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An accurate and self-consistent methodology for mass transport of multi-component mixtures in multi phase 
media is a necessity for a proper description of complex physical and chemical processes in reactors such as 
catalytic packed beds. In this regard, a novel methodology has been developed to describe and couple underlying 
transport phenomena in fluid and porous media as well as at the solid-fluid interface. The methodology is 
symmetric as it treats all components in a mixture equally. The Maxwell-Stefan equations are symmetrically 
formulated, discretized conservatively and coupled with a compressible flow solver for the fluid part. The Dusty 
Gas Model is applied inside porous media by developing a self-consistent and robust numerical formulation. 
A ghost-cell Immersed Boundary Method is used to capture the physics at the solid-fluid interface with the 
implementation of a novel symmetric non-singular mass flux formulation. Several test cases are established to 
demonstrate the accuracy and robustness of the newly developed symmetric methodology in this paper. These 
test cases can be used as benchmark for the future development of symmetric methodologies for multicomponent 
systems in multi phase media.
1. Introduction

Global warming and the world’s excessive demand of energy sources 
drive the need to invent or re-design many industrial processes with 
catalytic pellets such as the Fischer-Tropsch process. In order to achieve 
a more efficient operation, one should understand better:

• the interplay of transport phenomena with reactions inside the cat-

alytic particles,

• the impact of hydrodynamics outside the catalytic pellets on

– diffusion of reactants into particles as well as diffusion of prod-

ucts out of the pellets,

– distribution of reactants and products inside the reactor.

Predictive mathematical models that are able to capture those phe-

nomena accurately are helpful not only to understand and to recognize 
the dominant physical and chemical mechanisms inside as well as out-

side the catalytic pellets, but also to design an efficient reactor at a 
lower cost. Such a model is presented in this work for coupling of 
transport phenomena (convection and diffusion) inside and outside of a 
catalytic pellet.

* Corresponding author.

The methodology presented in this paper is based on an Immersed 
Boundary Method (IBM) to demarcate inside of a particle from an out-

side medium. One of the main advantage of an Immersed Boundary 
Method is that there is no need to have a body fitted grid near moving 
or fixed objects in a fluid medium. Consequently, complex unstructured 
grids to capture the arbitrariness of an object and re-meshing in case 
of moving objects are unnecessary. In addition, a non-boundary fitted 
Cartesian computational grid requires less memory to store the grid 
information and avoids complicated processes to implement computa-

tionally efficient solvers for governing equations (Mittal and Iaccarino, 
2005). There are a variety of IBM implementations for rigid and elastic 
bodies in literature. Mainly, they can be classified to three categories: 
the momentum forcing approach, the cut-cell finite volume approach, 
and the ghost cell approach (Das et al., 2017; Mittal and Iaccarino, 
2005). In the momentum forcing approach, the no-slip condition is im-

posed by introducing a source term in the momentum equations at the 
immersed boundary. Calculation of a proper forcing term is the main 
challenge of this approach. Several methodologies are introduced in 
the literature to provide the desired accuracy and to avoid spurious os-

cillations to solve the Navier-Stockes equations over a broad range of 
Reynolds numbers. Some of those methodologies calculate and obtain a 
desired velocity at the immersed boundary in an iterative manner with a 
Available online 28 February 2024
0009-2509/© 2024 The Authors. Published by Elsevier Ltd. This is an open access a

E-mail address: s.tadayon.mousavi@tue.nl (S. Tadayon Mousavi).

https://doi.org/10.1016/j.ces.2024.119920

Received 21 August 2023; Received in revised form 31 January 2024; Accepted 21 F
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ebruary 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ces
mailto:s.tadayon.mousavi@tue.nl
https://doi.org/10.1016/j.ces.2024.119920
https://doi.org/10.1016/j.ces.2024.119920
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ces.2024.119920&domain=pdf
http://creativecommons.org/licenses/by/4.0/


S. Tadayon Mousavi, C.M.Y. Claassen, M.W. Baltussen et al.

feedback loop (Goldstein et al., 1993; Peskin, 1972; Saiki and Biringen, 
1996; Tang et al., 2014), while others introduced a direct approach to 
impose the forcing term in the momentum equations (Kempe and Fröh-

lich, 2012; Kim and Choi, 2006; Taira and Colonius, 2007; Tenneti et 
al., 2011; Uhlmann, 2005).

The cut-cell finite volume approach identifies the cells that are cut 
by the immersed boundary and changes the geometries of those cells in 
order to generate a body fitted Cartesian grid. It is claimed the local and 
global conservation of mass and momentum are enhanced in compari-

son with other methods because of the possibility to perform accurate 
flux calculations over the distorted faces of the cut cells in the vicinity 
of the fluid-solid interface (Cheny and Botella, 2010; Das et al., 2017; 
Mittal and Iaccarino, 2005; Ye et al., 1999). Extension of this method to 
3D simulations with complex geometrical objects is cumbersome due to 
generation of complex cut cells and difficulty in properly discretization 
of governing equations for those cells (Das et al., 2017).

The ghost-cell Immersed Boundary Method, however, provides a 
more convenient approach to satisfy the no-slip boundary condition or 
other desired boundary conditions of governing equations on the im-

mersed surface by forcing the condition via ghost cells (cells near to 
the immersed boundary) (Das et al., 2017; Deen et al., 2012; Mittal et 
al., 2008; Tseng and Ferziger, 2003). The ghost-cell immersed boundary 
method has been implemented before for applying the no slip boundary 
condition at the boundaries of objects in the Navier-Stokes equations 
(Das et al., 2017; Deen et al., 2012). In addition, an extended version 
of the ghost-cell IBM is applied successfully for simulation of the con-

jugate heat and mass transfer with the Fickian diffusion model in a 
packed bed reactor (Chandra et al., 2020). In this paper, the ghost-cell 
immersed boundary method is extended for solving multicomponent 
mixtures both inside and outside a catalytic pellet with more compre-

hensive diffusion models rather than Fick’s law.

As diffusion is one of the main aspects of the described reactors 
physics, we aimed to develop robust and self-consistent formulations 
to capture this phenomenon inside and outside a catalytic pellet accu-

rately.

Broadly, there are three different approaches to model diffusion phe-

nomena in a multicomponent mixture. The Fickian diffusion model, the 
Maxwell-Stefan equations, and solving complete form of species mo-

mentum equation (not bulk or mass averaged momentum equation for 
a mixture) for each species involved in a mixture. Basically, the goal in 
a multicomponent simulation is to model the velocity of each species 
(𝑣𝑖) involved in a mixture accurately.

𝑣𝑖 = 𝑉 + 𝑣𝑑𝑖 . (1)

In the first two approaches, the velocity of each species is decom-

posed into the mass-averaged velocity (𝑉 ) and the diffusive velocity 
(𝑣𝑑𝑖 ), equation (1) (Kuo, 2005). Then, the role of the Fickian diffu-

sion model or the Maxwell-Stefan equations is to predict the diffusive 
velocities. The mass averaged velocity is usually determined by the 
Navier-Stokes equations or estimated from other suitable analytical ap-

proaches for the investigated physics. However, in the third approach, 
the species momentum equations are solved, so 𝑣𝑖 is obtained directly, 
and there is no need for division of the velocity to averaged and dif-

fusive ones. There are advantages and costs (potential drawbacks) for 
each mentioned approach.

The simplest approach is the Fick diffusion model where the diffu-

sive flux of the species i to the species j is connected linearly to the 
gradient of its mass fraction (Kuo, 2005).

𝐽𝑑𝑖
= 𝜌𝑖𝑣𝑑𝑖 = −𝜌𝐷𝑖𝑗∇𝜔𝑖, (2)

where 𝐽𝑑𝑖
, 𝜌𝑖, 𝜌, 𝐷𝑖𝑗 , and 𝜔𝑖 represent the diffusive flux of species i, 

the mass density of species i, the mixture mass density, and the binary 
diffusion coefficient of species i and j, respectively. Although, the Fick 
model is computationally the cheapest, it is valid only for the specific 
2

cases (Krishna and Wesselingh, 1997):
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• Binary mixtures,

• Diffusion of dilute species i into a media, where there is a dominant 
background species in the system,

• Or when all binary diffusion coefficients have the same value, so 
the diffusive flux constraint is satisfied (detailed explanation can 
be found in section 2).

In order to have physical results where the mass and the diffusive flux 
constraints are satisfied, body forces like the electromagnetic, the grav-

ity, and the centrifugal force should be absent in a simulation where 
one of the above mentioned conditions is valid. Only under these condi-

tions, the division of the species velocities to the mass averaged and the 
diffusive velocities can provide a consistent representation of a physical 
system with the Fickian model.

For modeling of multicomponent processes such as Fischer-Tropsch, 
specifying the dominant species is not possible, hence the Fickian diffu-

sion does not provide a suitable option.

The second option is the Maxwell-Stefan (MS) equations, solving 
this set of equations provides solution for the diffusive velocities. These 
equations are derived by subtracting the non-conservative bulk momen-

tum equation multiplied with a species mass fraction from the equation 
that is the result of subtraction of the species continuity equation mul-

tiplied by the species velocity from its momentum equation (Whitaker, 
2009). More information about different forms of transport equations 
and their derivations, can be found in Tadayon Mousavi (2020). There 
is no restriction for the type and number of species present in a mixture. 
In addition, body forces are included. However, a couple of assumptions 
are made throughout the derivation of the Maxwell-Stefan equations 
(Whitaker, 2009):

• the governing equation for the diffusive velocity is quasi-steady,

• the diffusive inertial effects are negligible,

• the viscous effects (shear stress terms) are negligible,

• the effects of the homogeneous chemical reactions are negligible.

The final form of these equations for an ideal-gas mixture is (Krishna 
and Wesselingh, 1997; Taylor and Krishna, 1993; Whitaker, 2009):

−∇𝑥𝑖 −
1
𝑝
(𝑥𝑖 −𝜔𝑖)∇𝑝

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
pressure diffusion

+
𝜌𝑖
𝑝
(𝐹𝑖 −

𝑁∑
𝑗=1

𝜔𝑗𝐹𝑗 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
forced diffusion

=

𝑗=𝑁∑
𝑗=1
𝑗≠𝑖

𝑥𝑖𝑥𝑗

𝐷𝑖𝑗
(𝑣𝑑𝑖 − 𝑣𝑑𝑗 )

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
inter molecular
friction force

+
𝑁∑
𝑗=1
𝑗≠𝑖

𝑥𝑖𝑥𝑗

𝐷𝑖𝑗
(
𝐷𝑇

𝑖

𝜌𝑖
−

𝐷𝑇
𝑗

𝜌𝑗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
thermal diffusion

, (3)

where 𝑥𝑖, 𝑝, 𝐹𝑖, 𝐷𝑇
𝑖 represent the molar fraction of species i, pressure, 

body forces per unit of mass act on the species i, and the thermal diffu-

sion of species i, respectively.

As mentioned above, in the derivation of the Maxwell-Stefan equa-

tions, it is assumed the shear is negligible. For situations that this as-

sumption is not valid such as very narrow tubes, where the viscous shear 
force is more dominant than the friction force between different species, 
solving the momentum equations for each species involved in a mixture 
could provide more accurate results (Kerkhof and Geboers, 2005). In 
wide tubes, the velocity gradients are smaller. Therefore, the momen-

tum exchange between different species, which homogenizes species ve-

locities, dominants the momentum exchange between faster and slower 
regions of a tube for each species. Under this condition, a single momen-

tum equation which represents the whole mixture, the bulk momentum 
equation, is computationally more efficient to solve than species mo-

mentum equations (Kerkhof and Geboers, 2005). Franců and Mikyška 
(2020) present a computational approach that follows this non-splitting 

species velocity in multicomponent mixtures in porous media. How-
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ever, in general, this approach is computationally more expensive in 
comparison with the first two approaches.

In this research, for the fluid media outside a catalytic particle, the 
bulk momentum equation is solved to obtain the mass-averaged veloc-

ity. Then, the species mass balances coupled with the Maxwell-Stefan 
equations are solved to update the mixture composition. In the porous 
media where the “viscous shear” dominates the “diffusive friction”, the 
Dusty Gas Model (DGM) (Krishna and Wesselingh, 1997; Mason Edward 
and Malinauskas, 1983) is chosen to model the transport phenomena 
instead of solving the species momentum equations; as we found the 
Dusty Gas Model computationally more feasible.

In addition, the developed formulations in this paper treat all N com-

ponents of a mixture similarly, which is called the symmetric approach 
(Bothe and Druet, 2023; Giovangigli, 1990, 1991; Peerenboom et al., 
2011). Conventional models (the asymmetric approach) solve govern-

ing equations for only N-1 species and update the concentration or the 
mass fraction of Nth species by forcing the system’s constraints. The 
main disadvantage of the asymmetric approach is the necessity to a pri-

ori choose a 𝑁 th component, which is problematic for chemical reactors 
simulations with complex mixtures. Complex kinetics are interwoven 
with transport phenomena in such reactors, so there is no guarantee that 
the species mass balance is conserved. The symmetric modeling pro-

vides an elegant approach to treat each involved species in a mixture as 
a separate unknown of the discretized governing equations (Bothe and 
Druet, 2023; Peerenboom et al., 2011). Hence, non-physical values for 
mass fractions or concentrations during a simulation are avoided with 
proven mathematical formulations, a proper discretization of governing 
equations and appropriate boundary conditions.

In the following sections, first we present a non-singular Maxwell-

Stefan equations formulation coupled with a compressible flow solver. 
Then, the Maxwell-Stefan equations are extended to porous media, 
and our developed self-consistent Dusty Gas Model formulation is ex-

plained. In the last section, a novel non-singular formulation for the 
mass transfer at the boundary of solid-gas for multicomponent mixtures 
is developed. Furthermore, it is shown how this formulation can be im-

plemented with the ghost-cell Immersed Boundary Method where the 
Maxwell-Stefan formulation is used for a medium outside a particle, 
and the DGM models transport physics inside a pellet.

2. Non-singular formulation of the Maxwell-Stefan equations and 
its coupling with a compressible flow solver

Continuity equations for each species involved in a mixture are 
solved coupled with a compressible flow solver in order to model hy-

drodynamics and the composition of a multicomponent medium. In this 
section, the continuity equations with the Maxwell-Stefan diffusive ve-

locities are discussed first. Then, the implemented coupling approach 
with a compressible flow solver and the used discretization are ex-

plained. At the end, a verification test case is shown. It should be 
noted that we used mass non-conservative form of governing equations 
throughout the whole work rather than the concentration equations for 
species.

As discussed before, all N components involved in a mixture are 
treated as a separate unknown in the presented methodology. The 
species velocity 𝑣𝑖 is decomposed into the mass-averaged and the diffu-

sive velocity, equation (1), so the continuity equation for each species 
has the following form:

𝜕
(
𝜌𝜔𝑖

)
𝜕𝑡

+∇ ⋅
(
𝜌𝜔𝑖𝑉

)
+∇ ⋅

(
𝜌𝜔𝑖𝑣𝑑𝑖

)
= 𝑟𝑖, (4)

where 𝑟𝑖 represents the species source term due to chemical reactions. 
Finite volume discretization is used in this research, where scalar fields 
are stored at the center of cell, and velocity fields at faces (the staggered 
grid). In order to avoid extrapolation of the bulk density (𝜌, which is 
3

coupled with pressure, and both are stored in the center of cells) at faces 
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as much as possible, the non-conservative form of the species continuity 
equation is used in our implementation

𝜌
𝜕𝜔𝑖

𝜕𝑡
+ 𝜌∇ ⋅

(
𝜔𝑖𝑉

)
− 𝜌𝜔𝑖∇ ⋅ 𝑉 +∇ ⋅

(
𝜌𝜔𝑖𝑣𝑑𝑖

)
= 𝑟𝑖. (5)

As the species velocity is divided, and the diffusive velocities are defined 
with respect to the mass-averaged velocity, the system of equations 
have two constrains which are not satisfied automatically (Peerenboom 
et al., 2011; Tadayon Mousavi, 2020)

1. summation of diffusive fluxes should be zero∑
𝑖

𝜔𝑖𝑣𝑑𝑖 = 0, (6)

2. summation of mass fractions should be one∑
𝑖

𝜔𝑖 = 1. (7)

There is also another constraint which is imposed automatically by 
proper kinetic sets∑
𝑖

𝑟𝑖 = 0, (8)

which means the net produced mass by chemical reactions in a system 
is zero (Peerenboom et al., 2011; Tadayon Mousavi, 2020).

2.1. Numerical treatment of the Maxwell-Stefan equations

The diffusive velocities are modeled by the Maxwell-Stefan equa-

tions

𝑗=𝑁∑
𝑗=1
𝑗≠𝑖

𝑥𝑖𝑥𝑗

𝐷𝑖𝑗
(𝑣𝑑𝑖 − 𝑣𝑑𝑗 ) = −∇𝑥𝑖. (9)

It is assumed that the pressure diffusion, the forced diffusion and the 
thermal diffusion are negligible in this work, equation (3). If the above 
equation (9) is written in a matrix form, we obtain (Peerenboom et al., 
2011)∑
𝑗

𝐹𝑖𝑗𝑣𝑑𝑗 = −∇𝑥𝑖, (10)

where

𝐹𝑖𝑗 =
⎧⎪⎨⎪⎩
∑

𝑘≠𝑖
𝑥𝑖𝑥𝑘
𝐷𝑖𝑘

if 𝑖 = 𝑗,

− 𝑥𝑖𝑥𝑗
𝐷𝑖𝑗

if 𝑖 ≠ 𝑗.
(11)

Matrix 𝐅 is singular as 
∑

𝑗 𝐹𝑖𝑗 = 0 which means for a N components 
mixture, it is not possible to have N independent unknown diffusive 
velocities. Basically, there are 𝑁 − 1 independent equations, so either 
a system of 𝑁 − 1 equations should be solved, and the 𝑁 th component 
should be obtained via constraint 2, equation (7), or matrix 𝐅 should be 
regularized. In this work, we chose regularization of matrix 𝐅 following 
the works of Giovangigli (1990, 1991); Peerenboom et al. (2011) to 
avoid the selection of the 𝑁 th component.

The system’s constraints are used for regularization of the Maxwell-

Stefan equations. The species continuity equation (5) with the regular-

ized diffusive flux matrix 𝚪 is converted into the following form

𝜌
𝜕𝜔𝑖

𝜕𝑡
+ 𝜌∇ ⋅

(
𝜔𝑖𝑉

)
− 𝜌𝜔𝑖∇ ⋅ 𝑉 +∇ ⋅

(∑
𝑗

Γ𝑖𝑗∇𝜔𝑗

)
= 𝑟𝑖. (12)

In the following sections, it is explained how these constraints are 
used to regularize both the left and the right hand sides of the Maxwell-

Stefan equations (9) in order to construct a non-singular diffusive flux 

matrix.
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2.1.1. Driving force of the Maxwell-Stefan equations: the mass fraction 
constraint

As is decided to use the mass form of the species continuity equa-

tions in this work, the right hand side of the Maxwell-Stefan equations 
(9) should be converted to the mass fraction form. The conversion of 
mole to mass fraction obeys the following relation (Kuo, 2005; Peeren-

boom et al., 2011)

𝑥𝑖 =
𝑀

𝑀𝑖
𝜔𝑖, (13)

and

1
𝑀

=
∑
𝑗

𝜔𝑗

𝑀𝑗
, (14)

where 𝑀 and 𝑀𝑖 stand for the molecular weight of a mixture and the 
species i, respectively. Then, the right hand side of equation (9) can be 
written as Peerenboom et al. (2011)

∇𝑥𝑖 =
𝑀

𝑀𝑖
∇𝜔𝑖 −𝑀𝑥𝑖

∑
𝑗

∇𝜔𝑗

𝑀𝑗
=
∑
𝑗

𝑀 ′
𝑖𝑗∇𝜔𝑗. (15)

The conversion matrix, 𝐌′ is singular as 
∑

𝑖 𝑀
′
𝑖𝑗 = 0 (Peerenboom et al., 

2011). As the matrix 𝐌′ will be used to form the diffusive flux matrix 
𝚪, its singular nature makes the diffusive flux matrix also singular. The 
singular diffusive flux matrix produces ill-posed behavior in the formed 
matrices resulting from the set of discretized equations to be solved at 
each time step, with detrimental outcome for the numerical stability. 
In order to achieve unconditionally stable formulations, the matrix 𝐌′

has to be regularized. Regularization follows the described approach in 
Giovangigli (1990); Peerenboom et al. (2011), which proceeds via the 
mass fraction constraint (7) in the conversion of mole to mass fraction 
relation (13)

𝑥𝑖 = 𝜎
𝑀

𝑀𝑖
𝜔𝑖, (16)

with 𝜎 =
∑

𝑗 𝜔𝑗 . Now the right hand side of the Maxwell-Stefan equa-

tions (9) can be written as

∇𝑥𝑖 =
𝑀

𝑀𝑖
𝜔𝑖∇𝜎 + 𝑀

𝑀𝑖
𝜎∇𝜔𝑖 −𝑀𝑥𝑖

∑
𝑗

∇𝜔𝑗

𝑀𝑗
=
∑
𝑗

�̃�𝑖𝑗∇𝜔𝑗, (17)

with the regularized matrix �̃�

�̃�𝑖𝑗 =
⎧⎪⎨⎪⎩

𝑀

𝑀𝑖

(
𝜔𝑖 − 𝑥𝑖 + 𝜎

)
if 𝑖 = 𝑗,

𝑀

(
𝜔𝑖

𝑀𝑖
− 𝑥𝑖

𝑀𝑗

)
if 𝑖 ≠ 𝑗.

(18)

Now 
∑

𝑖 �̃�𝑖𝑗 = 1.

2.1.2. The diffusive velocity relation of the Maxwell-Stefan equations: the 
diffusive flux constraint

As clarified in section 2.1, the left hand side of the Maxwell-Stefan 
equations (9) is singular. The matrix 𝐅 is regularized by imposing the 
diffusive flux constraint (6) following the proposed approach in Gio-

vangigli (1990); Peerenboom et al. (2011).∑
𝑗

𝐹𝑖𝑗𝑣𝑑𝑗 + 𝛼𝜔𝑖

∑
𝑗

𝜔𝑗𝑣𝑑𝑗 = −
∑
𝑗

�̃�𝑖𝑗∇𝜔𝑗, (19)

with 𝛼 as a free parameter with the suggested form 𝛼 = 1∕max
(
𝐷𝑖𝑗

)
(Giovangigli, 1991; Peerenboom et al., 2011). This approach actually 
produces an artificial diffusion term for the continuity equation of 𝜎
(imagine 𝜎 as a pseudo species and replace it instead of 𝜔𝑖 in equation 
(4)). Then, the conservative form of the 𝜎 continuity equation becomes 
elliptic, which guarantees 𝜎 = 1 at the whole numerical domain at all 
time steps if 𝜎 = 1 at all domain boundaries and the initial condition of 
a simulation (Giovangigli, 1990, 1991; Peerenboom et al., 2011). The 
4

regularized matrix �̃� can be written now �̃� = 𝐅 + 𝛼𝝎 ⊗ 𝝎, where ⊗
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represents the dyadic product between two vectors. Then, the Maxwell-

Stefan diffusive velocities can be obtained as

𝑣𝑑𝑖 = −
∑
𝑗

𝐹−1
𝑖𝑗

∑
𝑗

�̃�𝑖𝑗∇𝜔𝑗. (20)

Subsequently, the diffusive flux can be written as

𝐽𝑑𝑖
= −𝜌𝜔𝑖

∑
𝑗

𝐹−1
𝑖𝑗

∑
𝑗

�̃�𝑖𝑗∇𝜔𝑗. (21)

Finally, the diffusive flux matrix 𝚪 = 𝐑�̃�−𝟏�̃�, with 𝐑 = diag
(
𝜌𝜔𝑖

)
. 

However, there is a possibility to formulate the Maxwell-Stefan equa-

tions in terms of the diffusive flux rather than the diffusive velocity, 
equation (10), (Peerenboom et al., 2011). We found that only the dif-

fusive flux formulation is stable in our implementation. Therefore, we 
have∑
𝑗

𝐻𝑖𝑗𝐽𝑑𝑗
= −

∑
𝑗

�̃�𝑖𝑗∇𝜔𝑗. (22)

The above equation is derived from (10) as follows∑
𝑘

∑
𝑗

𝐹𝑖𝑗𝑅
−1
𝑗𝑘

⏟⏟⏟
𝐻𝑖𝑘

𝑅𝑘𝑗𝑣𝑑𝑗
⏟⏟⏟

𝐽𝑘

= −∇𝑥𝑖, (23)

with the matrix 𝐇 (Peerenboom et al., 2011)

𝐻𝑖𝑗 =
⎧⎪⎨⎪⎩

𝜎𝑀
𝜌𝑀𝑖

∑
𝑘≠𝑖

𝑥𝑘
𝐷𝑖𝑘

if 𝑖 = 𝑗,

− 𝜎𝑀
𝜌𝑀𝑗

𝑥𝑖
𝐷𝑖𝑗

if 𝑖 ≠ 𝑗.
(24)

Note that in the derivation of equation (24), the updated conversion 
equation (16) is used. The matrix 𝐇 is also singular as 

∑
𝑖 𝐻𝑖𝑗 = 0, so 

regularization is needed. A suitable regularization can be derived as 
follows

�̃�𝐑−1
⏟⏟⏟

�̃�

= 𝐅𝐑−1
⏟⏟⏟

𝐇

+𝛼𝝎⊗𝝎𝐑−1, (25)

which results

�̃� =𝐇+ 𝛼′𝝎⊗𝑼 , (26)

where 𝑼 = [1, .., 1]𝑇 and 𝛼′ = 𝛼∕𝜌. The obtained result for 𝛼′ in this 
derivation corrected the diffusive flux formulation of the Maxwell-

Stefan equations presented in Peerenboom et al. (2011) by replacing 
𝛼 = 1∕max

(
𝐷𝑖𝑗

)
with 𝛼′ for regularization of the matrix 𝐇. Now, the 

diffusive flux matrix is 𝚪 = �̃�−1�̃�. Please note that the matrix 𝐑 can 
be singular when one or more species mass fractions approach zero. 
However, the matrix �̃� remains non-singular regardless of zero mass 
fractions for one or more components. Actually, it is the main reason 
for the unconditional stability for the diffusive flux formulation in our 
implementation.

2.2. Coupling of the species continuity equations with a compressible flow 
solver

In order to solve the species continuity equations (5), the mass av-

eraged velocity (𝑉 ) and the bulk density (𝜌) should be known. These 
two parameters together with the pressure field are obtained by a com-

pressible flow solver. The bulk momentum equations that are solved in 
each time step of a simulation have the following form

𝜕
(
𝜌𝑉

)
𝜕𝑡

+∇ ⋅
(
𝜌𝑉 𝑉

)
= −∇𝑝+∇ ⋅ 𝜏, (27)

where 𝑝 and 𝜏 stand for pressure and the shear stress tensor[( ) ( )𝑇 2 ( ) ]

𝜏 = −𝜇 ∇𝑉 + ∇𝑉 −

3
∇ ⋅ 𝑉 𝐈 , (28)
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Fig. 1. Schematic of the verification test case for the Maxwell-Stefan equations 
coupled with the compressible flow solver (Peerenboom et al., 2011).

with 𝜇 and 𝐈 as viscosity and the unity matrix. The finite volume ap-

proach is used to discretize the governing equations (5) and (27). All 
contributions to the momentum equations are treated explicitly, except 
the shear stress tensor. Only the diagonal components of the shear stress 
tensor are treated implicitly in this paper. The Upwind, the Central 
Difference (only for the species continuity equations and shear stress 
tensor terms), or Total Variation Diminishing (TVD) schemes are used 
for discretization of the convective fluxes (Versteeg and Malalasekera, 
2007). The Min-Mod flux limiter is used in this research if TVD schemes 
are chosen for the discretization of the convective fluxes (Versteeg and 
Malalasekera, 2007).

The used flow solver in this research has a pressure-correction al-

gorithm (Dijkhuizen, 2008), which is coupled with the ideal gas law 
to take into account the effect of compressibility due to composition 
changes. For each time step, first, the flow solver updates the velocity, 
the pressure, and the bulk density fields. The flow solver step requires 
a couple of iterations for each time step to satisfy the bulk continuity 
equation

𝜕𝜌

𝜕𝑡
+∇ ⋅

(
𝜌𝑉

)
= 0. (29)

Subsequently, the mixture composition is updated by solving the species 
continuity equations. At the end of each time step, the bulk density field 
is updated again by considering the new update for the composition. 
Appendix A describes the details of steps that are taken in each time 
step.

2.3. Verification test case

The 2D test case presented in Mazumder (2006); Peerenboom et 
al. (2011) is chosen to assess the formulation, the discretization and 
the implementation of the Maxwell-Stefan equations coupled with the 
compressible flow solver. The schematic of the domain and boundary 
conditions are depicted in Fig. 1. The test case provides a challenging 
scenario to test mass conservation in the implementation (

∑
𝑗 𝜔𝑗 = 1). 

Neumann boundary conditions are used for mass fractions in parts of 
the domain boundaries without specified values. Velocity is set zero 
at walls, and pressure is specified (1 × 105 Pa) for the boundary parts 
where one of the three species mass fraction is set to 1. Temperature is 
kept constant at 300 K during the simulation.

The grid resolution is 80×80. The binary diffusion coefficients that 
are used in this simulation are given in the Table 1.

Fig. 2 shows the comparison between the obtained results in this 
5

study with reproduction of the presented results in Peerenboom et al. 
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Table 1

Used binary diffusion coefficients in the test case 
depicted in Fig. 2.

Species pair Binary Diffusion Coefficient [m2∕s]

H2O-H2 8.8226×10−5

H2O-N2 2.7471×10−5

H2-N2 8.1374×10−5

(2011) by PLASIMO software (Plasimo, 2024; van Dijk et al., 2009), 
which is the in-house software of Peerenboom et al. (2011). Please note 
that, all three schemes: Upwind, Central Difference, and TVD are tried 
for the discretization of the convective fluxes. There is no difference 
between the results at steady-state. In addition, Fig. 3 shows a compari-

son of the obtained distribution of three mass fractions along 4 different 
lines in the numerical domain with PLASIMO software. The relative dif-

ference is less than 1%. Furthermore, 
∑

𝑗 𝜔𝑗 = 1 is obtained up to the 
machine accuracy in our simulation.

3. Extension of the Maxwell-Stefan equations to porous media: 
the Dusty Gas Model

In general gas transport through porous media involves four mech-

anisms (Kumar Das, 2019; Mason Edward and Malinauskas, 1983)

• Knudsen flow where the gas density is low, so the collisions be-

tween molecules can be ignored in comparison with the collisions 
between molecules and porous media walls.

• Continuum diffusion where different species of a mixture move 
relative to each other. The movements are driven by gradients 
of concentration, pressure, temperature (the thermal diffusion) 
and external forces. Molecule-molecule collisions dominate over 
molecule-wall collisions in this mode.

• Surface diffusion where molecules move along a solid surface in an 
adsorbed layer. This kind of transport is neglected in this study.

• Viscous flow where the gas acts as a continuum fluid medium and 
is driven by a pressure gradient. Molecule-molecule collisions dom-

inate over molecular-wall collisions in this mode.

All the mentioned mechanisms can be combined in an analogy with 
an electrical circuit to depict the transport phenomena in a porous me-

dia. Fig. 4 shows this analogy. Each transport mode is represented by 
a resistor. The Knudsen diffusion and the continuum diffusion are re-

sistors in series where the voltage drops are additive. However, the 
molecular diffusion branch is connected to the viscous flow and the 
surface diffusion in parallel where current is additive and voltage drop 
is the same (Mason Edward and Malinauskas, 1983).

The Dusty Gas Model (DGM) follows the same concept which is 
presented in Fig. 4 to describe transport in a porous media where the 
voltage drop and the electrical current resemble the pressure gradient 
and the flux, respectively. In addition, the porous media is considered 
as the 𝑁 + 1th species (dust particles) of a mixture.

Basically, two independent transport modes resulting from the 
Chapman-Enskog kinetic theory (Ferziger and Kaper, 1973; Hirschfelder 
et al., 1964; Mason Edward and Malinauskas, 1983) are applied to 
a porous media where dust particles are treated as giant molecules. 
Hence, the Dusty Gas Model is comprised of: a diffusion part, consist-

ing of a set of the Maxwell-Stefan equations, and a viscous-flow part, 
consisting of an equation for the bulk motion of a mixture (Mason Ed-

ward and Malinauskas, 1983). “Independent modes” means that there 
is not any direct coupling term due to diffusion in the bulk equation 
of motion, and no viscous momentum transfer term is seen in the dif-

fusion equations explicitly. Therefore, these two transport mechanisms 

and their corresponding fluxes can be added simply (Mason Edward 
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Fig. 2. The Maxwell Stefan diffusion simulation for a three species H2O, H2 and N2 system for the depicted test case in Fig. 1. The right column are pictures of the 
6

reproduced results in Peerenboom et al. work (Peerenboom et al., 2011) by PLASIMO software, and the left column are obtained results in this study.
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Fig. 3. The comparison of the distribution of mass fractions over 4 different lines in the numerical domain with the reproduced results in Peerenboom et al. work 
(Peerenboom et al., 2011) by PLASIMO software for the test case depicted in section 2.3.
Fig. 4. Transport phenomena in a porous media in analogy with an electrical 
circuit (Mason Edward and Malinauskas, 1983).

and Malinauskas, 1983). Further information about assumptions, justi-

fications, and the derivation of the Dusty Gas Model can be found in 
7

Mason Edward and Malinauskas (1983).
The final form of the Dusty Gas Model is

𝑗=𝑁∑
𝑗=1
𝑗≠𝑖

𝑥𝑗𝑥𝑖𝑣𝑖 − 𝑥𝑖𝑥𝑗𝑣𝑗

𝐷𝑒
𝑖𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
the Maxwell-Stefan

equations

+
𝑥𝑖

𝐷𝑖𝐾
𝑣𝑖

⏟⏟⏟
Knudsen

flow

+
𝑥𝑖

𝐷𝑖𝐾

𝐵0
𝜇

∇𝑝

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Viscous

flow

= −∇𝑥𝑖 −
𝑥𝑖

𝑝
∇𝑝

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Driving force of

continuum diffusion

, (30)

where the second term of “driving force of continuum diffusion” on 
the right hand side of equation (30) is the remaining part of “pressure 
diffusion” term of the general form of the Maxwell-Stefan equation (3). 
The rest of the “pressure diffusion” term is canceled out with some 
part of the “forced diffusion” term of (3) by applying the following 
assumption “the dust particles are held motionless by an external force 
which balances any pressure gradients in the gas” (Mason Edward and 
Malinauskas, 1983).

𝐷𝑒
𝑖𝑗 and 𝐷𝑖𝐾 represent the effective binary diffusion coefficient and 

the Knudsen diffusion coefficient in equation (30), respectively.

𝐷𝑒
𝑖𝑗 =

𝜀

𝜏
𝐷𝑖𝑗 , (31)

with 𝜀∕𝜏 as porosity-tortuosity factor of a porous medium. The Knudsen 
diffusion coefficient is calculated by

𝜀 𝑑0
[
8𝑅𝑢𝑇

]1∕2

𝐷𝑖𝐾 =

𝜏 3 𝜋𝑀𝑖
, (32)
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where 𝑑0 represents the diameter of a pore (Krishna and Wesselingh, 
1997; Kumar Das, 2019). In addition, 𝐵0 in the final DGM formula (30)

is a characteristic of a pore geometry.

3.1. Numerical treatment of the Dusty Gas Model

The Dusty Gas Model, equation (30), can be written in a matrix form 
similar to the Maxwell-Stefan equations as follows∑
𝑗

𝐹 ′
𝑖𝑗𝑣𝑗 = −𝑑𝑖, (33)

where

𝐹 ′
𝑖𝑗 =

⎧⎪⎨⎪⎩
∑

𝑙≠𝑖
𝑥𝑖𝑥𝑙
𝐷𝑒

𝑖𝑙

+ 𝑥𝑖
𝐷𝑖𝐾

if 𝑖 = 𝑗,

− 𝑥𝑖𝑥𝑗
𝐷𝑒

𝑖𝑗
if 𝑖 ≠ 𝑗.

(34)

Contrary to the matrix 𝐅 of the Maxwell-Stefan equations, equation 
(11), the matrix 𝐅′ is not a singular matrix as 

∑
𝑗 𝐹

′
𝑖𝑗 = 𝑥𝑖∕𝐷𝑖𝐾 . Hence, it 

is not necessary to regularize 𝐅′. Adding “dust particles” as the 𝑁 +1𝑡ℎ
component of a mixture with the assumption that this component has 
zero flux regularizes automatically the left hand side of the Dusty Gas 
Model. The right hand side of Dusty Gas Model (33) is

𝑑𝑖 =∇𝑥𝑖 +
𝑥𝑖

𝑝
∇𝑝+

𝑥𝑖

𝐷𝑖𝐾

𝐵0
𝜇

∇𝑝. (35)

Since we adopted the mass form of the species continuity equations, the 
Dusty Gas Model should be written in terms of mass fractions or species 
densities. Following a similar approach used for the Maxwell-Stefan 
equations, the Dusty Gas Model can be written in the mass fraction form 
by conversion of molar fraction to mass fraction gradient with the help 
of the conversion matrix �̃�, equation (18). The Dusty Gas Model can 
be written in the flux form in a similar way as described by equations 
(22) and (23) for the Maxwell-Stefan equations∑
𝑗

𝐻 ′
𝑖𝑗𝐽𝑗 = −

∑
𝑗

�̃�𝑖𝑗∇𝜔𝑗 −𝑆𝑖, (36)

where the matrix 𝐇′ is 𝐅′𝐑−𝟏 with 𝐑 = diag
(
𝜌𝜔𝑖

)
.

𝐻 ′
𝑖𝑗 =

⎧⎪⎨⎪⎩
∑

𝑙≠𝑖
𝜎𝑀

𝜌𝑀𝑖
( 𝑥𝑙
𝐷𝑒

𝑖𝑙

) + 𝜎𝑀

𝜌𝑀𝑖𝐷𝑖𝐾
if 𝑖 = 𝑗,

− 𝜎𝑀

𝜌𝑀𝑗

𝑥𝑖
𝐷𝑒

𝑖𝑗
if 𝑖 ≠ 𝑗.

(37)

Note that as 𝐅′ is a non-singular matrix, although 𝐑 can be singular 
when one or more mass fractions approach zero, 𝐇′ is non-singular as ∑

𝑖 𝐻
′
𝑖𝑗 =

𝜎𝑀
𝜌𝑀𝑖𝐷𝑖𝐾

. Then, no regularization is needed for 𝐇′ contrary to 
the matrix 𝐇 of the Maxwell-Stefan equations (24). In addition, 𝑆𝑖 is 
comprised of pressure gradient terms

𝑆𝑖 = 𝜎
𝑀

𝑀𝑖
𝜔𝑖

∇𝑝

𝑝
+ 𝜎

𝑀

𝑀𝑖𝐷𝑖𝐾
𝜔𝑖

𝐵0
𝜇

∇𝑝. (38)

In the above equation, the mole fraction is converted to the mass frac-

tion with the help of equation (16). Then, the total flux for species i can 
be written as

𝐽𝑖 =
∑
𝑗

(
−Γ′𝑖𝑗∇𝜔𝑗 −𝐻 ′−1

𝑖𝑗 𝑆𝑗

)
, (39)

where 𝚪′ =𝐇′−𝟏�̃�.

The described formulation of Dusty Gas Model is tested for cases 
with and without pressure gradient, these cases are explained in sec-

tions 3.2.1 and 3.2.2. The second term of equation (39) is taken into 
account explicitly which means that the gradient of pressure and con-

sequently 𝑆𝑖 are calculated by variables from the previous time step or 
iteration of a model. Note that all small matrices like 𝚪 and 𝚪′ are cal-
8

culated based on the variables from the previous time step or iteration 
Chemical Engineering Science 291 (2024) 119920

in this study. In addition, the pressure is calculated from the ideal gas 
law.

Unfortunately, we found that the mass fraction formulation of Dusty 
Gas Model with explicit source term is only stable for cases where there 
is no pressure gradient imposed. Even for those cases, an Under Relax-

ation Factor (URF) is needed to obtain physical and correct results. It 
should be noted that when the URF is used, first, a matrix system of dis-

cretized equations over the numerical domain is solved. Subsequently, 
the updated unknown variables (𝑥𝑛+1) are not immediately used for 
calculations of the next iteration or the time step of a model. Only a 
fractional amount is added: 𝑥𝑛+1 = URF𝑥𝑛+1 + (1 − URF)𝑥𝑛, where URF 
is always a number in the range [0, 1].

After trying extensively different formulations with explicit and im-

plicit terms for conditions with and without pressure gradients. We 
found that a fractional step approach for composition and pressure 
for the Dusty Gas Model did not give a stable numerical scheme. We 
achieved only one formulation that guarantees physical and accurate 
results under any conditions without the need for an URF. The uncondi-

tional stable formulation of the Dusty Gas Model is density based where 
both mass fractions and pressure are expressed in terms of species mass 
densities. Appendix B presents the derivation of the newly formed Dusty 
Gas Model. The species continuity equations and consequentially the 
new formulation of the Dusty Gas Model flux are written as

𝜕𝜌𝑖
𝜕𝑡

−∇ ⋅

(∑
𝑗

Γ̃′𝑖𝑗∇𝜌𝑗

)
= 𝑟𝑖, (40)

where

Γ̃′𝑖𝑗 =
Γ′𝑖𝑗
𝜌

−
∑
𝑘

Γ′
𝑖𝑘

𝜌2
𝜌𝑘 +

1
𝑀𝑗

∑
𝑘

𝐻 ′−1
𝑖𝑘 𝑠1𝑘 +

1
𝑀𝑗

∑
𝑘

𝐻 ′−1
𝑖𝑘 𝑠2𝑘 , (41)

with

𝑠1𝑖 =
𝜎𝑀
𝑀𝑖

𝜌𝑖
𝜌

𝑅𝑢𝑇

𝑝
,

𝑠2𝑖 =
𝜎𝑀

𝑀𝑖𝐷𝑖𝐾

𝜌𝑖
𝜌

𝐵0
𝜇

𝑅𝑢𝑇 . (42)

𝑅𝑢 represents the universal gas constant. The species continuity equa-

tion, equation (40), is discretized in a similar way as the continuity 
equations with the Maxwell-Stefan diffusive fluxes. For the spatial part, 
the central difference is used where gradients of species mass densities 
are implicit whereas �̃�′ is calculated explicitly. If a simulation is time-

dependent; then, a simple forward Euler scheme is implemented for the 
discretization of the temporal term. In the developed formulation, the 
pressure is calculated self-consistently with species mass densities, and 
there is no need for a flow solver as the total flux of species is captured 
by the Dusty Gas Model formulation directly.

3.2. Verification test cases

In order to verify the developed self-consistent formulation of the 
Dusty Gas Model, two test cases are implemented. In the first test case, 
no gradient of pressure is imposed over the numerical domain, while the 
robustness of the Dusty Gas Model formulation is tested for conditions 
with a pressure gradient in the second case.

3.2.1. Isobaric test case

For this test case, the experiment of Remick and Geankoplis (1974)

is chosen to be mimiced numerically. In the experimental setup, 644 
capillaries tubes with averaged inner diameter 0.00391 cm (pore diam-

eter) and 0.96 cm length are installed in a diffusion cell. The molar frac-

tions of a mixture of ternary species He, Ne, and Ar are kept constant 
at the two ends of tubes. In addition, the pressure and the temperature 
are also kept constant in the system. The experiments are performed at 
different pressures in order to cover the entire range of diffusion from 

Knudsen to Continuum diffusion, which means the transition region is 
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Table 2

Experimental test cases of Remick and Geankoplis work (Remick and 
Geankoplis, 1974).

No. p [Pa] Temp [◦C] 𝑥𝐻𝑒0
𝑥𝐻𝑒𝐿

𝑥𝑁𝑒0
𝑥𝑁𝑒𝐿

1 59.99 27.6 0.0472 0.9471 0.5241 0.0343

2 146.655 28.3 0.0652 0.9610 0.5099 0.0251

3 545.2886 27.2 0.0572 0.9619 0.5134 0.0244

4 3021.0853 27.8 0.0622 0.9625 0.5102 0.0237

5 40422.0146 27.5 0.0539 0.9601 0.5051 0.0252

tested. After the system reaches steady-state for each experiment, the 
fluxes for each species are measured.

In our numerical test case, we solved the following equation

−∇ ⋅

(∑
𝑗

Γ̃′𝑖𝑗∇𝜌𝑗

)
= 0. (43)

Furthermore, the binary diffusion coefficients are calculated by the cor-

relation represented by Fuller et al. (1966); Kumar Das (2019)

𝐷𝑖𝑗 =
10−7𝑇 1.75

(
1
𝑀𝑖

+ 1
𝑀𝑗

)0.5

𝑝

[(∑
𝑉𝑖

) 1
3 +

(∑
𝑉𝑗

) 1
3

]2 , (44)

with 𝑝 in [atm], 𝑇 in [K], and 𝐷𝑖𝑗 in [m2∕s]. 
∑

𝑖 𝑉𝑖 represents the sum 
of diffusion volumes (Fuller et al., 1966). Diffusion volumes are 2.88, 
5.59, and 16.1, for He, Ne, and Ar, respectively (Fuller et al., 1966; 
Kumar Das, 2019). The porosity-tortuosity (𝜀∕𝜏) factor is set to 1 as we 
are dealing with straight tubes. The details of the five experimental test 
cases of Remick and Geankoplis work (Remick and Geankoplis, 1974) 
are listed in Table 2. Table 3 shows the comparison of fluxes between 
experiments and the obtained numerical results in this study.

As is clear, the numerical results capture the experimental values 
very well. The density based formulation of Dusty Gas Model, equation 
(43), is used to capture the physics in these test cases. Note that for 
the mass fraction based formulation of Dusty Gas Model, models could 
reach steady state and produce physical results, but an URF was needed 
for all test cases. For the density-based solution used here no under-

relaxation was needed.

3.2.2. Non-isobaric test case

In order to assess the robustness of the developed formulation for 
the Dusty Gas Model, test cases where a pressure gradient is imposed 
over the numerical domain boundaries are tried. In this type of tests, 
next to different kinds of diffusion, the convective flux plays a signifi-

cant role due to gradients of pressures. These cases were inspired by the 
experiments of Veldsink et al. (1994) for catalytic membranes. They im-

posed different gradients of pressure with various fixed molar fractions 
of a ternary mixture (N2, Ar, He) over the two ends of a membrane. 
Then, the fluxes of species were measured after the steady-state condi-

tion was achieved. Unfortunately, the experimental test cases cannot be 
used directly as the summation of imposed molar fractions at the two 
ends of the membrane is higher than one for most test cases. In this 
study, the same gradient of pressure was imposed, but the compositions 
differ somewhat from those reported in Veldsink et al. (1994). Table 4

described the test cases that are used in this study.

Temperature is fixed at 298 K for all test cases. 𝜀∕𝜏 , 𝐵0, and 𝜇 are 
0.147, 4.79×10−14 [m2], 2.011×10−5 [Pa.s], respectively. The pore di-

ameter is set to 34.8363×10−7 [m]. The binary diffusion coefficients are 
listed in Table 5. 100 grid points are used along the membrane.

Table 6 presents obtained fluxes in this study. Note that, no URF 
is needed for any test case with the density based formulation of the 
Dusty Gas Model. The mass fraction based formulation is not stable for 
9

cases with pressure gradients, and nonphysical results (negative mass 
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fractions or mass fractions bigger than one) are produced even if URF 
is employed. The reported results in Table 6 are obtained by setting the 
residual criteria of the used in-house matrix solver equal to 1 × 10−13. 
Please note that the residual is defined as the maximum absolute value 
difference of the new unknowns (in this case the species densities) to 
the old ones over the whole numerical domain.

4. Coupled mass transfer

At this stage, we have robust and conservative formulations for de-

scribing transport of multicomponent systems both in fluid and porous 
media. Our scheme will be completed by capturing the mass transfer 
physics at the interface of the fluid and the porous medium. In this re-

gard, the ghost-cell Immersed Boundary Method (IBM) which is used 
to demarcate fluid from solid and the implementation of the developed 
symmetric non-singular mass flux formulation embedded in the IBM are 
discussed in detail in this section.

4.1. Immersed Boundary Method description

In this research, the ghost cell Immersed Boundary Method (Deen 
et al., 2012) is used to force desired conditions at the fluid-solid inter-

face. Basically, the coefficients of unknown variables in the discretized 
representation of the governing equations are modified in such a way 
that imposed conditions at an immersed boundary (interface) are satis-

fied. In general, a discretized equation for each numerical cell (𝑐) can 
be written in the following form

𝑎𝑐𝜙𝑐 +
∑
𝑛𝑏

𝑎𝑛𝑏𝜙𝑛𝑏 = 𝑏𝑐, (45)

with 𝜙 as an unknown variable. “𝑛𝑏” represents the index of all neigh-

boring cells of a cell 𝑐. 𝑎𝑐 and 𝑎𝑛𝑏 in equation (45) are the implicit 
part, and 𝑏𝑐 is the explicit part of the system of equations. Imposing a 
proper boundary condition at the interface results in the values for the 
unknown variables at the immersed boundary. These values are treated 
as Dirichlet boundary condition at each intersect of fluid-solid. Corre-

sponding coefficients and the right hand side of equation (45) for each 
cell that is located at the interface of fluid-solid are modified in order 
to satisfy those Dirichlet values at the interface (Das et al., 2017; Deen 
et al., 2012).

Fig. 5 depicts a numerical domain containing an arbitrary object. 
Consider a discretized equation which is solved for cell 𝐶𝑓 whose center 
is located in the fluid part. This cell has intersects at “west” and “south” 
because the center of the west and the south neighbor cells are located 
in the solid phase. 𝜙𝑏 represents the value of a primary variable at the 
interface relevant for cell 𝐶𝑓 . This value either is calculated by a proper 
immersed boundary condition or is set as a Dirichlet value.

Although this description focuses on the x-direction, the same ap-

proach is applied for other directions. 𝐶𝑠, the west neighbor cell of 𝐶𝑓

is in the solid particle. Then, 𝜙𝐶𝑠
should be replaced based on fluid 

cells and the interface value (𝜙𝑏). In other words, the discretized coeffi-

cients (45) for each cell should be based on the values at the immersed 
boundary and cells at the same phase.

This can be achieved by using a second order fit (𝜙 = 𝑎𝑥2+𝑏𝑥 +𝑐) for 
the value of the unknown at the solid part. 𝜉 in Fig. 5 is a dimensionless 
distance between 𝐶𝑠 and the immersed boundary. In the case of the 
x-direction Δ𝑥 is used to make the distance dimensionless. Then, the 
following equation is obtained for 𝜙𝐶𝑠

𝜙𝐶𝑠
= − 2𝜉

1 − 𝜉
𝜙𝐶𝑓

+ 𝜉

2 − 𝜉
𝜙𝐶𝑓𝐸

+ 2
(1 − 𝜉)(2 − 𝜉)

𝜙𝑏. (46)

Subsequently, the coefficients of the left hand side and right hand side 
of equation (45) for cell 𝐶𝑓 should be modified as follows

2𝜉

𝑎𝐶𝑓

= 𝑎𝐶𝑓
− 𝑎𝐶𝑠 1 − 𝜉

,
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Table 3

Comparison of experimental versus numerical fluxes for the experimental test cases of Remick and 
Geankoplis work (Remick and Geankoplis, 1974). Fluxes are in [mol/cm2/s].

No. 𝑁𝐻𝑒𝑒𝑥𝑝
𝑁𝐻𝑒𝑁𝑢𝑚

𝑁𝑁𝑒𝑒𝑥𝑝
𝑁𝑁𝑒𝑁𝑢𝑚

𝑁𝐴𝑟𝑒𝑥𝑝
𝑁𝐴𝑟𝑁𝑢𝑚

1 -3.733×10−6 -3.4469×10−6 1.100×10−6 8.3829×10−7 0.5966×10−6 4.9523×10−7

2 -6.810×10−6 -7.656×10−6 1.923×10−6 1.8586×10−6 1.06560×10−6 1.1024×10−6

3 -1.998×10−5 -2.05963×10−5 5.064×10−6 5.0515×10−6 2.843×10−6 2.9291×10−6

4 -4.414×10−5 -4.18487×10−5 9.437×10−6 1.04424×10−5 5.495×10−6 5.8245×10−6

5 -4.925×10−5 -5.34454×10−5 1.281×10−5 1.32004×10−5 7.472×10−6 7.5354×10−6
Fig. 5. An arbitrary immersed object in a numerical domain (Das, 2017). The blue and red circles are designated the center of cells which are located in the solid 
and the fluid parts, respectively. Hallow circles present cells which have at least one neighbor cell at a different phase. Solid circles present cells which do not have 
any intersect (all of their neighbor cells are in the same phase as their center).

Table 4

The used conditions over a membrane in this paper.

No. 𝑝𝐿 [Pa] 𝑝0 [Pa] 𝑥𝑁20
𝑥𝐴𝑟0

𝑥𝑁2𝐿
𝑥𝐴𝑟𝐿

1 120000 132399.0 0.2862 0.4082 0.1975 0.5951

2 104134.6 0.6202 0.1798 0.5212 0.1190

3 123066.41 0.6657 0.1503 0.3640 0.3507

4 130665.8 0.6871 0.1341 0.3395 0.3805

5 200000.0 200399.967 0.7211 0.1056 0.4485 0.2261

6 210665.8 0.8225 0.1762 0.5126 0.1331

7 190267.47 0.6212 0.0432 0.3575 0.3590

8 300000.0 294000.49 0.6302 0.1685 0.5028 0.1481

9 300933.257 0.7331 0.0969 0.4330 0.2493

10 304132.99 0.7725 0.0714 0.3993 0.2975

Table 5

The used binary diffusion coefficients used for the 
test cases described in Table 4.

Species pair Binary Diffusion Coefficient [m2∕s]

N2-Ar 1.95×10−5

N2-He 7.072×10−5

Ar-He 7.355×10−5

Table 6

Numerical fluxes for the described conditions in 
Table 4. Fluxes are in [mol/m2/s].

No. 𝑁𝑁2
𝑁𝐴𝑟 𝑁𝐻𝑒

1 0.142067 0.202217 0.156052

2 -0.311059 -0.0708484 -0.219876

3 0.080782 0.0165542 0.0132024

4 0.283545 0.0552432 0.0732066

5 0.0354218 -0.0033915 -0.0297428

6 0.477066 0.102133 -0.0126445

7 -0.191801 -0.192472 -0.151496

8 -0.248623 -0.0731846 -0.198836

9 0.0810427 -0.00139196 -0.0327865

10 0.265559 0.0218528 0.0238291

𝑎𝐶𝑓𝐸
= 𝑎𝐶𝑓𝐸

+ 𝑎𝐶𝑠

𝜉

2 − 𝜉
,

𝑏𝐶𝑓
= 𝑏𝐶𝑓

− 𝑎𝐶𝑠

2
(1 − 𝜉)(2 − 𝜉)

𝜙𝑏,

𝑎𝐶𝑠
= 0. (47)

This treatment is applied for all cells in both phases with intersects in 
all directions (x, y, z) after the value of primary variables are known 
at the immersed boundary (Chandra et al., 2020; Das, 2017; Das et al., 
10
2017; Deen et al., 2012). It should be noted that when the immersed 
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boundary is very close to the center of cell, 𝐶𝑓 , i.e. 𝜉 > 0.95, the second 
order fit, equation (46), merges to infinity, so a first order fit is used in 
which the contribution of center of cell, 𝜙𝐶𝑓

, is not taken into account.

4.2. Coupled mass transfer formulation embedded in the Immersed 
Boundary Method

In order to describe the coupling of the mass transfer between solid 
porous particles and a fluid medium, the continuity of mass flux is en-

forced in the normal direction for each fluid-solid intersect. For a fluid 
medium, the Maxwell-Stefan equations together with a compressible 
flow solver are used. For a solid porous particle, the density-based for-

mulation of the Dusty Gas Model is implemented. It should be noted 
that, one of the challenges that should be tackled to satisfy properly the 
continuity of mass flux, equation (48), is to choose a suitable primary 
variable for the species continuity equations.

𝜌𝑏𝑖𝑉𝑏𝑛
−
∑
𝑗

Γ𝑏𝑖𝑗

𝜕𝜔𝑗

𝜕𝑛
|||𝑏𝑓 = −

∑
𝑗

Γ̃′𝑏𝑖𝑗
𝜕𝜌𝑗

𝜕𝑛
|||𝑏𝑠 . (48)

Regarding continuity of flux in the normal direction equation (48), “𝑛” 
represents the normal direction, Fig. 5. The subscripts “b”, “f”, and “s” 
stand for the values at an immersed boundary, a fluid medium, and a 
solid particle, respectively. 𝚪 is the diffusive flux matrix of the Maxwell-

Stefan equations, and �̃�′ is the self-consistent flux matrix of the Dusty 
Gas Model. 𝑉𝑏𝑛

represents the fluid convective velocity perpendicular to 
a porous particle surface. 𝑉𝑏𝑛

is usually considered zero (no-slip condi-

tion) at a solid particle surface. However, it can have a very small value 
for porous particles, but it does not need to be exactly zero. This matter 
will be discussed further later.

To solve the continuity of flux at the interface, we need to aim for 
one primary variable. It means either the Maxwell-Stefan equations 
should be written in a density-based form, or the Dusty Gas Model 
should be converted into a mass fraction based form. As discussed in 
section 3.1 extensively, the mass fraction based formulation of the Dusty 
Gas Model is not unconditionally stable, so the Maxwell-Stefan equa-

tions should be rewritten in a density-based form. Then, similar to the 
Dusty Gas Model and equation (B.2), we have for the Maxwell-Stefan 
equations

−
∑
𝑗

Γ𝑖𝑗∇𝜔𝑗 = −
∑
𝑗

Γ𝑖𝑗

∇𝜌𝑗

𝜌
+
∑
𝑗

Γ𝑖𝑗

𝜌𝑗

𝜌2
∇
∑
𝑘

𝜌𝑘 = −
∑
𝑗

Γ′′𝑖𝑗∇𝜌𝑗 . (49)

The new matrix 𝚪′′ is singular unfortunately, as it is a product of a 
non-singular matrix 𝚪 and a singular one 𝐂, 𝚪′′ = 𝚪𝐂. Matrix 𝐂 is

𝐶𝑖𝑗 =
⎧⎪⎨⎪⎩

1
𝜌
− 𝜌𝑖

𝜌2
if 𝑖 = 𝑗,

− 𝜌𝑖
𝜌2

if 𝑖 ≠ 𝑗.
(50)

It is singular as 
∑

𝑖 𝐶𝑖𝑗 = 0. The source of singularity is hidden in the 
matrix, which is responsible to convert ∇𝑥𝑖 to ∇𝜌𝑖. Several attempts 
were made to regularize the density-based formulation of the Maxwell-

Stefan model, like dividing the conversion matrix of ∇𝑥𝑖 to ∇𝜌𝑖 to a 
non-singular matrix and a source term. However, none of them proved 
to provide an unconditionally stable formulation as singularity is not 
cured, but its form is only changed. Our conclusion is that regulariza-

tion of the Maxwell-Stefan equations should be done by either using a 
system constraint (like in the mass fraction based Maxwell-Stefan) or 
adding a physical term, like adding viscous flow and the pressure diffu-

sion term in the Dusty Gas Model. Please note that the first two terms 
of the density-based Dusty Gas Model, equation (B.2), produce a sin-

gular matrix similar to the above condition, but terms with gradient of 
pressure regularize the non-singular matrix perfectly. The only option 
to regularize the density-based formulation of Maxwell-Stefan is to add 
a physical term to equations, like a convective flux. For a fluid medium 
11

it is not possible to generalize a relation between pressure gradient and 
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the mass-averaged velocity as the hydrodynamics is so complex that it 
can only be obtained from a flow solver. However, for a porous media 
or a porous-fluid interface, the mass-averaged velocity can be related to 
the pressure gradient with

𝑉 = −
𝐵0
𝜇

∇𝑝, (51)

where 𝐵0 and 𝜇 are a geometric factor of a porous material and the 
viscosity, respectively. This approach is similar to the derivation of the 
Dusty Gas Model. 𝐵0 is 𝑟2∕8 for a long, straight, circular capillary of 
radius r, or ℎ2∕3 for a narrow channel with 2ℎ width which results to a 
Poiseuille’s flow with equation (51).

Now, the density-based form of the Maxwell-Stefan equations can 
be regularized for a porous material or at a porous-fluid interface as

−𝜌𝑖
𝐵0
𝜇

∇𝑝−
∑
𝑗

Γ′′𝑖𝑗∇𝜌𝑗 = −𝜌𝑖
𝐵0
𝜇

𝑅𝑢𝑇
∑
𝑗

∇𝜌𝑗

𝑀𝑗
−
∑
𝑗

Γ′′𝑖𝑗∇𝜌𝑗

= −
∑
𝑗

Γ̃𝑖𝑗∇𝜌𝑗 , (52)

with

Γ̃𝑖𝑗 = Γ′′𝑖𝑗 +
𝜌𝑖𝐵0𝑅𝑢𝑇

𝜇𝑀𝑗
. (53)

As mentioned it is not possible to find a suitable 𝐵0 for a general fluid 
flow scenario because of its complexity. Even for a normal channel or 
pipe, 𝐵0 will be very big (using a proper dimension to calculate equa-

tion (51)) in comparison with components of the matrix 𝚪′′, which 
produces instability in the global matrix solver (in these cases, instead 
of a flow solver, only the species continuity equations are solved with 
the total flux formulation, equation (52)). In conclusion, the density-

based formulation of the Maxwell-Stefan equations can be used only for 
a porous media or at a porous-fluid interface.

With the described difficulty with the density-based formulation of 
the Maxwell-Stefan model, it was decided to adopt two primary vari-

ables for the species continuity equations when coupled mass transfer 
between solid and a fluid is considered. For the fluid part, mass frac-

tion is the primary variable as discussed in section 2, and for the porous 
media part, species mass density is the primary variable of our system 
as explained in section 3. At the interface of fluid and solid where the 
continuity of flux is imposed (48), the equations are written in mass 
density-based form with the proper regularization of the fluid flux part. 
Therefore, at each intersect, when the continuity of mass flux is solved, 
new set of species mass densities at surface is obtained and used as the 
Dirichlet immersed boundary values explained in section 4.1 to solve a 
system of equations with mass fraction and species density as primary 
variables for fluid and solid parts, respectively.

Now the continuity of mass flux at the fluid-solid interface, equation 
(48), can be written as

−
∑
𝑗

Γ̃𝑏𝑖𝑗

𝜕𝜌𝑗

𝜕𝑛
|||𝑏𝑓 = −

∑
𝑗

Γ̃′𝑏𝑖𝑗
𝜕𝜌𝑗

𝜕𝑛
|||𝑏𝑠 . (54)

As mentioned above, the normal velocity 𝑉𝑏𝑛
is very small, and usually 

it is negligible, but it can help to regularize the system properly.

In order to calculate the normal gradients in equation (54), numeri-

cal probes are used. Fig. 5 depicts an example of probes for an solid-fluid 
intersect. 𝜙1 and 𝜙2 are probes in the fluid part, and 𝜙−1 and 𝜙−2 are 
probe points in the porous part. Δ𝑛 is designated as the probe length, 
the distance between two neighboring probe points. Values of 𝜙1, 𝜙2, 
𝜙−1 and 𝜙−2 can be written based on the Taylor-series expansion, sub-

sequently the normal gradient of a variable in the fluid or the solid can 
be obtained. Therefore, the continuity of mass flux can be rewritten as

−
∑
𝑗

Γ̃𝑏𝑖𝑗

1
2Δ𝑛

(
−3𝜌𝑏𝑗 + 4𝜌1𝑗 − 𝜌2𝑗

)
+

(
Δ𝑛2

)
= −

∑
Γ̃′ 1 (

𝜌 − 4𝜌 + 3𝜌
)
+

(
Δ𝑛2

)
. (55)
𝑗
𝑏𝑖𝑗 2Δ𝑛 −2𝑗 −1𝑗 𝑏𝑗
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Probe values both in a fluid medium and a porous material are ob-

tained based on the trilinear interpolation of surrounding cells (in 2D 
cases, the bilinear interpolation). It should be noted that for the fluid 
part, in order to obtain 𝜌1 and 𝜌2 set, not only mass fractions but also 
pressure and temperature (in case of not isothermal processes) are in-

terpolated at the locations of probes 1 and 2. Then, the species densities 
are calculated as

𝜌𝑖 =
𝑝

𝑅𝑢𝑇
∑

𝑗
𝜔𝑗

𝑀𝑗

𝜔𝑖. (56)

The goal is to update a new set of surface species densities, 𝜌𝑏, at each 
intersect of fluid-solid. Therefore, equation (55) is converted to the fol-

lowing matrix system

𝐀𝝆𝑏 = 𝐛, (57)

with

𝐴𝑖𝑗 = 3
(
Γ̃𝑏𝑖𝑗

+ Γ̃′𝑏𝑖𝑗
)
, (58)

and

𝑏𝑖 =
∑
𝑗

(
Γ̃𝑏𝑖𝑗

𝑎𝑓𝑗 − Γ̃′𝑏𝑖𝑗 𝑎𝑠𝑗
)
. (59)

𝑎𝑓 and 𝑎𝑠 vectors in (59) are

𝑎𝑓𝑖 = 4𝜌1𝑗 − 𝜌2𝑗 ,

𝑎𝑠𝑖 = 𝜌−2𝑗 − 4𝜌−1𝑗 . (60)

After the system of equations in equation (57) is solved at each in-

tersect of fluid-solid, a new set of species densities and mass fractions, 
equation (61), are used as the immersed boundary values for the inside 
and the outside of a particle, respectively.

𝜔𝑏𝑖
=

𝜌𝑏𝑖∑
𝑗 𝜌𝑏𝑗

. (61)

In addition, the normal velocity at each intersect is calculated as

𝑉𝑏𝑛
= −

𝐵0
𝜇

1
2Δ𝑛

𝑅𝑢𝑇
∑
𝑗

−3𝜌𝑏𝑗 + 4𝜌1𝑗 − 𝜌2𝑗

𝑀𝑗
. (62)

Then, based on the unit normal vector at intersect (�̂�), it is decom-

posed to 
[
𝑉𝑏𝑛

�̂�𝑥, 𝑉𝑏𝑛
�̂�𝑦, 𝑉𝑏𝑛

�̂�𝑧

]𝑇
and used as the immersed boundary 

values for the velocity field in the flow solver. If for some cells of the 
staggered (momentum) grid, there is no direct intersect at the immersed 
boundary (Fig. 6), interpolation is used to calculate the Dirichlet veloc-

ity at that point based on other available velocity values at the interface. 
It should be noted that the Maxwell-Stefan diffusion matrix (𝚪) and the 
total flux of the Dusty Gas Model (�̃�′) at each intersect of the fluid-

solid are calculated and updated as well by the newly obtained species 
densities at the same point.

Furthermore, not only is the bulk density field as usual updated after 
the mass transport part (please look at point 3 in section A), but also the 
velocity field for faces (velocities are stored at faces of control volume 
cells in our in-house code) which are located inside a particle is updated 
by

𝑉𝑠 = −

∑
𝑖

∑
𝑗 Γ̃′𝑖𝑗∇𝜌𝑠𝑗∑
𝑗 𝜌𝑠𝑗

. (63)

Both the nominator and denominator of equation (63) should be evalu-

ated at the face where a corresponding velocity component needs to be 
updated. Subscript “s” refers to a solid medium. For calculation of ∇𝜌𝑠
at the nominator, central differencing is used with the values of species 
densities from both sides of a cell, if both center of neighbor cells are lo-

cated in the solid part, Fig. 7. Otherwise, the following relation is used 
12

to calculated the gradient of species densities, Fig. 8,
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Fig. 6. The red circle points to the center of a staggered grid for the y-

momentum equation. This fluid cell has a solid neighbor at East. Here, the 
y-component of velocity should be known at the red cross point at the im-

mersed boundary. As there is not direct intersect of scalar field available at the 
red cross point, velocity should be interpolated based on values at the two black 
cross points in the neighbor.

Fig. 7. Velocity is interpolated at “face” which is located inside the solid parti-

cle. 𝐶𝑠𝐿
and 𝐶𝑠𝑅

represent centers of two solid faces that have a shared face. �̃�′
𝑏

and 𝜌𝑏 are the total flux matrix of the Dusty Gas Model and the species densities 
at the fluid-solid intersect, respectively.

Fig. 8. Velocity is interpolated at “face” that is located inside the solid particle. 
𝐶𝑠 and 𝐶𝑓 represent centers of the solid and the fluid cells. 𝜉 is used for the 
matrix coefficient manipulation of the fluid cell with center at 𝐶𝑓 . �̃�′

𝑏
and 𝜌𝑏

are the total flux matrix of the Dusty Gas Model and species densities at the 
fluid-solid intersect, respectively.

𝜕𝜌𝑠𝑗

𝜕𝑥
|||𝑓𝑎𝑐𝑒

=
𝜌𝑏𝑗 − 𝜌𝐶𝑠

𝜉
. (64)

In other directions, the same approach is used.

𝜌𝑠 and the Dusty Gas Model total flux matrix (�̃�′) should be interpo-

lated at each face. If the center of both neighboring cells are in a solid 
medium, then the value at face is interpolated as an average of the cen-

tral values of both neighbors, Fig. 7. In cases where one of the center 
of neighbor cells is located in a fluid medium, Fig. 8, interpolation of 
the Dusty Gas Model total flux matrix and species densities are based 
on the following weighted relations

�̃�′
𝑓𝑎𝑐𝑒 =

0.5
𝜉

�̃�′
𝑏 +

𝜉 − 0.5
𝜉

�̃�′
𝐶𝑠

, (65)

and

0.5 𝜉 − 0.5

𝜌𝑠𝑏𝑓𝑎𝑐𝑒𝑗

=
𝜉

𝜌𝑏𝑗 + 𝜉
𝜌𝐶𝑠𝑗

. (66)
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Fig. 9. Coupled mass transfer test case’s geometry. A porous particle is located 
in the middle of a box.

4.3. Verification test cases

Fig. 9 depicts the test case that is designed to assess the performance 
of the developed coupled mass flux formulation in this study. A porous 
particle is located in the center of a box. A ternary mixture is chosen 
as the fluid medium. The geometrical properties of the porous material 
are the same as described in section 3.2.2. At the initial condition, two 
different sets of mass fractions are used for interior and exterior of the 
particle (the mass fraction set for the inside is converted to the species 
density set, as we have two primary variables in our model). Pressure 
and temperature are uniform 𝑝 = 200000 Pa and 𝑇 = 300 K at the initial 
condition. At steady state, a spatially uniform composition is reached 
for the entire domain. The wall boundary condition is imposed for all 
faces of the box with the Neumann boundary condition for species. At 
the immersed boundary the continuity of flux is imposed. The grid res-

olution is 100×100 in all test cases. Time step is set to 1 × 10−2 s in all 
test cases reported below. Smaller time steps do not produce more ac-

curate results in the presented test cases. 𝐵0 is calculated as 
𝑟2𝑝
8.0 , with 

𝑟𝑝 as the pore radius, when the normal velocity is required for the reg-

ularization of the continuity of mass flux formulation at each intersect 
of fluid-solid, equations (53) and (62).

4.3.1. First set
In this test case, N2, Ar, and He are chosen as the mixture. The 

following set of mass fractions are used to initialize inside and outside 
of the particle

• Fluid part initial mass fractions {0.314941, 0.0, 0.685059},

• Solid porous part initial mass fractions {0.0, 0.3, 0.7}.

For the binary diffusion coefficients, the same set presented in Table 5

is used here as well.

Table 7 compares the obtained results with and without regulariza-

tion for the mass flux continuity formulation with the analytical solu-

tion at the steady-state condition. Note that the velocity at the immersed 
boundary is set to zero (no regularization) for the results without regu-

larization. Basically, the Maxwell-Stefan equations are converted to the 
species density form, but no regularization by the convective term (ex-

plained in equation (53)) is imposed to resolve the singularity in the 
fluid part of the mass flux continuity.

As is clear both models are able to replicate the analytical solution. 
However, the unregularized model requires 19 times more iterations to 
reach the steady-state condition.

Fig. 10 presents the time evolution of the mass flux at a immersed 
boundary point for the three species in this test case. The immersed 
boundary point at the particle surface has a 45.78◦ angle with respect 
to the horizontal line that passes the center of the particle. As evident 
13

from the figure, the mass fluxes are non-zero at the beginning due to 
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Table 7

The comparison of the numerical versus the analytical solution for the 
coupled mass transfer test case described in section 4.3.1.

Analytical Regularized Model Unregularized Model

𝝎N2
0.225876 0.226525 0.224894

𝝎Ar 0.08484 0.0842244 0.085734

𝝎He 0.689284 0.689251 0.689372

Total Mass [gr] 4.39602 4.39602 4.39602

Fig. 10. The variation of the mass flux for N2 , Ar, and He at a solid-fluid 
boundary versus time for the test case presented in section 4.3.1. The point at 
the particle boundary has a 45.78◦ angle with respect to the horizontal line that 
passes the center of the circle.

Table 8

The used binary diffusion coefficients for the de-

scribed test case in section 4.3.2.

Species pair Binary Diffusion Coefficient [m2∕s]

N2-Ar 1.95×10−5

N2-H2O 2.747×10−5

Ar-H2O 2.5×10−5

the difference in inside and outside mass fractions, then they merge to 
zero as the equilibrium condition is obtained. Fig. 11 shows the mass 
fraction profiles along a horizontal line passing through the center of 
the particle, evolving in time toward the equilibrium.

4.3.2. Second set
In this test case, N2, Ar, and H2O are chosen as the mixture. Bigger 

differences between the inside and outside compositions of the particle 
are imposed in comparison to the previous test case. The following set 
of mass fractions are used to initialize inside and outside of the particle

• Fluid part initial mass fractions {0.030813, 0.5, 0.469187},

• Solid porous part initial mass fractions {0.8, 0.0, 0.2}.

The binary diffusion coefficients that are used in this test case are 
presented in Table 8.

Table 9 compares the obtained results at the steady state condition 

between numerical models and the analytical solution. The model that 
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Fig. 11. The variations of mass fractions for Ar, He, and N2 versus time along the h
test case presented in section 4.3.1.
Table 9

The comparison of the numerical versus the analytical solution for the 
coupled mass transfer test case described in section 4.3.2.

Analytical Regularized Model Unregularized Model

𝝎N2
0.248339 0.241846 nonphysical

𝝎Ar 0.3586 0.362384 nonphysical

𝝎H2O 0.393061 0.395769 nonphysical

Total Mass [gr] 20.2177 20.2177 nonphysical

uses the normal component of velocity 𝑉𝑏𝑛
at the immersed boundary 

for the regularization of the fluid part of the mass flux continuity re-

lation, equation (48), can obtain accurate results. However, the model 
that sets 𝑉𝑏𝑛

= 0 is not able to produce physical results due to the fact 
that the density form of Maxwell-Stefan equations is singular. Non-

physical results are obtained with average values for mass fractions 
around {0.8374, 0.05867, 0.12017} which violated the conservation of 
mass 

∑
𝑗 𝜔𝑗 = 1.016. In addition, equilibrium is not obtained in the en-

tire simulation domain for the unregularized model.

Fig. 12 shows the variation of the mass flux for the involved species 
in this test case versus time for a point that has a 45.78◦ angle with re-

spect to the horizontal line that passes through the center of the particle. 
As expected the fluxes converge to zero as the simulation approaches to 
the steady-state condition. In addition, Fig. 13 depicts the mass fraction 
variation of all three species in this test case over the horizontal line 
14

that passes the center of the particle for different times of the simula-
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orizontal line that passes the center of the particle for the coupled mass transfer 

Fig. 12. The variation of the mass flux for N2 , Ar, and H2O at a solid-fluid 
boundary point versus time for the test case presented in section 4.3.2. The 
point at the particle boundary has a 45.78◦ angle with respect to the horizon-

tal line that passes the center of the circle. The results are obtained with the 

regularized model.
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Fig. 13. The variations of mass fractions for Ar, H2O, and N2 versus time along the horizontal line that passes through the center of the particle for the coupled 
mass transfer test case presented in section 4.3.2. The results are obtained with regularized model.
Table 10

The comparison of the numerical versus the analytical solution for the 
coupled mass transfer test case described in section 4.3.3.

Analytical Regularized Model Unregularized Model

𝝎N2
0.660721 0.654883 Nan

𝝎Ar 0.15554 0.158909 Nan

𝝎H2O 0.183739 0.186209 Nan

Total Mass [gr] 21.2807 21.2807 Nan

tion. Note that both figures are for the model with regularization where 
𝑉𝑏𝑛

is used to regularized the singular density base Maxwell-Stefan flux 
matrix at the immersed boundary.

4.3.3. Third set
In this test case N2, Ar, and H2O are chosen as the mixture. The 

compositions of interior and exterior of the particle possess the highest 
gradients in comparison with the last two test cases. The following set 
of mass fractions are used to initialize inside and outside of the particle

• Fluid part initial mass fraction {0.9, 0.0, 0.1},

• Solid porous part initial mass fraction {0.053894, 0.55, 0.396106}.

Table 10 compares again the obtained results obtained from the nu-

merical simulations with the analytical solution. Similar to the other 
two cases, one model uses 𝑉𝑏𝑛

at the immersed boundary as a physical 
15

term to regularize the singular density base Maxwell-Stefan diffusive 
Fig. 14. The variation of the mass flux for N2 , Ar, and H2O at a solid-fluid 
boundary point versus time for the test case presented in section 4.3.3. The 
point at the particle boundary has a 45.78◦ angle with respect to the horizon-

tal line that passes the center of the circle. The results are obtained with the 
regularized model.

flux, and the other sets 𝑉𝑏𝑛
= 0 and keeps the fluid part of the conti-
nuity of mass flux, equation (48), singular. As evident from the results 
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Fig. 15. The variations of mass fractions for Ar, H2O, and N2 versus time along the horizontal line that passes through the center of the particle for the coupled 
mass transfer test case presented in section 4.3.3. The results are obtained with the regularized model.
presented in Table 10, only the model with physical regularization is 
able to produce meaningful results in this test case. For the model with 
𝑉𝑏𝑛

= 0 and the singular diffusive flux of the Maxwell-Stefan equations 
even nonphysical values like the previous test Case 4.3.2 are not ob-

tained. The model diverges after a couple of iterations.

Figs. 14 and 15 present the variation of the species mass fluxes and 
mass fractions over time for the regularized model, respectively. As is 
expected, fluxes vanish at the immersed boundary as the model marches 
in time and the equilibrium condition is obtained. The gradients in the 
mass fractions interior and exterior to the particle decreases over time 
until constant values (equilibrium condition) are attained in the entire 
simulation domain.

4.4. Spatially variable test case

In this case, the geometrical and physical parameters are the same 
as Fig. 9 and the previous test case, section 4.3.3. The only difference is 
the boundary conditions at the east and west edges of the numerical do-

main. Here, the Dirichlet boundary conditions are set with two different 
sets of mass fractions for the east and the west faces {N2, Ar, H2O}.

• The west face Dirichlet boundary conditions for mass fractions 
{0.9, 0.0, 0.1},

• The east face Dirichlet boundary conditions for mass fractions 
16

{0.053894, 0.55, 0.396106}.
Fig. 16 shows the spatially variation of mass fractions at the steady 
state condition in the numerical domain. In addition Fig. 17 depicts the 
variation of mass fractions along the horizontal line that passes the cen-

ter of the particle. As is clear, the slope of variations of mass fractions 
is different interior and exterior to the particle due to different physi-

cal conditions. Furthermore, the presented results in Fig. 16 prove that 
the methodology works well and satisfies mass conservation for the spa-

tially inhomogeneous situations.

4.5. Active flow test case

For this test case a particle in a flow is considered, where the inlet 
velocity corresponds to Re = 10, based on the particle diameter. The ge-

ometry of the numerical domain is changed compared to the Fig. 9. The 
new domain has a width 0.2 m and a length of 0.8 m. The porous parti-

cle has the same radius as in the previous test cases, 0.03 m. The center 
of the particle is located at (0.1 m, 0.1 m). The velocity and composi-

tion are fixed at the west edge of the domain (the inlet). The inlet mass 
fractions for the mixture {N2, Ar, H2O} are set to {0.9, 0.0, 0.1}. At the 
outlet, the pressure is set to 200000 Pa. The viscosity and binary diffu-

sion coefficients are the same as in the previous test cases. The initial 
mass fractions for the porous particle are {0.053894, 0.55, 0.396106}. 
The numerical domain is elongated to form a fully developed veloc-

ity at the outlet. The used grid resolution is 200×800 grid for this test 
case.

Figs. 18 and 19 show the velocity contours for the horizontal and 

vertical component of the velocity at the steady state condition, respec-
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Fig. 16. The variations of mass fractions for Ar, H2O, and N2 in the numerical domain for the coupled mass transfer test case presented in section 4.4. The results 
are obtained with the regularized model.
Fig. 17. The variation of the mass fractions of N2 , Ar, and H2O over the line 
that passes the center of the particle at the steady state condition for the test 
case presented in section 4.4. The results are obtained with the regularized 
model.

tively. In addition, Figs. 20 and 21 show the variations of the mass 
fractions versus time for all species over the line that passes the center 
of the particle. As it is expected, the inlet composition washes away the 
composition inside the porous particle, and the uniform composition is 
17

obtained at the steady state.
This test case shows a proof of concept for the conditions that con-

vection plays role. More complex geometries, more particles, higher 
Reynolds numbers and reactions are all scenarios that are out of the 
scope of this paper and are outlined as future research extended on top 
of the presented symmetric methodology.

5. Conclusion

A detailed description of the newly developed numerical methodol-

ogy to capture the multicomponent mixture physics in fluid-solid media 
is presented in this study. In this methodology all components of a mix-

ture are numerically treated similar, so the methodology is symmetric. 
There is no need to select one species in advance to impose the rele-

vant mass and flux conservation constraints on the governing system 
of equations. Then, the symmetric approach paves the way to more ac-

curate simulations of complex processes like Fisher-Tropch in chemical 
reactors.

In the presented methodology, the Maxwell-Stefan equations are 
coupled with a compressible flow solver to model the convection and 
the diffusion of the fluid medium. A symmetric and conservative formu-

lation of the Maxwell-Stefan equations from Peerenboom et al. (2011)

study is chosen for the implementation in this work. It is found that 
only the formulation based on the diffusive flux is numerically stable. 
In addition, the correct regularization of the diffusive flux matrix for 
this specific form is presented in this paper.

The Maxwell-Stefan equations are extended into the porous media 

with the help of the Dusty Gas Model. A robust and self-consistent for-
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Fig. 18. The contour of the horizontal component of velocity (𝑢) at the steady state condition for the test case presented in section 4.5. The Reynolds number at the 
inlet is set to 10. The results are obtained with the regularized model.

Fig. 19. The contour of the vertical component of velocity (𝑣) at the steady state condition for the test case presented in section 4.5. The Reynolds number at the 
inlet is set to 10. The results are obtained with the regularized model.
mulation of the Dusty Gas Model is developed. It is shown that the 
formulation is unconditionally stable under any circumstances, with 
or without a gradient of pressure over a porous medium. In this for-

mulation, all transport phenomena (different diffusion mechanisms and 
viscous flow) are coupled directly by rewriting all the terms in the DGM 
based on species mass densities.

Finally, the ghost-cell Immersed Boundary Method is used to couple 
the fluxes in the fluid and the solid phases on the particle’s boundary. 
In order to capture the coupled mass transfer, continuity of mass flux 
is imposed in the normal direction for each fluid-solid intersect. The 
developed methodology is based on two primary variables for a multi-

component system. Mass fraction for the fluid part where the Maxwell-

Stefan equations are coupled with the compressible flow solver, and 
species density for the porous material part where the Dusty Gas Model 
captures the physics. A novel formulation of the continuity of mass flux 
has been developed where the surface normal velocity is used for reg-

ularization of the density-based Maxwell-Stefan equations of the fluid 
part. It has been shown and proven that the regularization not only 
decreases computational expenses of a model but also is necessary to 
produce physical results and to avoid divergence. In addition, several 
test cases are designed for verification of the developed methodology. 
These newly established test cases can be used as benchmarks for the 
validation of future research.

Applying the developed methodology for a reactive mixture with the 
non-isothermal condition and multiple particles can further assess the 
performance and robustness of the methodology in conditions which 
18

are close to packed bed reactors.
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Fig. 20. The variations of mass fractions for Ar, H2O, and N2 versus time for the first 100 s of simulation along the horizontal line that passes through the center of 
the particle for the conjugate mass transfer test case presented in section 4.5 where the inlet velocity is set for Re=10. The results are obtained with the regularized 
model.
Appendix A. The pressure correction algorithm

For each time step, the following steps are taken for coupling the 
compressible flow solver with the mass transfer equations:

1. Solve the bulk momentum equations (27) based on a guessed pres-

sure and density fields. For the first time step, employ the initial 
condition pressure and density fields. In subsequent time steps, use 
the pressure field from the previous time step along with the up-

dated density field obtained from equation (A.2) at the end of the 
preceding time step.

2. Calculate the mass defect for each cell with the updated velocity 
field 𝑉 𝑛+1 (from step 1 for the first iteration of a current time step 
of the flow solver and from step 6 for the other iterations) by us-

ing the discretized form of the conservative form of the continuity 
equation (29)

𝔻𝑖,𝑗,𝑘 =
𝑉–

Δ𝑡

[
𝜌𝑛+1
𝑖,𝑗,𝑘

− 𝜌𝑛𝑖,𝑗,𝑘

]
+
[
(𝐴𝜌𝑢)𝑛+1

𝑖+1∕2,𝑗,𝑘 − (𝐴𝜌𝑢)𝑛+1
𝑖−1∕2,𝑗,𝑘

]
+
[
(𝐴𝜌𝑣)𝑛+1

𝑖,𝑗+1∕2,𝑘 − (𝐴𝜌𝑣)𝑛+1
𝑖,𝑗+1∕2,𝑘

]
+
[
(𝐴𝜌𝑣)𝑛+1

𝑖,𝑗,𝑘+1∕2 − (𝐴𝜌𝑣)𝑛+1
𝑖,𝑗,𝑘+1∕2

]
, (A.1)

with 𝑉 = [𝑢, 𝑣, 𝑤]𝑇 , 𝑉– and 𝐴 stand for the volume and the face 
area of a cell. Δ𝑡 represents the time step. Note that 𝜌𝑛 is either 
from the initial condition bulk density field for the first time step 
of a model, or from the density field at the end of the flow solver 
19

part of the previous time step for the other time steps. 𝜌𝑛+1 is
• from the initial condition of the density field when the algorithm 
is in the first time step and the first iteration of the flow solver,

• from step 5 when it is not the first iteration of the flow solver,

• from the end of the previous time step (when the bulk density 
field is updated after updating mass fraction fields) when it is the 
first iteration of a time step (when current time of a model is not 
zero).

3. Check whether the maximum mass defect in the domain is lower 
than the defined threshold, or the current iteration count exceeds 
the maximum number of iterations for each time step of the flow 
solver.

• If yes, the momentum equation (flow solver) part is finished. Sub-

sequently the species continuity equations are solved based on 
the updated pressure, the velocity, and the bulk density fields. 
After mass fractions fields are updated (unknowns of the species 
continuity equations)

First Store the current density field as “old” (𝜌𝑛),

Second Update the density field with the new mass fractions 
based on the ideal gas law

𝜌 = 𝑝

𝑅𝑢𝑇
∑

𝑖
𝜔𝑖

𝑀𝑖

, (A.2)

with 𝑅𝑢 as the universal gas constant (Kuo, 2005). Note 
that the used pressure field in equation (A.2) is the up-

dated field at the end of the flow solver part,

Third Go to the next time step (step 1).
• If no, go to step 4.
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Fig. 21. The variations of mass fractions for Ar, H2O, and N2 versus time for 100 to 800 s of simulation along the horizontal line that passes through the center of 
the particle for the conjugate mass transfer test case presented in section 4.5 where the inlet velocity is set for Re=10. The results are obtained with the regularized 
model.
4. Update the pressure field with the pressure correction 𝑝′ by solving 
the following equation over the entire numerical domain

𝐉𝐩𝐩′ = −𝐃, (A.3)

with 𝐽𝑝𝑖′𝑗′
= 𝜕𝔻𝑖′

𝜕𝑝𝑗′
represents the whole-field Jacobian. 𝑖′ and 𝑗′ de-

fine the indices of the component that lays in row 𝑖′ and column 
𝑗′ of the Jacobian. These indices are calculated based on a proper 
map between the numerical domain (grid indices) and the chosen 
data structure for the matrix solver in our in-house code. Compo-

nent 𝐽𝑖′𝑗′ of the Jacobian matrix presents the derivative of the mass 
defect of cell (𝑖, 𝑗, 𝑘) (A.1) whose indices are mapped into 𝑖′ with 
respect to the pressure at the center of a cell whose indices are 
mapped into 𝑗′. The Jacobian is calculated from the terms that are 
considered new (𝑛 + 1) in the defect equation (A.1). For instance, 
if 𝑖′ represents the cell (𝑖, 𝑗, 𝑘) and 𝑗′ represents the pressure 𝑝𝑖,𝑗,𝑘, 
then we have

𝐽𝑝𝑖′𝑗′
=

𝜕𝔻𝑖,𝑗,𝑘

𝜕𝑝𝑖,𝑗,𝑘
= 𝑉–

Δ𝑡𝑅𝑢𝑇𝑖,𝑗,𝑘
∑

𝑒
𝜔𝑖,𝑗,𝑘,𝑒

𝑀𝑒

+ 2𝐴Δ𝑡

Δ𝑥
+ 2𝐴Δ𝑡

Δ𝑦
+ 2𝐴Δ𝑡

Δ𝑧
.

(A.4)

The first term in the above relation is calculated from the ideal 
gas law and due to the contribution of 𝜌𝑛+1

𝑖,𝑗,𝑘
in the mass defect 

equation (A.1). The other terms are calculated by the discretized 
momentum equations for all 3 components of the velocity over the 
6 faces of a control volume. Δ𝑥, Δ𝑦 and Δ𝑧 represent the cell sizes 
20

in the three coordinate directions x, y, z. As an example for the 
off-diagonal term of the Jacobian matrix, consider the component 
of the Jacobian matrix where 𝑖′ represents the cell (𝑖, 𝑗, 𝑘) and 𝑗′
represents the pressure 𝑝𝑖+1,𝑗,𝑘, then the off-diagonal term of the 
Jacobian matrix has the following form

𝐽𝑝𝑖′𝑗′
=

𝜕𝔻𝑖,𝑗,𝑘

𝜕𝑝𝑖+1,𝑗,𝑘
= −𝐴Δ𝑡

Δ𝑥
. (A.5)

After the solution (𝑝′) of equation (A.3) is calculated, the pressure 
field is updated 𝑝𝑛+1 = 𝑝𝑛 + 𝑝′. Basically, the pressure field should 
be modified in such a way that the mass defect is less than a pre-

defined tolerance.

5. Update the bulk density field with the updated pressure based on 
the ideal gas law. Note that the mass fractions are used in equation 
(A.2) are from the last time step (after species continuity equations 
are solved and mass fractions are updated).

6. Update the velocity field with the pressure correction field (𝑝′)

𝑢𝑛+1
𝑖+1∕2,𝑗,𝑘 =

1
𝜌𝑛+1
𝑖+1∕2,𝑗,𝑘

⎡⎢⎢⎢⎣𝜌
∗
𝑖+1∕2,𝑗,𝑘𝑢

∗
𝑖+1∕2,𝑗,𝑘 −

Δ𝑡
(
𝑝′
𝑖+1,𝑗,𝑘 − 𝑝′

𝑖,𝑗,𝑘

)
Δ𝑥

⎤⎥⎥⎥⎦ ,

𝑢𝑛+1
𝑖−1∕2,𝑗,𝑘 =

1
𝜌𝑛+1
𝑖−1∕2,𝑗,𝑘

⎡⎢⎢⎢⎣𝜌
∗
𝑖−1∕2,𝑗,𝑘𝑢

∗
𝑖−1∕2,𝑗,𝑘 −

Δ𝑡
(
𝑝′
𝑖,𝑗,𝑘

− 𝑝′
𝑖−1,𝑗,𝑘

)
Δ𝑥

⎤⎥⎥⎥⎦ ,
(A.6)

with 𝑢∗ present the latest update of velocity field in the current 

time step. 𝜌𝑛+1 is the updated density field in step 5 interpolated 
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at a face. 𝜌 ∗ is the density field before the update at the step 5. 
Equation (A.6) is also used for updating the other components of 
velocity at different faces.

7. Go to the step 2.

Appendix B. Derivation of the unconditional stable formulation 
of the Dusty Gas Model

The first term of the Dusty Gas Model flux in equation (39) can be 
written as

−
∑
𝑗

Γ′𝑖𝑗∇𝜔𝑗 = −
∑
𝑗

Γ′𝑖𝑗∇
(

𝜌𝑗

𝜌

)
= −

∑
𝑗

Γ′𝑖𝑗
𝜌

∇𝜌𝑗 +
∑
𝑗

Γ′𝑖𝑗
𝜌2

𝜌𝑗∇𝜌. (B.1)

The above equation can be replaced with

−
∑
𝑗

Γ′𝑖𝑗∇𝜔𝑗 = −
∑
𝑗

Γ′𝑖𝑗
𝜌
∇𝜌𝑗 +

∑
𝑗

Γ′𝑖𝑗
𝜌2

𝜌𝑗
∑
𝑘

∇𝜌𝑘, (B.2)

as

𝜌 =
∑
𝑖

𝜌𝑖. (B.3)

The second term of the Dusty Gas Model flux, equation (39), can be 
modified as

−
∑
𝑗

𝐻 ′−1
𝑖𝑗 𝑆𝑗 =−

∑
𝑗

𝐻 ′−1
𝑖𝑗

𝜎𝑀
𝑀𝑗

𝜌𝑗

𝜌

𝑅𝑢𝑇

𝑝

∑
𝑘

∇𝜌𝑘
𝑀𝑘

−
∑
𝑗

𝐻 ′−1
𝑖𝑗

𝜎𝑀

𝑀𝑗𝐷𝑗𝐾

𝜌𝑗

𝜌

𝐵0
𝜇

𝑅𝑢𝑇
∑
𝑘

∇𝜌𝑘
𝑀𝑘

, (B.4)

and with further arrangements as

−
∑
𝑗

𝐻 ′−1
𝑖𝑗 𝑆𝑗 = −

∑
𝑗

𝐻 ′−1
𝑖𝑗 𝑠1𝑗

∑
𝑘

∇𝜌𝑘
𝑀𝑘

−
∑
𝑗

𝐻 ′−1
𝑖𝑗 𝑠2𝑗

∑
𝑘

∇𝜌𝑘
𝑀𝑘

, (B.5)

with

𝑠1𝑖 =
𝜎𝑀

𝑀𝑖

𝜌𝑖
𝜌

𝑅𝑢𝑇

𝑝
,

𝑠2𝑖 =
𝜎𝑀

𝑀𝑖𝐷𝑖𝐾

𝜌𝑖
𝜌

𝐵0
𝜇

𝑅𝑢𝑇 . (B.6)

Note that, the following form of the ideal gas law is used in the deriva-

tion of equation (B.5)

𝑝 =𝑅𝑢𝑇
∑
𝑖

𝜌𝑖
𝑀𝑖

. (B.7)

Then, the species continuity equation based on the density based Dusty 
Gas Model is

𝜕𝜌𝑖
𝜕𝑡

−∇ ⋅

(∑
𝑗

Γ′𝑖𝑗
𝜌

∇𝜌𝑗

)
+∇ ⋅

(∑
𝑗

Γ′𝑖𝑗
𝜌2

𝜌𝑗
∑
𝑘

∇𝜌𝑘

)

−∇ ⋅

(∑
𝑗

𝐻 ′−1
𝑖𝑗 𝑠1𝑗

∑
𝑘

∇𝜌𝑘
𝑀𝑘

)

−∇ ⋅

(∑
𝑗

𝐻 ′−1
𝑖𝑗 𝑠2𝑗

∑
𝑘

∇𝜌𝑘
𝑀𝑘

)
= 𝑟𝑖. (B.8)

The compacted format of the above equation (B.8) is presented in the 
main part of the paper (section 3.1, equation (40)).
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