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1 Introduction This article is about solving large Markov chains in a new way. This
traditional topic, that is of direct relevance to queueing systems, has been receiving
a lot of attention since Google PageRank was introduced in 1998 to rank web pages
[4]. PageRank is the stationary distribution of a random walk with restart on the
graph of web pages connected by hyperlinks. Most common approach for computing
a stationary distribution of a Markov chain, is power iterations (PI), when the initial
probability vector is iteratively multiplied by the transition matrix till convergence.
Here I will explain a newRed-Light-Green-Light (RLGL) algorithm that we developed
with Konstantin Avrachenkov and Patrick Brown [2]. RLGL is fast, and generalizes
many methods, including PI, and the state-of-the-art Gauss-Southwell method for
PageRank.

2 Problem statement Consider an ergodic Markov chain with a finite state space
{1, 2, . . . , N } and transition probability matrix P = (pi j ), where pi j is the transition
probability from state i to state j . Let π∗ = (π∗

1 , π∗
2 , . . . , π∗

N ) be its stationary dis-
tribution. As a small example, in Figure 1(a), Anna, Boris and Cecile together form
a Markov chain. The stationary distribution is π∗ = (5/12, 4/12, 3/12). Figure 1(b)
shows convergence of PI, which I will interpret as cash transactions: the probability
of each state is its (positive) cash; at each iteration all states transfer all their cash pro-
portionally to the transition probabilities; in this example, there are five transactions
per iteration. The number of transactions till convergence is a relevant performance
measure because one transaction roughly corresponds to one computer operation.

An example of RLGL is worked out in Fig. 2a.1 Initially, all states have no cash.
At step t = 0, all states borrow one unit of cash and distribute it to the other states,
proportionally to the transition probabilities. Now, each state has debt−1, and income

1 If the table is not clear, in this video I fill out a similar table: https://player.vimeo.com/external/519732547.
hd.mp4?s=45b4736109005e144b0f792396f2fa7dba4a25bf&profile_id=174
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Fig. 1 a Three-state Markov chain. b Convergence of power iterations (PI). Horizontal axis: the number of
transactions (operations). Vertical axis: the probabilities (cash) of each state. Drawings by Natalia Litvak

received from the other states. Hence, some states have positive cash, some have
negative cash, and the total cash in the system is zero. Next, at each step t > 0,
a subset of states receive ‘green light’ and transfer all their cash proportionally to
the transition probabilities. The total cash in the system remains zero at all times. In
Fig. 2a, Boris receives green light at t = 1 and Cecile at t = 2. This is indicated
by the green circles. The algorithm returns the estimation π̂t,i of π∗

i , that is the cash
transferred by i , divided by the total cash transferred by all states before time t . Note
that π̂t,i is not a probability, it can be negative or greater than one.

Why does the RLGL algorithm converge to the correct π∗? Denote byCi,t the cash
of state i at the beginning of step t , define Ct = (C1,t ,C2,t , . . . ,CN ,t ), and let 1 be
the column vector of ones. It turns out that

π̂t = π∗ − 1

total cash transferred by all states before step t
Ct

∞∑

k=0

(Pk − 1π∗). (1)

The error term has factor Ct , so reducing cash means getting closer to the solution.
In Fig. 2a, after only 8 transactions, no one had cash left, and the algorithm returned
the exact answer! Compare this to the very rough approximation after 10 transactions
of PI in Fig. 1b. This also explains why the negative cash is so important. In fact, the
OPIC algorithm suggested in [1] works exactly as RLGL but uses only positive cash,
with fixed total amount. Then, the error term of OPIC is as in (1), butCt will not reduce
to zero, and thus the convergence occurs only due to the total transferred cash going
to infinity. This results in ||π̂t − π∗||1 reducing as O(1/t) rather than exponentially.

Figure 2b (from [2]) shows an example of the excellent performance of RLGL in
a larger real-life Markov chain. The results are promising, and there are many open
problems, which we will discuss in the next section.

3 Discussion The first obvious open problem is how to assign green lights. Notice
that in Fig. 2a, if Anna transferred cash first, convergence would take longer. In [2]
we computed the optimal policy for a three-state Markov chain, using dynamic pro-
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Fig. 2 aExample of theRLGL algorithm.bResults for a randomwalk on the strongly connected component
of the web crawl from www.harvard.edu in 2003, of 500 web pages (Suite Sparse Matrix Collection (http://
sparse.tamu.edu/)). On the horizontal axis is the number of transactions/operations. On the vertical axis is
the L1 distance (in the log-linear scale) to the correct stationary distribution. GS stands for the Gauss-Seidel
algorithm. Different versions of the RLGL algorithm correspond to the different choices of green light (see
[2]). RLGL-Theta gives green light to a fraction of states with maximal absolute cash

gramming. The performance of the optimal policy is impressive, but its form, even for
three states, depends on the cash values in a very intricate way, which we could not
describe analytically.

Another problem is, how to derive convergence rates. In [2] we could express ||Ct ||1
through the total variation distance between two Markov chains and used coupling.
However, these two Markov chains are inhomogeneous and dependent through the
sequence of green lights, so we could prove exponential convergence only in special
cases, e.g., when green lights are cyclic. The problem might be easier if a Markov
chain has more structure, as we often see in queueing theory. Philippe Robert and I
analyzed OPIC in this setting [5]. Also, for some sparse Markov chains, maybe RLGL
can be related to some kind of branching process, as it was done for random walks,
e.g., in [3].

Finally, ideally, RLGL could work in a distributed way, when each state decides
when to transfer its cash. Then, maybe it will be useful to treat each state as a queue
with a positive or a negative workload. RLGL, hopefully, will be used to solve large
queueing systems, but maybe queueing systems can be used to solve RLGL.
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