θ̃n(1−p)(kn)− Θ̃opt ≤ (1 + 2δ)
[
Θ̃n(1−p)

(
k̃n(1−p) − Θ̃opt

)]
+Rn,kn + Tn,k̃n(1−p)

. (B.4)

We now show that ERn,kn + ETn,k̃n(1−p)
≤ 2 C(M1,M2, δ) (1 + logKn)/(np). We introduce
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the following notation:

Ĥk ≡ P 1
n,Bn

{
L
(

Ψ̂k

[
P 0
n,Bn

])
− L(ψ0)

}
H̃k ≡ P

1

0,Bn

{
L
(

Ψ̂k

[
P 0
n,Bn

])
− L(ψ0)

}
Rn,k(Bn) ≡ (1 + δ)

[
H̃k − Ĥk

]
− δH̃k

Tn,k(Bn) ≡ (1 + δ)
[
Ĥk − H̃k

]
− δH̃k

Note that Rn,k = EBn [Rn,k(Bn)]; Tn,k = EBn [Tn,k(Bn)]; and that by definition of ψ0, H̃k ≥ 0

for all k. Note also that given an arbitrary k ∈ {1, . . . Kn},

P
[
Rn,kn(Bn) > s | P 0

n,Bn
,Bn

]
= P

[
H̃kn −Hkn >

s+ δH̃kn

1 + δ

∣∣∣∣ P 0
n,Bn

,Bn

]

≤ Kn max
k

P

[
H̃k − Ĥk >

s+ δH̃k

1 + δ

∣∣∣∣ P 0
n,Bn

,Bn

]
.

Similarly for Tn,k̃n(1−p)
(Bn),

P
[
Tn,k̃n(1−p)

(Bn) > s | P 0
n,Bn

,Bn

]
= Kn max

k
P

[
Ĥk − H̃k >

s+ δH̃k

1 + δ

∣∣∣∣ P 0
n,Bn

,Bn

]
.

Conditional on P 0
n,Bn

and Bn, consider the np random variables for which Bn(i) = 1, Zk,i ≡{
L
(

Ψ̂k

[
P 0
n,Bn

])
− L(ψ0)

}
(si, Oi). We can rewrite Ĥk and H̃k in terms of Zk,i,

Ĥk =
1

np

np∑
i=1

Zk,i,

H̃k =
1

np

np∑
i=1

E
[
Zk,i|P 0

n,Bn
,Bn

]
.

Then H̃k − Ĥk is the sum of np mean zero centered random variables. By assumption A1

above, the random variables Zi,k are bounded, with |Zi,k| ≤ M1 a.s. By assumption A2, we
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also have σ2
k,i ≡ Var

[
Zk,i|P 0

n,Bn
,Bn

]
≤M2 E

[
Zk,i|P 0

n,Bn
,Bn

]
, which implies

σ2
k ≡

1

np

np∑
i=1

σ2
k,i ≤M2

1

np

np∑
i=1

E
[
Zk,i|P 0

n,Bn
,Bn

]
= M2H̃k.

We will apply Bernstein’s inequality to the centered empirical mean H̃k − Ĥk and obtain

a tail probability bounded by exp{−npq/c}, where c is a finite, real-valued constant. This

will show that the risk dissimilarities converge at a rate of (logKn)/np. We state Bernstein’s

inequality for ease of reference. A proof is given in Lemma A.2 on page 594 in Györfi et al.

(2002).

Lemma 1 Bernstein’s inequality.

Let Zi, i = 1, . . . , n be independent, real valued random variables such that Zi ∈ [a, b] with

probability one. Let 0 <
∑n

i=1 Var(Zi)/n ≤ σ2. Then, for all ε > 0,

P

(
1

n

n∑
i=1

(Zi − EZi) > ε

)
≤ exp

{
−nε2

2(σ2 + ε(b− a)/3)

}
.

This implies

P

( ∣∣∣ 1

n

n∑
i=1

(Zi − EZi) > ε
∣∣∣ ) ≤ 2 exp

{
−nε2

2(σ2 + ε(b− a)/3)

}
.

By Bernstein’s lemma, for q > 0,

P
[
Rn,k(Bn) > q|P 0

n,Bn
,Bn

]
= P

[
H̃k − Ĥk >

1

1 + δ

(
q + δH̃k

) ∣∣∣ P 0
n,Bn

,Bn

]

≤ P
[
H̃k − Ĥk >

1

1 + δ

(
q +

δσ2
k

M2

) ∣∣∣ P 0
n,Bn

,Bn

]

≤ exp

{
−
(

np

2[1 + δ]2

)(
[q + δσ2

k/M2]
2

σ2
k + M1

3(1+δ)
[q + δσ2

k/M2]

)}
.
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Note that

[q + δσ2
k/M2]

2

σ2
k + M1

3(1+δ)
[q + δσ2

k/M2]
=

[s+ δσ2
k/M2]

2

σ2
k

q+σ2
k/M2

+ M1

3(1+δ)

≥ [s+ δσ2
k/M2]

2

M2

δ
+ M1

3

≥ s
M2

δ
+ M1

3

.

This shows that for q > 0,

P
[
Rn,kn(Bn) > q

∣∣ P 0
n,Bn

,Bn

]
≤ Kn exp {(−npq)/C(M1,M2, δ)} .

In particular, this provides us with a bound for the marginal probability of Rn,kn(Bn),

P [Rn,kn(Bn) > q] ≤ Kn exp {(−npq)/C(M1,M2, δ)} .

As in the proof of theorem 1 in van der Laan et al. (2004) and Dudoit and van der Laan

(2005), for each u > 0, we have

E [Rn,kn ] ≤ u+

∫ ∞
u

Kn exp {(−npq)/C(M1,M2, δ)} dq.

The minimum is attained at un = C(M1,M2, δ) logKn/np and is given by C(M1,M2, δ)(logKn+

1)/np. Thus ERn,kn ≤ C(M1,M2, δ)(1 + logKn)(np). The same applies for ETn,k̃n(1−p)
.

Taking the expected values of the quantities in (B.4) yields the following finite sample

result:

0 ≤ E
[
Θ̃n(1−p)(kn)

]
− Θ̃opt

≤ (1 + 2δ)
(
E
[
Θ̃n(1−p)

]
− Θ̃opt

)
+ 2C(M1,M2, δ)

[
1 + logKn

np

]
.

This completes the proof. �
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