
UW Biostatistics Working Paper Series

12-11-2012

A Regionalized National Universal Kriging Model
Using Partial Least Squares Regression for
Estimating Annual PM2.5 Concentrations in
Epidemiology
Paul D. Sampson
University of Washington - Seattle Campus, pds@u.washington.edu

Mark Richards
University of Washington - Seattle Campus, markr9@u.washington.edu

Adam A. Szpiro
University of Washington - Seattle Campus, aszpiro@u.washington.edu

Silas Bergen
University of Washington - Seattle Campus, srbergen@uw.edu

Lianne Sheppard
University of Washington - Seattle Campus, sheppard@u.washington.edu

See next page for additional authors

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Sampson, Paul D.; Richards, Mark; Szpiro, Adam A.; Bergen, Silas; Sheppard, Lianne; Larson, Timothy V.; and Kaufman, Joel, "A
Regionalized National Universal Kriging Model Using Partial Least Squares Regression for Estimating Annual PM2.5 Concentrations
in Epidemiology" (December 2012). UW Biostatistics Working Paper Series. Working Paper 387.
http://biostats.bepress.com/uwbiostat/paper387

http://biostats.bepress.com/uwbiostat


Authors
Paul D. Sampson, Mark Richards, Adam A. Szpiro, Silas Bergen, Lianne Sheppard, Timothy V. Larson, and
Joel Kaufman

This article is available at Collection of Biostatistics Research Archive: http://biostats.bepress.com/uwbiostat/paper387

http://biostats.bepress.com/uwbiostat/paper387


1 

 

A Regionalized National Universal Kriging Model using Partial Least Squares 

Regression for Estimating Annual PM2.5 Concentrations in Epidemiology 

Paul D. Sampsona* 

Mark Richardsb 

Adam A. Szpiroc 

Silas Bergenc 

Lianne Sheppardd 

Timothy V. Larsone 

Joel D. Kaufmand 

 
q Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195-4322, USA 
bDepartment of Applied Mathematics, University of Washington, Box 352420, Seattle, WA 

98195-2420, USA 
c Department of Biostatistics, University of Washington, Box 357232, Seattle, WA 98195-7232, 

USA 
d Department of Environmental and Occupational Health Sciences, University of Washington, 

Box 357234, Seattle, WA 98195-7234, USA  
eDepartment of Civil and Environmental Engineering, University of Washington, Box 352700, 

Seattle, WA 98195-2700, USA 
 

Correspondence to: Paul D. Sampson, Department of Statistics, University of Washington, Box 354322, Seattle, 

WA 98195-4322, U.S.A.  E-mail: pds@u.washington.edu;  phone: 206-685-2664;  fax: 206-685-6419 

 
  

Hosted by The Berkeley Electronic Press



2 

 

Abstract 

Many cohort studies in environmental epidemiology require accurate modeling and prediction of 

fine scale spatial variation in ambient air quality across the U.S.  This modeling requires the use 

of small spatial scale geographic or “land use” regression covariates and some degree of spatial 

smoothing.  Furthermore, the details of the prediction of air quality by land use regression and 

the spatial variation in ambient air quality not explained by this regression should be allowed to 

vary across the continent due to the large scale heterogeneity in topography, climate, and sources 

of air pollution.  This paper introduces a regionalized national universal kriging model for annual 

average fine particulate matter (PM2.5) monitoring data across the U.S.  To take full advantage of 

an extensive database of land use covariates we chose to use the method of Partial Least Squares, 

rather than variable selection, for the regression component of the model (the “universal” in 

“universal kriging”) with regression coefficients and residual variogram models allowed to vary 

across three regions defined as West Coast, Mountain West, and East.  We demonstrate a very 

high level of cross-validated accuracy of prediction with an overall R2 of 0.88 and well-

calibrated predictive intervals. In accord with the spatially varying characteristics of PM2.5 on a 

national scale and differing kriging smoothness parameters, the accuracy of the prediction varies 

by region with predictive intervals being notably wider in the West Coast and Mountain West in 

contrast to the East. 

Keywords:  Ambient air quality, Land use regression, National air quality model, Partial Least 

Squares, Particulate matter, Universal kriging 
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1.  Introduction 

Residential predictions of ambient air quality concentrations are important for 

epidemiological cohort studies, particularly those conducted on a national scale.   We focus on 

long-term averages of concentrations of fine particular matter, PM2.5.  Predictions of average air 

quality levels may be derived from spatial (Hart et al., 2009; Hystad et al., 2011; Mercer et al., 

2011; Novotny et al., 2011)  or spatio-temporal models (Yanosky et al., 2009; Paciorek et al., 

2009; Szpiro et al., 2010; Sampson et al., 2011; Lindström et al., 2011).  In this paper we 

develop a continental U.S national scale spatial model for year 2000 annual average PM2.5 

concentrations based on data from monitors in regulatory monitoring networks.  

As monitoring sites in national regulatory networks are relatively sparse across broad 

regions of the country and as air quality levels are influenced by many small- and large-scale 

spatial features, accurate prediction requires a combination of geographic covariates such as 

distances from roads and other pollutant sources to capture small-scale variation and spatial 

smoothing for large-scale patterns.  Regression models based on geographic covariates are 

traditionally termed “land use” regression (LUR, e.g. Moore et al. 2007; Ross et al. 2007; Hoek 

et al. 2008).  We use a database of 265 GIS-based geographic covariates with multiple indirect 

measures of traffic, population density, land use, satellite-based vegetative index (NDVI), nearby 

pollutant emissions derived from emissions inventories, and distances to major sources of 

pollution.  We incorporate spatial smoothing with the LUR by means of a geostatistical 

correlation model in order to exploit spatial information available in the monitoring dataset.  Our 

model provides the basis for predictions at arbitrary spatial locations (assuming covariate values 

can be computed at all spatial locations) by universal kriging or “kriging with external drift” (see 

Wackernagel, 2010).   
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Almost all current applications of LUR in the literature, whether combined with a spatial 

correlation model or not, use some kind of variable selection procedure to choose a subset of 

variables that provide good, if not the optimal, predictions.  As an alternative to variable 

selection, we use a Partial Least Squares (PLS) approach.  We develop our LUR regression 

model from a small number of composite PLS scores, each defined as a linear combination of all 

available covariates.  This approach is conceptually related to more the widely known method of 

regression on principal components (PCA); the distinction is that PLS components are based on 

the maximum covariance between the covariates and the monitoring data whereas PCA 

components are based on the covariance of the covariates alone.  Details are presented in the 

methods section below. 

A geostatistical spatial correlation model is a statistical characterization of spatial variation 

in pollutant levels not explained by the covariates in the regression model.  This spatial variation 

in (residual) pollutant levels is influenced by variation in topography and climatological 

meteorological patterns that is not captured in our collection of geographic covariates and can be 

difficult to model explicitly. 

We consider models developed on national and regional scales (with the United States 

partitioned into three large regions as shown below) for both the regression and spatial 

smoothing (kriging) parts of the models.  We demonstrate that the best results in terms of the 

accuracy of cross-validated predictions and the coverage of cross-validated prediction intervals 

are obtained using regional regressions with regional residual variogram models. 

The following sections detail the monitoring data and our extensive database of geographic 

covariates.  We review the methods of Partial Least Squares regression and maximum likelihood 

estimation of a universal kriging model.  We then explain our strategy for defining regional 
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analyses and assessing model fits using cross-validation.  The last two sections present results 

and evaluative discussion of the methodology. 

2.  Methods 

2.1  Monitoring data 

Daily PM2.5 concentration data from both the AQS and IMPROVE networks 

(http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm/, 

http://views.cira.colostate.edu/web/) were utilized to calculate an annual average at each 

monitoring location with data that met minimum inclusion criteria. We required a minimum of  

Fig. 1.  U.S. topographic map with monitoring sites color coded according to the three modeling 

regions defined as explained in Section 2.5: East, Mountain West, and West Coast.  
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14 measurements per quarter for all four quarters.  Of 1211 monitors providing PM2.5 data in 

2000, we found 903 met these criteria.  Two sites were dropped for erroneous scoring of 

geographic covariates, leaving a total of 901. We subdivided these monitors into sets covering 

the eastern two thirds of the country, called the “East” (n=673), the “Mountain West” (n=120) 

and the “West Coast” (n=108) as explained in Section 2.5 and illustrated in Figure 1.   

2.2  Geographic covariates 

Our analysis considered an initial set of 265 distinct GIS-based geographic covariates, which 

was reduced to 171 prior to analysis. We combined some variables such as the within buffer road 

lengths in census feature class codes A2 and A3, and dropped others due to sparse discrete 

values (i.e. more than 85% of the values were identical).   As summarized in Table 1, the final 

set of geographic covariates includes: (i) population in buffers from 5 to 15 km around target 

locations, (ii) total emissions of CO, NOx, PM10, PM2.5, and SO2 (tons per year) in 15 and 30 km 

buffers, (iii) percentages of land according to 12 land use categories in circular buffers from 50 

meters to 5 km, (iv) summaries of the distribution of the satellite-based MODIS Normalized 

Difference Vegetation Index, NDVI, in buffers from 250 meters to 10 km, (v) measures of 

impervious surfaces within buffers from 50 to 5000 meters, (vi) indirect measures of traffic 

influences provided by distances to major roads (major roads identified by census feature class 

codes A1-A3), together with lengths of such roads in circular buffers from 50 to 5000 meters 

around sites of interest, and (vii) distances to commercial zones, airports, small shipping ports, 

railroads, and railway yards.  Data sources are provided in Appendix 1.  
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Table  1.  Geographic covariates considered in the land use regression component of the universal 

kriging model.   (Data sources listed in Appendix 1.)  

Predictor Variable Category (n) Units Buffer Radii (meters) 

Population (3) Sum of people 5000, 10000, 15000 

Emissions (8):  NOx, PM10, PM2.5, SO2 Tons per year 15000, 30000 

Land use (86)a:  mixed forest, deciduous 
forest, evergreen, crop, pasture, grass, 
shrub, water, high development, medium 
development, low development, open 
development 

Percent 
50, 100, 150, 300, 400, 

500, 750, 1000, 3000, 5000 

Vegetative index (NDVI) (35):  Winter 
average, Summer average; 75th, , 50th, 
and 25th quantiles 

n/a 
250, 500, 1000, 2500, 

5000, 7500, 10000 

Impervious Surfaces (10):  Average within 
buffer n/a 

50, 100, 150, 300, 400, 

500, 750, 1000, 3000, 5000 

Roadway (18):  Sum of A1 road lengths; 
Sum of A2 + A3 road lengths 

Meters 

A1: 400, 500, 750, 1000, 

1500, 3000, 5000 

A2+A3: 50, 100, 150, 

300, 400, 500, 750, 1000, 

1500, 3000, 5000 

Distance to features (11):  Commercial 
zone; A1, A2, A3 roadways; Large 
airport; Any airport; Large, Medium, 
Small shipping port; Railroad; Railyard 

Meters, log10 n/a 

a The number of buffers with data vary by land use category.  Only the high, medium, low, 
and open development categories have all 10 buffer sizes.   
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2.3  Partial Least Squares regression 

The GIS-based dataset of spatial covariates for PM2.5 concentrations provides groups of 

highly correlated spatial covariates.  For example, the composite lengths of A1 roads in buffers 

of varying sizes from 50 to 5000 meters around specified locations are necessarily highly 

correlated.  Furthermore these variables are highly negatively correlated with the distance to the 

nearest A1 road.  Percentages of property in various land use categories are similarly correlated 

across buffer sizes and percentages of land classified residential in a buffer are substantially 

negatively correlated with percentages of land classified as commercial.  Model specification 

with large sets of multicollinear predictors typically involves either (a) variable selection (e.g. Su 

et al., 2009; Mercer et al., 2011), (b) shrinkage or regularization, perhaps including variable 

selection as in a “lasso” approach (Tibshirani, 1996; Mercer et al., 2011), or (c) dimension 

reduction via regression on a smaller number of composite covariate scores.  Our fundamental 

objective is high quality predictions and we prefer not to choose a method that would select one 

particular buffer size for inclusion in our model while ignoring neighboring buffer sizes, or one 

particular land use categorization at the expense of correlated land use categorizations.   

The method of regressing on a small number of composite covariate scores using PLS 

regression to define the composite scores is well-established, especially in chemometric fields of 

application (see, for example, Garthwaite, 1994, Wold et al., 2001, or Abdi, 2010).  The 

description of the composite scores in terms of individual variable loadings facilitates 

comparison of regression models across the three geographic modeling regions we consider here.  

PLS regressions were computed using the pls package for the R system (http://cran.r-

project.org/web/packages/pls). 
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We summarize in brief the essentials of PLS regression following the classical notation of 

Wold et al (2001) or Abdi (2010).  Let Y denote an n ×1  vector of annual mean concentrations at 

n monitoring sites and let X  denote the n × p  matrix of geographic covariates.  To simplify the 

exposition in this section, we will assume that Y has been centered to have mean zero and that 

the columns of X have been standardized to have covariate variances equal to 1 (or column sums 

of squares equal to 1).  As in a principal components analysis (PCA), the covariate matrix is 

decomposed into a product of an n × p  matrix of orthogonal scores T  (often considered as a set 

of “latent vectors”) and a p × p  matrix of loadings P  so that X = T ′P .  The columns of the PLS 

scores matrix T are computed with a sequential algorithm (most commonly the NIPALS 

algorithm; see Abdi 2010) to reflect the covariances between the Y and the columns of X , rather 

than to explain the variances and covariances among the columns of X as is done in PCA. 

The first column of scores, t1  is a linear combination of the geographic covariates Xw1 , with 

normalized weight vector w1 ∝ ′X Y .  That is, the weights are proportional to the simple 

covariances between the geographic covariates and the vector of annual mean concentrations.  

Stated differently, the weights are proportional to the simple linear regression coefficients (as 

opposed to multiple linear regression coefficients) of Y  on each of the columns of X .  It follows 

that this vector of scores, t1 = Xw1  is the score of maximum covariance with the vector Y  

subject to w1′w1 = 1 . 

Subsequent score vectors are computed in the same simple way after replacing Y  and X  by 

the vector and matrix of residuals from the regressions on t1 : Y − Ŷ1 = Y − t1c1  and 
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X − X̂1 = X − t1p1′ , with p1  being the first vector of the loadings matrix P, proportional to the 

simple correlations of the geographic covariates with the first PLS score.  In summary, PLS 

provides a decomposition of the large geographic covariate matrix X  into a sequence of 

orthogonal PLS scores computed to maximize the covariance between Y  and its prediction by 

these score vectors.  If we complete the iterations to obtain all p  vectors ti , we obtain a re-

expression of the covariate matrix X in terms of a set of orthogonal scores, but we typically stop 

with a small set of k  PLS scores, k  p .  Typically k  is chosen by cross-validation to give the 

best predictions.  We chose to compute PLS scores on the entire national covariate database in 

order to define them using the largest possible sample size.  These definitions were held fixed 

across regions in models with regionally varying regression parameters. As discussed in Sections 

2.4 and 2.5, we choose k based on 10-fold cross-validation of models that include kriging of the 

residuals. 

2.4  Universal kriging with PLS regression and maximum likelihood estimation 

The PLS computation described in Section 2.3 does not consider the fact that residuals from 

this regression will almost certainly be correlated in space, to an extent that will depend on the 

number of PLS components in the model.  The complete spatial regression or universal kriging 

model using PLS scores can be written  

Y = Tβ + ε  

where we change definitions slightly to let Y represent the uncentered vector of annual mean 

concentrations and correspondingly add a constant vector to the matrix of PLS scores T, now 

restricted to k < p scores. The vector of regression coefficients β  is therefore (k +1)×1 , and we 

complete the model specification by assuming the errors ε  are mean zero with spatial 
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covariance (or variogram) function depending on a parameter vector θ .  Conditional on β , we 

can write  

 Y  N Tβ,Σ(θ )( )  

where the parameter vector θ  specifies the nugget, range, and sill of an exponential variogram 

model. If we identify regions by the subscript j, the fully regional model, with both PLS 

regression parameters β  and covariance parameters θ  varying by region, can be written   

 
 
Yj  N Tjβ j ,Σ(θ j )( ),   j = 1,2,3 , 

where Tj denotes the rows of T corresponding to the jth region. 

We estimate all the parameters, (β j,θ j ),  j =1, 2,3,  jointly by maximizing the profile log-

likelihood.  In the normal log-likelihood function we replace the regression parameters by 

formulae for their generalized least squares estimates in terms of the covariance parameters.  

This resulting “profile” log-likelihood, a function only of the covariance parameters, is then 

maximized (using the R function optim). 

We require expressions for the universal kriging (or generalized least squares) predictions of 

concentrations at unmonitored sites given observations at monitoring sites.  Let Ymj   denote the 

vector of observations at monitored sites (“m”) in region j and let Tmj   denote the matrix of PLS 

component scores computed at these monitored sites.  Similarly, let Yuj  and Tuj  denote a 

corresponding vector and matrix for a set of unmonitored (“u”) locations at which predictions are 

desired.  Furthermore, let the modeled covariance matrix among the monitored sites be denoted 

by Σmm (θ j )  and the matrix of covariances between the monitored and unmonitored locations 
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Σum (θ j ) .  Then predictions of concentrations at unmonitored sites using estimates of the 

regression and covariance parameters can be written 

 Ŷuj = Tujβ̂ j + Σum (θ̂ j )Σmm
−1 (θ̂ j ) Ymj −Tmjβ̂ j( )  . 

2.5  Regional analysis strategy and cross-validation 

For the modeling framework described in Section 2.4, we need to determine how best to 

divide the country into regions, how many (nationally defined) PLS components to use in the 

spatial regressions (universal kriging), and whether either or both of the two model components, 

the PLS regression model and/or the variogram model, are best defined on a regional or national 

basis. 

We divided the country into regions in order to account for possible differences across the 

continental U.S. in the mean regression structure of PM2.5 as well as the residual smoothness 

(hence the variogram) of spatial variation. Consideration of the PLS and variogram 

characteristics of preliminary models led to a final choice of three regions based on an 

assessment of topology and elevation.  These three regions, called East, Mountain West, and 

West Coast, are illustrated in Figure 1. Although one could argue that the large eastern region 

should be further subdivided, diagnostic statistics suggest that a single universal kriging model 

suffices for this region. 

The decisions about the numbers of PLS components to retain, and whether to estimate PLS 

regression coefficients and covariance coefficients regionally or nationally were based on 10-

fold cross-validations.  Monitoring sites in each of the three regions were randomly assigned to 

one of ten groups. In turn, each group was set aside as a “test set” and the remaining groups 

combined for a “training set” to fit the model and generate test set predictions using the universal 
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kriging prediction equation given above. Each group played the role of test set until predictions 

were obtained for the entire data set.  We assessed the performance of each fitted model based on 

their cross-validated root mean squared prediction error, corresponding R2, and the width and 

accuracy (percent coverage) of 95% predictive intervals. 

3.  Results 

Table 2 gives descriptive statistics for year 2000 annual average PM2.5 concentrations at the 

901 monitoring sites shown in Figure 1.  The eastern 2/3 of the country clearly demonstrates the 

highest average concentration across sites while the West Coast, with the second highest average 

concentration, shows much greater spatial variability. 

Table 2.  Descriptive statistics for annual mean PM2.5 concentrations in 2000 on the native 

(µg/m3) and square root scales for the regions illustrated in Figure 1. 

Region (n) 
(µg/m3) Square root 

Mean SD Mean SD 

National (901) 12.73 4.06 3.51 0.62 

East (673) 13.72 3.10 3.68 0.45 

Mt. West (120) 7.85 3.17 2.74 0.59 

West Coast (108) 11.93 5.79 3.35 0.83 

 

Models were fit to annual mean PM2.5 concentrations on a square root scale since diagnostic 

analyses of residuals from fitted models suggested that the assumptions for the normal likelihood 

model were reasonably satisfied on this scale. Table 3 and Figures 2-4 provide summaries of the 

predictive quality of the models based on 10-fold cross-validation.  Table 3 presents cross-

validated R2 values for various choices of the number of PLS components. The cross-validated 

Hosted by The Berkeley Electronic Press



14 

 

R2 is computed as 1-RMSEP2/Var(Obs) where RMSEP represents the root mean-squared error of 

the predictions and Var(Obs) is the variance of the observations, both on the transformed scale. 

While the details of the predictions vary depending on whether the PLS regression coefficients 

and variogram models are specified nationally or regionally, the cross-validated R2 values 

change little. All the models show quite good performance nationally with R2 values mostly 

exceeding 0.86 and surprisingly little sensitivity to the number of PLS components.  Figure 2 

provides the scatterplots underlying the R2 values for the 2-component model in units of square 

root µg/m3.  The regional coefficient/regional variogram model gives not only the highest 

national R2 of 0.88, but also the highest within-region R2 values, which are 0.82 West Coast (red 

dots), 0.64 Mountain West (green dots), and 0.90 East (blue dots).  

 

Table 3.  10-fold cross-validation R2 statistics for the models considered.  The values in the first 

row of this table for 2 PLS component models are represented in the scatterplots in Figure 2.   

Coefficients: 

Variogram: 

National 

National 

National 

Regional 

Regional 

National 

Regional 

Regional 

Number of PLS       2 

Components       3 

4 

0.85 0.84 0.87 0.88 

0.86 0.86 0.88 0.88 

0.86 0.86 0.88 0.88 

5 0.86 0.86 0.88 0.87 
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Fig. 2. Scatterplots of observed PM2.5 concentrations and cross-validation predictions (square 

root scale) for 2 PLS component universal kriging models by regional vs. national model 

specification.  Points are colored coded by region (as in Figure 1):  East: blue, Mountain West: 

green, West Coast: red. 
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 Figure 3 presents boxplots showing distributions of widths of cross-validation-based 95% 

prediction intervals at monitoring sites.  We also report the coverage of these conventional 95%  

predictive intervals from the cross-validation. We see that coverage is close to the nominal 95%  

 

Fig. 3.  Boxplots showing distributions of widths of cross-validation 95% prediction intervals at 

monitoring sites.  Coverage percentages of the confidence intervals are printed below the 

boxplots.  
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level across all three regions only in the case of models with variograms varying by region.  The 

fully regional model with two PLS components provides the highest R2 values (to two decimal  

places) and the narrowest prediction intervals while achieving coverage that is closest to the 95% 

target for all three regions. We select this regional coefficient/regional variogram model with two 

PLS components as the primary model for further discussion of results. 

Figure 4 depicts the magnitudes of cross-validation prediction errors.  There is a greater 

range of prediction errors, both positive and negative, in the West Coast and Mountain West 

regions, but the predictions are approximately unbiased, on average, within each region.   

 

Fig. 4.  Graphical depiction of positive (green) and negative (red) cross-validation prediction 

errors (in sqrt(ug/m3))  for the model with regionally estimated PLS regression coefficients and 

regional variogram models.  
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(Predictions in individual regions were not unbiased when either the PLS regression or the 

variogram model was specified on a national scale.)   

Figure 5 presents a graphical depiction of the elements of the 171× 2  matrix of loadings (P) 

which provides insight into the two PLS component scores.  The first and most important 

component is dominated by high positive loadings on the “development” land use scores, lengths 

of roads, and amounts of impervious surface in contrast to high negative loadings on “natural” 

land use features like shrubs, grass and evergreen, along with negative loadings on distances to 

roads and pollutant sources.  This score is an interpretable composite measure of development 

(or urbanization) positively correlated with PM2.5 concentrations.  The second PLS component, 

constrained to be orthogonal to the first component, clearly contrasts the NDVI vegetative index 

scores with some of the developmental measures, notably impervious surfaces and “high 

development” land use.  While this score is easy to summarize conceptually, it has less 

straightforward interpretation since its contribution to the prediction of PM2.5 concentrations 

varies in sign across regions. 

Table 4 presents a summary of the parameter estimates from the likelihood fitting of the 

model.  The coefficients of the PLS component scores show much larger coefficients for the 

dominant first PLS component in the Mountain West and West Coast in contrast to the East.  The 

coefficient of the second PLS component, the contrast between NDVI and developmental 

measures, is clearly significant only in the East where it has a negative coefficient. 

Figure 6 shows region-specific regional variogram estimates and Table 4 gives their 

associated parameter estimates.  We used the residuals from the PLS regression part of the fitted  
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Fig. 5.  Two PLS components characterized by the loadings of the 171 covariates of Table 1 on 

the component scores.  These loadings have been scaled as correlations with the component 

score.  Sets of circles with increasing radii denote a particular measure (such as sum of A1 

highway road lengths, “a1”) evaluated in buffers of increasing size, as specified in Table 1.  
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model to compute these empirical variograms.  These results indicate there is much stronger 

residual spatial correlation structure in the East in contrast to the Mountain West and West Coast 

where the ranges are short and the nuggets higher.  Thus geostatistical smoothing is contributing 

much more strongly to predictions in the East.   

 

Table 4.  Maximum likelihood parameter estimates and standard errors for the universal kriging 

model.  (Standard errors, computed from the hessian of the full likelihood, are provided in 

parentheses only for the regression coefficients.)  Regression coefficients B1 and B2 multiply the 

PLS component scores depicted by their loadings in Figure 5.  Variograms corresponding to the 

parameters here are illustrated in Figure 6.  

Region Coefficients Variogram Parameters 

 Intercept B1 B2 Range Sill Nugget 

East 
2.604 

(0.520) 
0.024 

(0.002) 

-
0.013 

(0.002) 
2944 0.433 0.013 

Mountain West 
3.069 

(0.102) 
0.062 

(0.006) 
0.014 

(0.011)  
35 0.156 0.014 

West Coast 
3.263 

(0.128) 
0.086 

(0.009) 

-
0.016 

(0.009) 
86 0.254 0.018 
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Fig. 6.  Regional exponential variogram model fits estimated by maximum likelihood for 2 PLS 

component models.  The three main panels are all drawn to the same distance of 500 km.  

Because of the much greater range of the variogram for the east, the third panel includes an inset 

illustrating the variogram drawn to a distance of 4000 km. 

 

 

Finally, Figure 7 presents an image map of predicted PM2.5 concentration evaluated on a 

regular 25 km grid across the United States and smoothed for display purposes.  The inset 

illustrates the smaller spatial scale structure of the predictions using the example of the southern 

California region around Los Angeles.  There are some clear features to note at this 25 km scale.  

The West and Mountain West regions are generally lower in concentration, on average, but with 

great variability and pockets of the highest concentrations located in urban areas, especially 

notable around Los Angeles.  The eastern part of the country includes a broad region of higher 

concentrations generally extending east of the Mississippi with the exception of southern Florida, 

northern Wisconsin and Michigan, and northern New England.  
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Fig. 7.  Image plot of PM2.5 concentration predictions over the entire US with an inset image of 

the Los Angeles area to demonstrate some of the fine scale spatial structure of the predictions.  

The national map was derived from predictions computed at points on a regular 25 km grid and 

the high resolution Los Angeles inset from predictions on nested 1 km and 0.5 km grids.  The 

raster images were computed in ArcGIS with inverse distance weighting using the five nearest 

grid points. 
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4.  Discussion 

The regionalized national universal kriging model with Partial Least Squares regression 

presented here provides a number of important practical and methodological results.  First it 

yields predictions of annual average PM2.5 concentrations with good predictive accuracy (cross-

validated R2 value of 0.88 for our selected fully regional model; see Figure 2) and well-calibrated 

predictive intervals (Figure 3).  Second, it has demonstrated the usefulness of PLS to simplify 

dimension reduction in comparison to other approaches to variables selection (e.g., Su et al., 

2009; Mercer et al., 2011).  In addition, our regionalized strategy to universal kriging has proved 

to be valuable in addressing aspects of large-scale nonstationarity. 

Impressive as the national R2 statistic may be, it can hide regionally varying biases and 

inaccuracies.  We show that absolute prediction errors are substantially larger in the West and 

Mountain West regions, with corresponding larger 95% prediction intervals (Figures 3, 4).  

Fortunately, our modeling accurately represents this heterogeneity in predictive intervals that are 

well-calibrated in the sense of achieving near nominal 95% coverage.  The greater errors are to 

be expected due to the greater variation in PM2.5 concentrations in the western part of the country 

and the greater spatial variability (lower spatial correlation) reflected in the variogram models for 

the West Coast and Mountain West (Figure 6).  The smoother spatial structure in the eastern 

two-thirds of the country leads to more accurate predictions mostly driven by the kriging 

component of the universal kriging estimates. 

Our regional modeling for the spatially varying structure described above results in 

discontinuity in the predictions at the boundaries between regions.  These discontinuities are 

relatively minor except in the transition from East to Mountain West due to a near absence of 

monitoring sites in the region from the southern border of the U.S. in the midwestern region of 
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Texas, north through the Texas panhandle, eastern Colorado, western Kansas, and southern 

Nebraska.  There are little data to validate the relatively sharp transition in predicted PM2.5 

concentrations illustrated in Figure 7.  (Fortunately, this area is relatively sparsely populated and 

there are few target subjects in any of the epidemiologic studies of interest.)  

The PLS regression component of the modeling strategy obviates the more common 

approaches to variable selection in land use regression modeling.  While there is no guarantee 

that the PLS approach will yield better predictions than a variable selection approach, we find it 

to be a convenient and scientifically attractive way to synthesize the predictive value of a very 

large number of highly correlated GIS-based covariates.  Cross-validatory choice of the number 

of PLS components in the universal kriging model is very important since without the kriging 

component many more PLS components would be selected by cross-validation.  We were able to 

achieve the best calibrated model (defined in terms of the coverage of prediction intervals) with 

only two PLS components.   

Realistic spatial (and spatio-temporal) models on a national scale must be nonstationary in 

the sense that both of the components of the universal kriging approach, the spatial regression 

model and the residual spatial correlation structure, almost certainly vary regionally.  In the case 

of the regression model, one might argue that features like roads and traffic should correlate with 

or predict pollutant levels similarly across the country, but even here, different vehicle mixes, 

vehicle speeds, road surfaces and meteorology can influence the details of these spatial 

predictions.  Furthermore, certain types of covariates are (more) relevant in some parts of the 

country than others, as is the scale and extent of secondary pollutant formation.  For example, in 

the east, there is the well-known phenomena of secondary particle formation from oxidation of 

sulfur and nitrogen oxides emitted from tall stacks by coal fired-power plants.  These elevated 
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emissions result in a regional-scale particulate ‘haze’ rich in sulfate and nitrates that comprise 

major fraction of the fine particle mass (Malm et.al., 2004; Tesche et.al., 2006; Hand et.al., 2012). 

In contrast, the organic carbon fraction of the PM2.5 is higher in the Western U.S. and is more 

variable over the region (Malm et.al. 2004; Hand et.al., 2012).   

Our regional universal kriging models used simple stationary and isotropic spatial 

covariance or variogram models.  It would certainly be attractive to consider nonstationary 

models for individual regions (Sampson, 2012), and it is possible that nonstationary covariance 

models would help, especially in the complex western regions of the U.S.  However, results with 

the naïve stationary models are reasonably well-calibrated.  We have obtained similarly accurate 

results in applications to other annual averages and other pollutants of interest, including NO2. 

The ultimate objective of the prediction model described here is to provide exposure 

predictions for epidemiologic analysis of health effects of long-term exposure to air pollutants, 

estimated by average annual exposure.  Our spatial model provides very accurate predictions, but 

there will still be differences between the true and predicted exposures for study subjects, 

resulting in covariate measurement error that can bias health effect estimates and standard errors 

(Kim et al. 2009).  In fact, more accurate exposure predictions do not necessarily result in the 

best health effect estimates, depending on exposure assessment study design and components of 

the exposure estimation errors which can lead to Berkson-like and classical-like errors in health 

effect estimates (Szpiro et al., 2011b).  Since we employ likelihood-based methods to fit our 

universal kriging model, recently published computationally efficient bootstrap methods are 

available to correct for the measurement error and give valid health effect confidence intervals 

(Szpiro et al. 2011a, Bergen et al. 2012).  
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