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Abstract: Today’s increasing availability of data is having a remarkable impact on control
design. However, for data-driven control approaches to become widespread in practical applica-
tions, it is necessary to devise strategies that can effectively handle the presence of noise in the
data used to design the controller. In this work, we analyse the existing approaches to deal with
noisy measurements in data-driven predictive control (DDPC) and we highlight the advantages
and downsides of each technique from a practitioner’s perspective. Our qualitative conclusions
are supported by the results obtained from two benchmark examples.
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1. INTRODUCTION

The shift from model-based to data-driven control is now
an affirmed trend within the control community. Indeed,
in the last years quite an effort has been devoted to
adapt the principles of Model Predictive Control (MPC)
to a completely data-based framework (see e.g., Coulson
et al. (2019); Berberich et al. (2020); Breschi et al. (2022);
Sassella et al. (2022a)), leading to a novel Data-Driven
Predictive Control (DDPC) theory. At the core of this
transition lays the result in Willems et al. (2005), which
allows one to obtain a data-based characterization of the
dynamics of a system, without explicitly requiring any
preliminary identification step. Even if MPC is now a
standard in industrial applications Forbes et al. (2015),
only some attempts have instead been performed to apply
its data-driven counterpart in real-world applications (see,
e.g., Huang et al. (2021)), and a lot has still to be done
for these techniques to be extensively used in practice.
In particular, since DDPC strategies rely on real-world
measurements to construct a data-based predictor, noise
handling techniques have a major role in making them vi-
able in practice. Indeed, if not properly managed, noise can
have dramatic consequences on closed-loop performance.

Existing techniques to deal with noisy data can be divided
in two main classes. First, one may pre-process the em-
ployed data as in Sassella et al. (2022a) and Sassella et al.
(2022b), respectively relying on repeated data collection
campaigns and manipulation of data matrices via Dynamic
Mode Decomposition (DMD) (see Kutz et al. (2016)) prior
to the controller deployment. As an alternative approach,
regularization has been proposed, see, e.g., Berberich et al.
(2020); Dörfler et al. (2022). Specifically, Dörfler et al.
(2022) outlines different regularization strategies to han-
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dle noise, ranging from standard and weighted Tikhonov
regularization to Lasso and elastic nets (Hastie et al.
(2009)). By leveraging on the assumption of additive noise,
L2 regularization is instead proposed in Berberich et al.
(2020); Huang et al. (2021), along with the inclusion of a
slack variable acting on the output predictions. Under the
assumption of bounded noise, in Berberich et al. (2020)
the control problem is further augmented with a non-
convex constraint on the slack, which can nonetheless be
neglected by properly selecting the regularization penal-
ties. Regularization is also used in Coulson et al. (2021)
within a chance-constrained framework to cope with noise
in the data, while robustly handling output constraints.
Instead, Yin et al. (2023) proposes a DDPC that uses an
approximated maximum likelihood estimator as predictor,
overcoming the need to introduce regularization terms in
the cost.

In this work, we review noise handling strategies for
data-driven predictive control proposed in the literature
from a perspective aligned with that of a practitioner.
For each family of techniques, we thus outline the main
features, advantages and drawbacks and practically show
them through two numerical benchmark examples. The
paper is organized as follows. The considered framework
is introduced in 2. The existing strategies to handle noisy
data are then analyzed in Section 3, with advantages and
drawbacks illustrated numerically in Section 4.

2. DATA-DRIVEN SYSTEMS AND CONTROL

Consider a discrete-time, linear, time invariant (LTI)
system, described by the following set of equations

S :

{
x(t+ 1) = Ax(t) +Bu(t),

yo(t) = Cx(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm and yo(t) ∈ Rp are the state,
exogenous input and noiseless output of the system at
time t ∈ N, respectively. Let the system be controllable and
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Consider a discrete-time, linear, time invariant (LTI)
system, described by the following set of equations

S :

{
x(t+ 1) = Ax(t) +Bu(t),

yo(t) = Cx(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm and yo(t) ∈ Rp are the state,
exogenous input and noiseless output of the system at
time t ∈ N, respectively. Let the system be controllable and

observable, but its matrices A ∈ Rn×n, B ∈ Rn×m, C ∈
Rp×n be unknown. Meanwhile, let us assume that we
have access to a batch sequence of input/output data

pairs DT = {u(t), y(t)}T−1
t=0 , with the available output

measurements being corrupted by noise, i.e.,

y(t) = yo(t) + v(t), (2)

where v(t) ∈ Rp is the realization at time t of a white,
zero mean stochastic process. Assume that we have no
additional insights on the noise corrupting the data. More-
over, suppose the input fed to the system during the data
collection phase, i.e., the sequence UT = {u(t)}T−1

t=0 , is
persistently exciting of a sufficiently high order, according
to the following definition ( Willems et al. (2005)).

Definition 1. (Persistence of excitation).
The sequence UT is persistently exciting of order M if the
associated Hankel matrix U0,M,T ∈ RmN×(T−M−1), i.e.,

U0,M,T =




u(0) u(1) · · · u(T−M−1)
u(1) u(2) · · · u(T−M)
...

...
. . .

...
u(M−1) u(M) · · · u(T )


 , (3)

is full row rank, namely rank(U0,M,T ) = mM .

This notion of persistence of excitation is the key to obtain
an informative, yet purely data-based, representation of
the system under control. We now review the main results
leading to two alternative data-driven descriptions of the
unknown system. In both cases, the final predictor depends
on a upper-bound η > n of the true order of S, which is
here assumed to be unknown.

2.1 One-step ahead predictor

At time t, let us consider the following collection of past
inputs and outputs of S, i.e.,

χ(t) =
[
u(t−η)′ · · · u(t−1)′ y(t−η)′ · · · y(t−1)′

]′
, (4)

which can be seen as the state of a non-minimal realization
of the unknown system. Furthermore, let us introduce the
following concatenation of data matrices:

Ω =

[
U0,1,T−1

X̂0,T−1

]
∈ R((η+1)m+ηp)×T (5)

where X̂0,T−1 = [χ(0) χ(1) · · · χ(T−1)] ∈ R(p+m)η×T .
When the batch input sequence UT is persistently exciting
of order (m+p)η+1 and the data sequence is long enough
(i.e., T ≥ (m + 1)(m + p)η + m), it can be proven (see
De Persis and Tesi (2020)) that

rank [Ω] = (η + 1)m+ pη. (6)

Accordingly, the one-step-ahead predictor at k ∈ N can be
defined as follows De Persis and Tesi (2020):

χ̄(k + 1|DT ) = X̂1,TΩ
†
[
u(k)
χ(k)

]
, (7a)

where X̂1,T = [χ(1) χ(2) · · · χ(T )] ∈ R(p+m)η×T , and the
predicted output is given by

ȳ(k|DT ) = e′ηX̂1,TΩ
†
[
01×2η

I2η

]
χ(k), (7b)

with eη being the η-th versor of R2η. Note that, while
in the noiseless case it can be proven that χ̂(k + 1|DT )
exactly corresponds to the true extended state χ(k+1) (see

Table 1. Requirements on data collection &
control problem features.

One-step ahead (7) Trajectory-based (9)

Pers. of excitation (m+ p)η + 1 L+ 2η

Tmin (m+1)(m+p)η +m (m+1)(L+2η)−1

n. of unknowns mL T − L− η − 1

De Persis and Tesi (2020)), the same conclusion does not
directly follows in the presence of noise. In this challenging,
yet more realistic, case, it thus becomes crucial to pair this
identification-like result with noise handling strategies, to
obtain a predictor actually describing the evolution of the
underlying (unknown) system.

2.2 Trajectory-based predictor

Instead of a one-step-ahead predictor, an L-step predictor
can be obtained as follows.

Theorem 1. (Trajectory-based representation ). LetDT =
{UT ,YT } be a noiseless measured trajectory of S in (1),

with YT = {y(t)}T−1
t=0 . Assume UT to be persistently excit-

ing of order L + η. Then, {ū(k), ȳ(k)}L−1
k=0 is a trajectory

of S if and only if there exist a vector α ∈ RT−L−1 such
that: [

ū[0,L−1](DT )
ȳ[0,L−1](DT )

]
=

[
U0,L,T−1

Y0,L,T−1

]
α, (8)

with Y0,L,T−1 ∈ RpL×T−L−1 being the Hankel matrix asso-
ciated to YT , and ū[0,L−1](DT ) ∈ RmL and ȳ[0,L−1](DT ) ∈
RpL being the column vectors stacking the predicted input
and output trajectories of length L, respectively. �

Note that, in this case, the dynamics of the true system
S is encapsulated in the parameter α. Since considering
initial conditions is crucial in the solution of a predictive
control problem, he behavioral model in (8) can be further
augmented as:[

ū[−η,L−1](DT )
ȳ[−η,L−1](DT )

]
=

[
U0,L+η,T−1

Y0,L+η,T−1

]
α. (9)

In turn, differently from Theorem 1, this requires the input
sequence UT to be persistently exciting of order L+ 2η 1 .

As for the one-step-ahead predictor, the accuracy of (9)
might be undermined by the output measurements noise.
As such, also in this scenario, it is crucial to counteract its
effects by using suitable noise handling techniques.

2.3 Comparing the two data-driven representations

When selecting the DDPC approach to use, it is important
to unveil the similarities between the predictors presented
beforehand, and to understand how their differences might
impact on the solution of the DDPC problem.

The two predictors require different experiment design for
the data collection phase. By looking at Table 1, it is
clear that the different experimental requirements on the
batch input sequence UT stem from the nature of the two
predictors. On the one hand, the level of excitation needed
to construct (7) is directly linked to the input/output

1 This condition can be relaxed to L + η + ζ, where � is the
smallest integer such that the observability matrix O�(A,C) :=
col(C,CA, . . . , CAζ−1) has rank n
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dimensions and the chosen parameter η, as the definition
of the non-minimal state (4) depends on the latter. On the
other hand, the level of excitation needed to build (9) is
driven by the length of the prediction horizon L and, once
again, by η. This difference is reflected in the minimum
experiment length Tmin, which is, in turn, shaped by the
features of the input Hankel matrices characterizing the
two predictors. Concerning the solution of the predictive
control problem, using (7) entails optimizingmL variables,
as in a model-based setting. Instead, as reported in Ta-
ble 1, the actual unknown of (9) is α. As such, the number
of optimization variables is shaped by the length of the
dataset and η, while not being directly connected to the
dimension of the input fed to the system. This can give
rise to computational issues for large datasets, which are
not fully shared by (7), as Ω−1 can be computed offline.

2.4 Deterministic predictive control

Without loss of generality, let us formulate the nominal
DDPC problems focusing on the zero regulation prob-
lem 2 . Depending on the employed predictor, we end up
with two different, although conceptually equivalent, for-
mulations of the DDPC problem.

Let L > 0 be the prediction horizon, and U ⊆ Rm and
Y ⊆ Rp be the sets specifying the input and output
constraints, respectively. When using the predictor in (7),
the control problem can be cast as follows:

min
ū[0,L−1]

L−1∑
k=0

‖ȳ(t+ k)‖2Q + ‖ū(t+ k)‖2R (10a)

s.t. χ̄(t+k+1)=X̂1,TΩ
†
[
ū(t+k)
χ̄(t+k)

]
, k=0, . . . , L−1, (10b)

ȳ(t+k)=e′ηX̂1,TΩ
†
[
01×2η

I2η

]
χ̄(t+k), k=0, . . . , L−1,

(10c)

χ̄(t) = χ(t), (10d)

ū(t+ k) ∈ U, k = 0, . . . , L− 1, (10e)

ȳ(t+ k) ∈ Y, k = 0, . . . , L− 1, (10f)

χ̄(t+ L) = 0(m+p)η×1, (10g)

where ū[0,L−1] ∈ RmL is the input sequence to be opti-

mized, while χ̄(t+ k) ∈ R(m+p)η and ȳ(t+ k) ∈ Rp are
the extended state and output predicted at time t+ k,
k=0,. . ., L, respectively.

Instead, with the predictor (9) the DDPC problem is:

min
α

L−1∑
k=0

‖ȳ(t+ k)‖2Q + ‖ū(t+ k)‖2R (11a)

s.t.

[
ū[t−η,t+L−1]

ȳ[t−η,t+L−1]

]
=

[
U0,L+η,T

Y0,L+η,T

]
α, (11b)

[
ū[t−η,t−1]

ȳ[t−η,t−1]

]
=

[
u[t−η,t−1]

y[t−η,t−1]

]
, (11c)

ū(t+ k) ∈ U, k = 0, . . . , L− 1, (11d)

ȳ(t+ k) ∈ Y, k = 0, . . . , L− 1, (11e)[
ū[t+L−η,t+L−1]

ȳ[t+L−η,t+L−1]

]
=

[
0mη×1

0pη×1

]
, (11f)

2 Simple manipulations of costs and constraints lead to more general
problems.

where α ∈ RT−L−η−1 is the only parameter to be opti-
mized, in turn, shaping the optimal sequence ū�

[0,L−1].

The main difference between (10) and (11) clearly lies
in the optimization variables, their dimensions, and the
predictor equations (see (10b)-(10c) and (11b), respec-
tively). Meanwhile, in both cases, the cost penalizes the
distance of the predicted output sequence from zero and
the control effort, respectively weighted via the matrices
Q � 0 and R � 0, while the predicted inputs and outputs
are equally constrained according to (10e)-(10f) and (11d)-
(11f). Because of the chosen extended state in (4), both
problems share the same initial conditions and terminal
constraints, with χ(t) in (10d) being constructed exactly
as the right-hand-side of (11c) and χ̄(t+L) in (10g) being
equal to the left-hand-side of (11f).

3. NOISE HANDLING STRATEGIES

When working with noisy data, the differences between
the predictors result into the necessity of developing dis-
tinct noise handling strategies. In this section, we review
existing techniques to tackle noisy data, by highlighting
their main advantages and pitfalls with a synoptic view.

3.1 Managing noise in (10)

If the problem in (10) is solved, one can cope with noise

by directly operating on the data matrices X̂1,T and Ω
used to build the predictor, before the actual deployment
of the controller. Specifically, noise handling can be done
according to two main strategies.

Averaging. Since working with (7a) allows one to directly
operate on data, the approach in Sassella et al. (2022a)
grounds on a suitable design of experiment. Since the noise
is assumed to be zero mean and additive, the approach
relies on performing repeated experiments with the same
input sequence, to average out its effect. The data matrices
characterizing (7a), i.e., X̂1,T and Ω, are thus constructed

via an averaged dataset D̃T = {u(t), ỹ(t)}Tt=1, with

ỹ(t) =
1

N

N∑
i=1

yi(t), (12)

and yi(t) ∈ Rp being the output at time t of the i-th
experiment, with i = 1, . . . , N .

Dynamic Mode Decomposition (DMD). Rather than
repeated experiments, Sassella et al. (2022b) proposes
the use of dynamic mode decomposition, thus directly
manipulating X̂1,T and Ω constructed by relying on a
single experiment. Initially, singular value decomposition
(SVD) is performed to rewrite the initial data matrices as:

X̂1,T = Û Σ̂V̂ ∗ Ω = UΩΣΩV
∗
Ω , (13)

where Σ̂ and ΣΩ are diagonal matrices, whose non-zero el-
ements are the singular values of X̂1,T and Ω, respectively,

while Û ∈ Cη×η, UΩ ∈ C(m+η)×(m+η) and V̂ , VΩ ∈ CT×T

are unitary matrices, with V̂ ∗ and V ∗
Ω being the conjugate

transposes of V̂ and VΩ. Small singular values can then
be set to zero by means of a thresholding rule specified
beforehand (e.g., Sassella et al. (2022b)), to retain only
those singular values that are relevant in the description
of the dynamics of the system.

3.2 Managing noise in (11)

The use of (9) allows one to embed noise handling tech-
niques directly into the formulated control problem. For
instance Berberich et al. (2020); Dörfler et al. (2022) shift
from the nominal DDPC to its regularized counterpart:

min
α

L−1∑
k=0

‖ȳ(t+ k)‖2Q + ‖ū(t+ k)‖2R + �(α) (14a)

s.t.

[
ū[t−η,t+L−1]

ȳ[t−η,t+L−1]

]
=

[
U0,L+η,T

Y0,L+η,T

]
α, (14b)

[
ū[t−η,t−1]

ȳ[t−η,t−1]

]
=

[
u[t−η,t−1]

y[t−η,t−1]

]
, (14c)

ū(t+ k) ∈ U, k = 0, (14d)

ȳ(t+ k) ∈ Y, k = 0, (14e)[
ū[t+L−η,t+L−1]

ȳ[t+L−η,t+L−1]

]
=

[
0mη×1

0pη×1

]
, (14f)

where � : RT−L−η−1 → R varies depending on the chosen
regularization technique, as outlined in the following.

L2 regularization. L2 (or Tikhonov) regularization ,
namely

�(α) = λ2‖α‖22, (15)

is used in several works, e.g., Breschi et al. (2022). This
choice uniformly shrinks the elements of α, in an attempt
to make the predictions obtained thorough (11b) less
sensitive to noise on the batch outputs. By leveraging
on the fact that noise is additive, a slightly different
handling scheme (still relying on Tikhonov regularization)
is proposed in Berberich et al. (2020), with the evolution
in (14b) modified as:[

ū[t−η,t+L−1]

ȳ[t−η,t+L−1] + ε

]
=

[
U0,L+η,T

Y0,L+η,T

]
α, (16)

and the cost of (14) featuring the extended regularization
term

�(α, ε) = λ2‖α‖22 + λε‖ε‖22, (17)

where ε ≥ 0 is a slack variable to be shrunk to achieve
a trade-off between retaining a meaningful predictor and
limiting the impact of noise.

Weighted L2 regularization. Inspired by subspace
methods, (15) can be modified as in Dörfler et al. (2022)
as follows:

�(α) = λ2‖(I −Π)α‖22, Π =
[
U ′
P Y ′

P UF

]′
(18)

where UP = [U0,L+η,T ]1:η, YP = [Y0,L+η,T ]1:η and UF =
[U0,L+η,T ]η+1:L+η and the weighting matrix (I − Π) is an
orthogonal projector onto the kernel of the initial condi-
tions and future inputs. The objective of the regularizer
is again to shrink the values of α to reduce the impact of
noise based on identification-related insights.

L1 regularization. A Lasso-like scheme is also proposed
in Dörfler et al. (2022), with:

�(α) = λ1‖α‖1, (19)

whose effect is that of shrinking the elements of α towards
zero. As such, this approach induces structure selection,
which has been proven to be equivalent to a low-rank
approximation of the Hankel matrix characterizing (14b).

Elastic net. To combine the benefits deriving from both
identification-based insights and structure selection effects,

the weighted L2 and L1 regularizations are summed in
Dörfler et al. (2022) into

�(α) = λ1‖α‖1 + λ2‖(I −Π)α‖22, (20)

where the hyper-parameters λ1, λ2 > 0 trade-off between
the different shrinking effects induced by the two terms.

Regularization and state constraints. In Coulson
et al. (2021), regularization is exploited within a chance-
constrained algorithm, to robustly handle noise in the data
and state constraints. To this end, the problem in (11) is
augmented by the introduction of a slack, similar to (17).
Apart from the additional slack, the cost remains equal to
that in (14a), with α regularized as:

�(α) = λε‖α‖r, (21)

where λε = Lobjε, Lobj is the Lipschitz constant associated
with the part of the cost depending on the system output,
and ε is a tunable parameter quantifying the desired ro-
bustness level. Note that, r = 2 in (21), the cost of the
design problem tackled in Coulson et al. (2021) is a varia-
tion to the L2 regularized with slack previously discussed.
Moreover, thanks to the use of a chance-constrained op-
timization scheme, the approach in Coulson et al. (2021)
has probabilistic guarantees on constraints satisfaction.

3.3 Maximum likelihood estimation for DDPC

As an alternative to the previous noise-handling tech-
niques and predictors, Yin et al. (2023) introduces a DDPC
technique that does not require the tuning of any regular-
ization penalty. The approach relies on the so-called Signal
Matrix Model (SMM), i.e., a maximum likelihood predic-
tion model build from noisy offline data under the assump-
tion of Gaussian distributed noise. Specifically, (14b)-(14c)
are replaced with

αt=P(αt−1)ȳ[t−η,t−1]+Q(αt−1)ū[t−η,t+L−1], (22a)

ȳ[t,t+L−1] = Yη,L,Tα
t, (22b)

where αt is the updated approximator (at time t) of the
maximum likelihood model, while the matrices P(αt−1)
and Q(αt−1) depend on the available batch of data, the
approximator αt−1 at the previous time step t− 1 and an
estimate of the noise variance computed offline.

3.4 A comparison between noise handling strategies

The advantages and downsides of each noise handling
technique previously introduced should play a lion’s share
in the choice of the data-driven predictive control strat-
egy, given the pervasive presence of noise in real-world
applications.The main features of these techniques are
summarized in Table 2. As it can be seen, the first major
difference stemming from solving (14) rather than (10) lies
in the elements the noise handling strategy operates on.

When using the predictor in (7), both the averaging
strategy and the DMD-based approach manipulate the
predictor itself, not modifying the cost function of the
control problem. Similarly, the SMM-based approach do
not require any hyper-parameter tuning, since the noise
variance can be estimated offline from data as discussed in
Yin et al. (2023). Analogously, the hyperparameter of the
noise handling techniques considered in combination with
(7) (i.e., the number of experiments N and the thresh-
olds r̂, rΩ indicating the singular values to retain) can be
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The use of (9) allows one to embed noise handling tech-
niques directly into the formulated control problem. For
instance Berberich et al. (2020); Dörfler et al. (2022) shift
from the nominal DDPC to its regularized counterpart:

min
α

L−1∑
k=0

‖ȳ(t+ k)‖2Q + ‖ū(t+ k)‖2R + �(α) (14a)

s.t.

[
ū[t−η,t+L−1]

ȳ[t−η,t+L−1]

]
=

[
U0,L+η,T

Y0,L+η,T

]
α, (14b)

[
ū[t−η,t−1]

ȳ[t−η,t−1]

]
=

[
u[t−η,t−1]

y[t−η,t−1]

]
, (14c)

ū(t+ k) ∈ U, k = 0, (14d)

ȳ(t+ k) ∈ Y, k = 0, (14e)[
ū[t+L−η,t+L−1]

ȳ[t+L−η,t+L−1]

]
=

[
0mη×1

0pη×1

]
, (14f)

where � : RT−L−η−1 → R varies depending on the chosen
regularization technique, as outlined in the following.

L2 regularization. L2 (or Tikhonov) regularization ,
namely

�(α) = λ2‖α‖22, (15)

is used in several works, e.g., Breschi et al. (2022). This
choice uniformly shrinks the elements of α, in an attempt
to make the predictions obtained thorough (11b) less
sensitive to noise on the batch outputs. By leveraging
on the fact that noise is additive, a slightly different
handling scheme (still relying on Tikhonov regularization)
is proposed in Berberich et al. (2020), with the evolution
in (14b) modified as:[

ū[t−η,t+L−1]

ȳ[t−η,t+L−1] + ε

]
=

[
U0,L+η,T

Y0,L+η,T

]
α, (16)

and the cost of (14) featuring the extended regularization
term

�(α, ε) = λ2‖α‖22 + λε‖ε‖22, (17)

where ε ≥ 0 is a slack variable to be shrunk to achieve
a trade-off between retaining a meaningful predictor and
limiting the impact of noise.

Weighted L2 regularization. Inspired by subspace
methods, (15) can be modified as in Dörfler et al. (2022)
as follows:

�(α) = λ2‖(I −Π)α‖22, Π =
[
U ′
P Y ′

P UF

]′
(18)

where UP = [U0,L+η,T ]1:η, YP = [Y0,L+η,T ]1:η and UF =
[U0,L+η,T ]η+1:L+η and the weighting matrix (I − Π) is an
orthogonal projector onto the kernel of the initial condi-
tions and future inputs. The objective of the regularizer
is again to shrink the values of α to reduce the impact of
noise based on identification-related insights.

L1 regularization. A Lasso-like scheme is also proposed
in Dörfler et al. (2022), with:

�(α) = λ1‖α‖1, (19)

whose effect is that of shrinking the elements of α towards
zero. As such, this approach induces structure selection,
which has been proven to be equivalent to a low-rank
approximation of the Hankel matrix characterizing (14b).

Elastic net. To combine the benefits deriving from both
identification-based insights and structure selection effects,

the weighted L2 and L1 regularizations are summed in
Dörfler et al. (2022) into

�(α) = λ1‖α‖1 + λ2‖(I −Π)α‖22, (20)

where the hyper-parameters λ1, λ2 > 0 trade-off between
the different shrinking effects induced by the two terms.

Regularization and state constraints. In Coulson
et al. (2021), regularization is exploited within a chance-
constrained algorithm, to robustly handle noise in the data
and state constraints. To this end, the problem in (11) is
augmented by the introduction of a slack, similar to (17).
Apart from the additional slack, the cost remains equal to
that in (14a), with α regularized as:

�(α) = λε‖α‖r, (21)

where λε = Lobjε, Lobj is the Lipschitz constant associated
with the part of the cost depending on the system output,
and ε is a tunable parameter quantifying the desired ro-
bustness level. Note that, r = 2 in (21), the cost of the
design problem tackled in Coulson et al. (2021) is a varia-
tion to the L2 regularized with slack previously discussed.
Moreover, thanks to the use of a chance-constrained op-
timization scheme, the approach in Coulson et al. (2021)
has probabilistic guarantees on constraints satisfaction.

3.3 Maximum likelihood estimation for DDPC

As an alternative to the previous noise-handling tech-
niques and predictors, Yin et al. (2023) introduces a DDPC
technique that does not require the tuning of any regular-
ization penalty. The approach relies on the so-called Signal
Matrix Model (SMM), i.e., a maximum likelihood predic-
tion model build from noisy offline data under the assump-
tion of Gaussian distributed noise. Specifically, (14b)-(14c)
are replaced with

αt=P(αt−1)ȳ[t−η,t−1]+Q(αt−1)ū[t−η,t+L−1], (22a)

ȳ[t,t+L−1] = Yη,L,Tα
t, (22b)

where αt is the updated approximator (at time t) of the
maximum likelihood model, while the matrices P(αt−1)
and Q(αt−1) depend on the available batch of data, the
approximator αt−1 at the previous time step t− 1 and an
estimate of the noise variance computed offline.

3.4 A comparison between noise handling strategies

The advantages and downsides of each noise handling
technique previously introduced should play a lion’s share
in the choice of the data-driven predictive control strat-
egy, given the pervasive presence of noise in real-world
applications.The main features of these techniques are
summarized in Table 2. As it can be seen, the first major
difference stemming from solving (14) rather than (10) lies
in the elements the noise handling strategy operates on.

When using the predictor in (7), both the averaging
strategy and the DMD-based approach manipulate the
predictor itself, not modifying the cost function of the
control problem. Similarly, the SMM-based approach do
not require any hyper-parameter tuning, since the noise
variance can be estimated offline from data as discussed in
Yin et al. (2023). Analogously, the hyperparameter of the
noise handling techniques considered in combination with
(7) (i.e., the number of experiments N and the thresh-
olds r̂, rΩ indicating the singular values to retain) can be
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Table 2. Main features of different noise handling strategies in data-driven predictive control,
with Σv denoting the covariance of the measurement noise.

Averaging DMD L2/Weighted L2 L2+slack L1 Elastic net SMM

Noise handling (what) X̂1,T ,Ω X̂1,T ,Ω α α α α αt

Noise handling (when) Pre-proc. Pre-proc. Real time Real time Real time Real time Mixed

Hyper-parameters N r̂, rΩ λ2 λ2, λσ λ1 λ1, λ2 Σv

Limits on experiment design Yes No No No No No No

Hyper-parameter calibration Pre-proc. Pre-proc. Closed-loop Closed-loop Closed-loop Closed-loop Pre-proc.

calibrated offline. At the same time, by the law of large
numbers, the number of experiments N should be selected
as high as possible for the averaging strategy to properly
filter out noise. Moreover, the need to perform several
data collection campaigns by always using the same forcing
input can severely limit the applicability of this approach
in practice. Instead, the additional term characterizing
the regularization strategies for (14) modifies the cost of
the control problem, thus indirectly changing the trade-off
between control objectives sought via the chosen weightsQ
and R. As such, calibrating the hyper-parameters charac-
terizing this last family of noise handling strategies is quite
delicate, as wrong choices of such parameters can drasti-
cally modify the control problem one ultimately solves.
Meanwhile, up to now no approach has been proposed to
tune the regularization penalties beforehand, with these
parameters that have to be ultimately selected via possibly
unsafe closed-loop calibration tests.

4. NUMERICAL EXAMPLES

To compare the performance of the summarized noise
handling strategies presented in Section 2.4, we consider
two simulation examples. To asses the robustness of the
approaches to different input and noise realizations, the
performance is evaluated by exploiting several datasets
collected through Monte Carlo simulations. As for the se-
lection of the hyper-parameters, the threshold r̂, rΩ needed
by DMD are automatically chosen through the strategy
outlined in Sassella et al. (2022b), while the regularization
parameters are always selected via closed-loop grid search
by constructing the predictor with a new set of data for
different values of these hyper-parameters and picking the
one that minimizes the following performance index:

J =

Tv∑
t=1

‖y(t)‖2Q + ‖u(t)‖2R, (23)

over a simulation horizon of length Tv, always starting
from the same initial condition. The same index is also
used to quantitatively assess the performance of the final
closed-loop tests. We stress that, to fairly assess the control
performance, while the predictor is built with noisy data,
the simulated closed-loop tests are noise-free.

4.1 A benchmark case study

Consider the following benchmark system taken from
Sassella et al. (2022a):

x(k + 1) =

[
0.7326 −0.0861
0.1722 0.9909

]
x(k) +

[
0.0609
0.0064

]
u(k), (24)

where the input is constrained so as −2 ≤ u(k) ≤ 2 and
the state to be fully measured. For the sake of space, in
our numerical comparison we do not include the averaging

DMD L2 L2 Slack Weighted L2 L1 Elastic Net SMM
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Fig. 1. Closed-loop tests with Tv = 100: J in (23) over 100
Monte-Carlo runs for the benchmark system.

method, since its performance has already been compared
on the same benchmark with that of the DMD-based
approach in Sassella et al. (2022b).

Since the true order of the system in (24) is supposed
to be unknown, the dimension of the extended state is
set to η = 10. We solve a zero regulation problem over
a prediction horizon L = 2, by imposing R = 0.01 and
Q = I, while terminal constraints are not imposed given
the length of the prediction horizon. The DDPC schemes
and the relative noise handling strategies are all deployed
by considering the same input/output set DT of length
T = 1000, with the input being a white noise sequence
with uniform distribution within [−5, 5] and the outputs
corrupted by a zero mean, Gaussian distributed, white
noise with standard deviation 0.024 · I.
As shown in Fig. 1, the use of DMD, the L2 scheme with
the additional slack variable 3 , the weighted L2 regular-
ization elastic net lead to similar performance over the
different realizations of the batch dataset, leading to costs
that are closed to the model-based solution J o = 22.21.
These approaches are slightly outperformed by the SMM-
based approach. This result underlines the importance of
exploiting identification-based insights when choosing the
regularization strategy, while pointing out the effectiveness
of DMD as a pre-processing tool. Conversely, plain L2 and
L1 regularization tend to be rather sensitive to noise.

By considering 100 randomly chosen initial states, we fur-
ther compare CPU time required with each noise handling
approach, that are reported in Table 3. Clearly, regular-
ization based approaches are generally computationally
more demanding than DMD. Note that, achieving slightly
better performance with the SMM-based approach implies
an increase in the CPU time required to solve the opti-
mization problem. Moreover, remarkably the use of the
weighted L2 regularization (and, thus, of elastic net) leads
to a significant increase in CPU time, highlighting that

3 λε = 104 so as to shrink the slack variable as much as possible.

Table 3. CPU time [s] to compute u(t) (benchmark system): mean ± standard deviation.

DMD L2 L2+slack L1 Weighted L2 Elastic net SMM

0.16±0.02 0.23±0.03 0.27±0.04 0.47±0.09 1.88±0.13 2.62±0.48 0.31±0.0.04

DMD L2 L2 Slack Weighted L2 L1 Elastic Net SMM
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Fig. 2. Closed-loop tests with Tv = 30: J in (23) over 10
Monte-Carlo runs for the random system.

the price one has to pay to include identification-oriented
insights in the regularization term is an increase in the
complexity of the optimal problem to be solved.

4.2 Monte-Carlo simulation on a random system

We then consider an asymptotically stable random system
with unknown order n = 10, with m = 5 inputs. As in
the first example, we consider input constraint |u| ≤ 2,
while we impose η = 22. We solve the DDPC problems
with prediction horizon L = 3, by imposing R = 0.01
and Q = I. In particular, we evaluate the effect of the
noise handling strategies over 10 different datasets of
length 500, collected applying input uniformly distributed
in the interval [−2, 2], where the output is corrupted by
an additive, Gaussian distributed white noise, yielding
SNR= 35 dB. Apart from the predictive control schemes
with L2 and slacks and L1 regularization, which show
higher performance variability, Fig. 2 clearly displays that
most approaches lead to comparable performance. Indeed,
the difference between the oracle cost and the median loss
of all approaches is almost the same. Nonetheless, with
the increase in the system dimension, the variance of the
performance index J also increases when using L2-based
regularization strategies.

5. CONCLUSIONS

In this work, we review and compare existing techniques
to handle noisy measurements in data-driven predictive
control. Our analysis shows that DMD can perform com-
parably to regularization-based strategies, when the hyper-
parameters are properly tuned and enough data are avail-
able. At the same time, it reveals the high sensitivity
of regularization to the choice of the penalty coefficients.
Meanwhile, our tests highlight the robustness of the strat-
egy relying on a maximum likelihood predictive model
since our setting complies with its main assumptions. Our
test further highlights the additional computational effort
required by identification-based regularization approaches,
which can be problematic when coping with fast sampling
systems. Future works will investigate strategies for the
reduction of the sensitivity of trajectory-based approaches
to the regularization weights, and methodologies for a safe
tuning of these hyper-parameters.
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Table 3. CPU time [s] to compute u(t) (benchmark system): mean ± standard deviation.

DMD L2 L2+slack L1 Weighted L2 Elastic net SMM

0.16±0.02 0.23±0.03 0.27±0.04 0.47±0.09 1.88±0.13 2.62±0.48 0.31±0.0.04

DMD L2 L2 Slack Weighted L2 L1 Elastic Net SMM
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Fig. 2. Closed-loop tests with Tv = 30: J in (23) over 10
Monte-Carlo runs for the random system.

the price one has to pay to include identification-oriented
insights in the regularization term is an increase in the
complexity of the optimal problem to be solved.

4.2 Monte-Carlo simulation on a random system

We then consider an asymptotically stable random system
with unknown order n = 10, with m = 5 inputs. As in
the first example, we consider input constraint |u| ≤ 2,
while we impose η = 22. We solve the DDPC problems
with prediction horizon L = 3, by imposing R = 0.01
and Q = I. In particular, we evaluate the effect of the
noise handling strategies over 10 different datasets of
length 500, collected applying input uniformly distributed
in the interval [−2, 2], where the output is corrupted by
an additive, Gaussian distributed white noise, yielding
SNR= 35 dB. Apart from the predictive control schemes
with L2 and slacks and L1 regularization, which show
higher performance variability, Fig. 2 clearly displays that
most approaches lead to comparable performance. Indeed,
the difference between the oracle cost and the median loss
of all approaches is almost the same. Nonetheless, with
the increase in the system dimension, the variance of the
performance index J also increases when using L2-based
regularization strategies.

5. CONCLUSIONS

In this work, we review and compare existing techniques
to handle noisy measurements in data-driven predictive
control. Our analysis shows that DMD can perform com-
parably to regularization-based strategies, when the hyper-
parameters are properly tuned and enough data are avail-
able. At the same time, it reveals the high sensitivity
of regularization to the choice of the penalty coefficients.
Meanwhile, our tests highlight the robustness of the strat-
egy relying on a maximum likelihood predictive model
since our setting complies with its main assumptions. Our
test further highlights the additional computational effort
required by identification-based regularization approaches,
which can be problematic when coping with fast sampling
systems. Future works will investigate strategies for the
reduction of the sensitivity of trajectory-based approaches
to the regularization weights, and methodologies for a safe
tuning of these hyper-parameters.
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