
UW Biostatistics Working Paper Series

12-5-2012

A National Model Built with Partial Least Squares
and Universal Kriging and Bootstrap-based
Measurement Error Correction Techniques: An
Application to the Multi-Ethnic Study of
Atherosclerosis
Silas Bergen
University of Washington - Seattle Campus, srbergen@uw.edu

Lianne Sheppard
University of Washington - Seattle Campus, sheppard@u.washington.edu

Paul D. Sampson
University of Washington - Seattle Campus, pds@u.washington.edu

Sun-Young Kim
University of Washington - Seattle Campus, puha0@u.washington.edu

Mark Richards
University of Washington - Seattle Campus, markr9@u.washington.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Bergen, Silas; Sheppard, Lianne; Sampson, Paul D.; Kim, Sun-Young; Richards, Mark; Vedal, Sverre; Kaufman, Joel; and Szpiro, Adam
A., "A National Model Built with Partial Least Squares and Universal Kriging and Bootstrap-based Measurement Error Correction
Techniques: An Application to the Multi-Ethnic Study of Atherosclerosis" (December 2012). UW Biostatistics Working Paper Series.
Working Paper 386.
http://biostats.bepress.com/uwbiostat/paper386

http://biostats.bepress.com/uwbiostat


See next page for additional authors



Authors
Silas Bergen, Lianne Sheppard, Paul D. Sampson, Sun-Young Kim, Mark Richards, Sverre Vedal, Joel
Kaufman, and Adam A. Szpiro

This article is available at Collection of Biostatistics Research Archive: http://biostats.bepress.com/uwbiostat/paper386

http://biostats.bepress.com/uwbiostat/paper386


A national model built with partial least squares and universal kriging

and bootstrap-based measurement error correction techniques: an

application to the Multi-Ethnic Study of Atherosclerosis (MESA)

Silas Bergen ∗ Lianne Sheppard † Paul D. Sampson ‡ Sun Young Kim §

Mark Richards ¶ Sverre Vedal ‖ Joel D. Kaufman ∗∗ Adam A. Szpiro ††

Last revised: 4th December 2012

Abstract

Studies estimating health effects of long-term air pollution exposure often use a two-stage approach, building

exposure models to assign individual-level exposures which are then used in regression analyses. This requires

accurate exposure modeling and careful treatment of exposure measurement error. To illustrate the importance

of carefully accounting for exposure model characteristics in two-stage air pollution studies, we consider a case

study based on data from the Multi-Ethnic Study of Atherosclerosis (MESA). We present national spatial

exposure models that use partial least squares and universal kriging to estimate annual average concentrations

of four PM2.5 components: elemental carbon (EC), organic carbon (OC), sulfur (S), and silicon (Si). Our models

perform well, with cross-validated R2s ranging from 0.62 to 0.95. We predict PM2.5 component exposures for the

MESA cohort and estimate cross-sectional associations with carotid intima-media thickness (CIMT), adjusting

for subject-specific covariates. In näıve analyses that do not account for measurement error, we find statistically

significant associations between CIMT and increased exposure to OC, S, and Si. We correct for measurement

error using recently developed methods that account for the spatial structure of predicted exposures. OC exhibits

little spatial correlation, and the corrected inference is unchanged from the näıve analysis. The S and Si exposure

surfaces display notable spatial correlation, resulting in corrected confidence intervals (CIs) that are 50% wider

than the näıve CIs, but that are still statistically significant. The impact on health effect inference is concordant

with the degree of spatial correlation in the exposure surfaces.
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1 Introduction

The relationship between air pollution and adverse health outcomes has been well-documented (Samet

et al., 2000, Pope et al., 2002). Many studies focus on particulate matter, specifically particulate matter

less than 2.5 µm in aerodynamic diameter (PM2.5) (Miller et al., 2007, Kim et al., 2009). Health effects

of PM2.5 could depend on characteristics of the particles, including shape, solubility, pH, or chemical

composition (Vedal et al., 2012), and a deeper understanding of these differential effects could help

inform policy. One of the challenges in assessing the impact of different chemical components of PM2.5

in an epidemiology study is the need to assign exposures to study participants based on monitoring

data at different locations (i.e., spatially misaligned data). When doing this for many components, the

assignment or prediction procedure needs to be streamlined in order to be practical. Whatever the

prediction algorithm, using the estimated rather than true exposures induces measurement error in the

subsequent epidemiologic analysis. This paper describes a flexible and efficient prediction model that

can be applied on a national scale to assign estimates of long-term exposure levels for components of

PM2.5. It then illustrates application of the predictions in a health analysis of the Multi-Ethnic Study

of Atherosclerosis (MESA) cohort and incorporates appropriate techniques to correct for the impact of

measurement error. We find that the importance of accounting for measurement error varies between

chemical components, depending on the level of spatial structure inherent in the respective pollutant

surfaces.

Current methods for assigning exposures include land-use regression (LUR) with Geographic In-

formation System (GIS) covariates (Brauer et al., 2003, Hoek et al., 2008) and universal kriging (UK)

(Jerrett et al., 2005, Künzli et al., 2005) that also exploits residual spatial structure (Kim et al., 2009,

Mercer et al., 2011). There are often many candidate GIS covariates, including some that are cor-

related with each other, necessitating a dimension reduction procedure. Variable selection methods

that have been considered in the literature include exhaustive search, stepwise selection, and shrinkage

by the “lasso”(Tibshirani, 1996, Mercer et al., 2011). However, variable selection methods tend to

be computationally intensive and require significant analyst time, feasible perhaps when considering a

single pollutant but quickly becoming impractical when attempting to develop predictions for multiple

pollutants. A more streamlined alternative is partial least squares (PLS) (Sampson et al., 2009, Abdi,

2003). This method finds a small number of linear combinations of the GIS covariates that most

efficiently account for variability in the measured concentrations. These linear combinations, known
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as “scores”, effectively reduce the covariate space to a much smaller dimension. The resulting scores

can then be used as the mean structure in a LUR or UK model in place of individual GIS covariates.

This provides the advantages of using all available GIS covariates and eliminating potentially time-

consuming variable selection processes. We employ a combination of PLS and universal kriging to

develop a flexible and efficient national prediction model to estimate long-term average concentrations

of four chemical species of PM2.5: elemental carbon (EC), organic carbon (OC), silicon (Si) and sulfur

(S).

Using exposures predicted from spatially misaligned data rather than true exposures in health

models introduces measurement error that may have implications for β̂X , the estimated health model

coefficient of interest (Madsen et al., 2008, Gryparis et al., 2009, Szpiro et al., 2011b). Zeger et al. (2000)

point out that this exposure measurement error may have substantial implications for interpreting

epidemiologic air pollution studies and emphasize that great care must be taken with interpretation of

such epidemiologic studies when measurement error is present. Molitor et al. (2007) discuss the impact

on the health model coefficient of interest and confidence interval width when spatial autocorrelation

is exploited, using hierarchical Bayesian models. Those models do not explicitly estimate subject-level

exposure but rather treat it as a latent variable. Our treatment of measurement error focuses instead

on a 2-step approach in which exposures are explicitly calculated and used in health modeling. In

this context, Berkson-like error that arises from smoothing the true exposure surface may inflate the

standard error of β̂X . Classical-like error results from estimating the prediction model parameters, and

may bias β̂X in addition to inflating its standard error. Bootstrap methods to adjust for the effects of

measurement error have been discussed in Szpiro et al. (2011b).

We derive predictions of component concentrations using our national exposure models, and use

them as the covariates of interest in health analyses assessing associations between carotid intima-

media thickness (CIMT), a subclinical measure of atherosclerosis, and air pollution exposure. These

results have also been described elsewhere (Vedal et al., 2012). We then apply measurement error

correction methods to account for the fact that predicted rather than true exposures are being used in

these health models.

This article is organized as follows: Section 2.1 describes the MESA cohort used for the health

modeling, and the monitoring data used to develop the exposure models. Section 2.2 gives notation for

and describes the cross-validation procedure used to assess the exposure models. Section 2.3 describes
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the health models and measurement error correction techniques. Section 3 gives results of the exposure

modeling and cross-validation and the results of health analyses with and without measurement error

correction. Section 4 discusses characteristics of the individual pollutant exposure models and how

features of the pollutant surfaces are reflected in the measurement error correction results.

2 Methods

2.1 Data

2.1.1 MESA Cohort

The Multi-Ethnic Study of Atherosclerosis (MESA) study is a population-based study that began in

2000, with a cohort consisting of 6,814 participants from six U.S. cities: Los Angeles, CA; St. Paul,

MN; Chicago, IL; Winston-Salem, NC; New York, NY; and Baltimore, MD. Four ethnic/racial groups

were targeted: white, African American, Hispanic, and Chinese American. All participants were free

of clinical cardiovascular disease at time of entrance.

We illustrate our approach using the common carotid intima-media thickness (CIMT) endpoint in

MESA. CIMT, a subclinical measure of atherosclerosis, was measured by B-mode ultrasound using a

GE Logiq scanner, and the endpoint was quantified as the right far wall CIMT measures conducted

during MESA exam 1, which took place for 2000-2002 (Vedal et al., 2012). We considered the 5,501

MESA participants who had CIMT measures during exam 1; our analysis was based on the 5,298 MESA

participants who had IMT measures during exam 1 and complete values of confounding variables.

2.1.2 Monitoring data

Data on EC, OC, Si and S were collected to build the national model. These data consisted of

annual averages from 2009-2010 as measured by the EPA’s Interagency Monitoring for Protected Visual

Environments (IMPROVE) (Eldred et al., 1988) and Chemical Speciation Network (CSN) (EPA 2009).

The IMPROVE monitors are a nation-wide network located mostly in national parks and other remote

areas. The CSN monitors are in more urban areas. These two networks provide data that are evenly

dispersed throughout the lower 48 states (Figure 1).

All CSN and IMPROVE monitors that had at least 10 data points per quarter and a maximum

of 45 days between measurements were included in our analyses. For Si and S, averages were over
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01/01/2009-12/31-2009. The EC/OC data set consisted of 204 IMPROVE and CSN monitors averaged

over 01/01/2009-12/31-2009, and 51 CSN monitors averaged over 05/01/2009-04/30/2010. The latter

period was used since prior to 05/01/2009 these monitors used a protocol that was incompatible

with the IMPROVE network. Comparing averages over 05/01/2009-04/30/2010 to those which used

comparable protocol over 01/01/2009-12/31-2009 indicated little difference between the time periods.

The annual averages were square-root transformed prior to modeling.

2.1.3 Geographic covariates

For all monitor and subject locations, approximately 600 LUR covariates were available. These included

distances to A1, A2, and A3 roads (Census Feature Class Codes (CFCC)); land use within a given

buffer; population density within a given buffer; and normalized difference vegetation index (NDVI)

which measures the level of vegetation in a monitor’s vicinity. CFCC A1 roads are limited access

highways; A2 and A3 roads are other major roads such as county and state highways without limited

access (Mercer et al., 2011). For NDVI a series of 23 monitor-specific, 16-day composite satellite images

were obtained, and the pixels within a given buffer averaged for each image. PLS incorporated the

25th, 50th and 75th percentile of these 23 averages. The median of “high-vegetation season” image

averages (defined as April 1-September 30) and “low-vegetation season” averages (October 1-March 31)

were also included. For more detailed information about the land use variables see Anderson (1976).

Before building our exposure models, we conducted variable pre-processing to eliminate LUR cov-

ariates that were too homogeneous or outlier-prone to be of use. We eliminated variables with > 85%

identical values, and those with the most extreme standardized outlier > 7. We log-transformed and

truncated all distance variables at 10 km and computed additional “compiled” distance variables such

as minimum distance to major roads, distance to any port, etc. These compiled variables were then

subject to the same inclusion criteria. All selected covariates were mean-centered and scaled by their

respective standard deviations.

2.2 Spatial prediction models

2.2.1 Notation

To describe our exposure models, we introduce some notation. Let X∗ denote the N∗ × 1 vector

of observed square-root transformed concentrations at monitor locations; R∗ the N∗ × p matrix of
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geographic covariates at monitor locations; X the N × 1 vector of unknown square-root transformed

concentrations at the unobserved subject locations; and R the N × p matrix of geographic covariates

at subject locations. PLS was used to decompose R∗ into a set of linear combinations of much smaller

dimension than the space of the covariates R∗. Specifically,

R∗H = T∗.

Here, H is a p× k matrix of weights for the geographic covariates, and T∗ is an N∗ × k matrix of

PLS components or scores. Let H = {h1, ...,hk} and T∗ = {t∗1, ..., t∗k}. The weights hi for i = 1, ..., k

are found in such a way that t∗1 = R∗h1 is the score of maximum covariance with X∗, subject to

hT1 h1 = 1; t∗2 = R∗h2 is orthogonal to t∗1 and is the score that explains as much remaining covariance

as possible with X∗, etc. In practice, k � p, leaving us with a set of orthogonal scores that are designed

to explain the covariance of R∗ and X∗ as efficiently as possible. More details can be found in Abdi

(2003). PLS scores at unobserved locations are then found by simply computing T = RH.

Once the PLS components T and T∗ were obtained for the unobserved and monitoring locations,

the following joint model was assumed to motivate predictions,

 X

X∗

 =

 T

T∗

α+

 η
η∗

 . (1)

It is now implicitly assumed that T and T∗ each contain a 1 vector of appropriate length. Here, α

is a (k + 1) × 1 vector containing an intercept and the coefficients for the k PLS scores, and η, η∗

are N × 1 and N∗ × 1 vectors of errors. For the prediction models which used only PLS, η and η∗

were assumed to be independent. Under this assumption, we estimated α using a least-squares fit to

regression of X∗ on T∗, let this estimate be denoted by α̂pls. PLS-only predictions at the unobserved

locations were then obtained by computing Tα̂pls.

The second prediction modeling scenario did not assume independence of η and η∗ but instead

assumed a joint distribution, specified as

 η
η∗

 ∼ N

0

0

 ,

Σ11(θθθ) Σ12(θθθ)

Σ21(θθθ) Σ22(θθθ)


 . (2)

Here each corner of the covariance matrix is a kriging covariance matrix parameterized by a common
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vector of parameters θθθ = (τ2, σ2, φ) (Cressie, 1992). τ2 is the nugget, interpretable as the amount of

variability in the pollution exposures that is unexplainable by spatial structure; σ2 is the partial sill,

interpretable as the amount of variability that is explainable by spatial structure; and φ is the range,

interpretable as the maximum distance between two locations beyond which they may no longer be

considered spatially correlated. Several variogram models are available to define the covariance between

two locations. The exponential variogram was used for EC, OC and S, but provided a poor fit for Si.

We therefore examined cubic and spherical variograms and found the spherical variogram provided a

much better fit and used it to model Si in our exposure models. Given an assumed variogram, the

parameters θθθ and αuk were estimated by profile maximum likelihood.

Once the estimates α̂uk and θ̂θθ were obtained, the universal kriging predictions were computed by

the conditional expectation formula,

Wuk = Tα̂uk + Σ12(θ̂θθ)Σ22(θ̂θθ)−1(X∗ −T∗α̂uk). (3)

2.2.2 Cross-validation and Model Selection

10-fold cross-validation (Hastie et al., 2001) was used to assess the models’ prediction accuracy, to

compare predictions generated using PLS only to those generated using PLS combined with UK, and

to select the number of PLS components to use in the final prediction models. Data were randomly

assigned to one of ten groups. One group (a “test set”) was omitted, and the remaining groups (a

“training set”) were used to fit the model and generate test set predictions. Each group played the

role of test set until predictions were obtained for the entire data set. At each iteration, the following

steps were taken:

1. PLS was fit using the training set, and K scores were computed for the test set, for K = 1, ..., 10.

α̂pls was calculated using the training set for each set of scores.

2. UK parameters θθθ and coefficients αuk were estimated using the training set. The first K PLS

scores played the role of T∗ in Equation 1, for K = 1, ..., 10.

3. PLS-only predictions were generated using the first K components and corresponding α̂pls. An

analogous set of predictions was derived using the first K PLS components and the corresponding

UK, using (α̂uk, θ̂θθ) estimated from the training set.

7
Hosted by The Berkeley Electronic Press



The R package pls (Wehrens et al., 2006, R Development Core Team, 2010) was used to fit the

PLS. UK was done using the R package geoR (Ribeiro Jr and Diggle, 2001). The best-performing

models were selected based on their cross-validated root mean squared prediction error (RMSEP) and

corresponding R2. For a data set with N∗ observations and corresponding predictions, the formulae

for these performance metrics are given by

RMSEP =

√∑N∗

i=1(Obsi − Predi)2

N∗
,

R2 = max

(
0, 1− RMSEP2

Var(Obs)

)
.

These metrics are sensitive to scale; accordingly they are useful for evaluating model performance for

a given pollutant, but not for comparing models across pollutants.

2.3 Health modeling

2.3.1 Disease model

Multivariable linear regression models were used to estimate the effects of PM2.5 component exposure

on CIMT. Each model included a single PM2.5 component along with a vector of subject-specific

covariates. Let Y be the 5501 × 1 vector of health outcomes, W2 the 5501 × 1 vector of predictions,

and Z a matrix of potential confounders. Note that W2 and X2 respectively refer to the predicted and

true exposures on the native scale, as all the exposure modeling was done on the square root scale.

We assumed the following linear model relating Y to X

Y = β0 + X2βX + ZβZ + ε, (4)

where (ε1, ..., εN ) were assumed i.i.d. N(0, σ2
ε ) random variables, and derived β̂X by ordinary least

squares (OLS).

2.3.2 Measurement Error Correction

The model in Equation 4 was fit using the predicted exposures W2 instead of the true exposures X2 as

the covariate of interest. Using predictions rather than true exposures in health modeling introduces
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two sources of measurement error that potentially influence the behavior of β̂X . Berkson-like error

arises from smoothing the true exposure surface and could inflate the standard error of β̂X . Classical-

like error arises from estimating the exposure model parameters αuk and θθθ. The classical-like error

potentially inflates the standard error of β̂X and could also bias the estimate. The parametric and

parameter bootstraps were used to correct for the effects of measurement error. See Szpiro et al.

(2011b) for additional background and details.

We describe the parametric bootstrap in the context of predictions that use both PLS and UK; the

approach would be very similar if PLS alone was used (though we did not implement that correction

here). The parametric bootstrap is defined given a set of health outcomes Y and subject-specific

covariates Z for participants, true square-root transformed exposures X∗ at monitoring sites, and

geographic covariates R and R∗ at participant and monitoring locations, respectively;

1. Derive geographic covariate weights H from R∗ and X∗, and hence PLS scores T and T∗ at

unobserved and observed locations, respectively.

2. Estimate exposure model parameters αuk and log(θθθ) by nonlinear optimization using X∗ and

T∗, exploiting the likelihood defined by Equations 1 and 2.

3. Derive Wuk from Equation 3, use W2
uk in Equation 4 place of X2 along with Z to estimate health

model parameters β̂0, β̂X , β̂Z and σ̂2
ε .

4. For j = 1, ..., B bootstrap samples:

(a) Simulate X∗j (and Xj) from Equation 1 and Yj from Equation 4, using α̂uk, θ̂θθ, β̂0, β̂X , β̂Z

and σ̂2
ε in place of unknown parameters

(b) Estimate new exposure parameters α̂uk,j and log(θ̂θθj) by nonlinear optimization using X∗j

(c) Plug α̂uk,j , θ̂θθj and X∗j into Equation 3 to derive Wuk,j

(d) Calculate β̂X,j using W2
uk,j by OLS in Equation 4.

5. Calculate a bootstrap bias estimate, B̂iasp(β̂X), and the corresponding corrected effect estimate

β̂correctedX,p = β̂X − B̂iasp(β̂X). We give details on calculating B̂iasp(β̂X) below.

6. Estimate the bootstrap standard error as
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ŜE(β̂X) =

√√√√∑B
j=1

(
β̂X,j − 1

B

∑B
j=1(β̂X,j)

)2

B
.

For the parametric bootstrap we set B = 15, 000. Note that using Step 6 to estimate the standard

error of β̂correctedX,p will give an underestimate, as it does not account for the additional variability

introduced by B̂iasp(β̂X). To fully account for this variability we would need to perform a nested

bootstrap within each original bootstrap sample; however as discussed in Szpiro et al. (2011b) (and

as exemplified in our results) the estimated bias is so small that this underestimation is ignorable in

practice.

An undesirable trait of the parametric bootstrap is the computational time required to implement

it, as it requires B non-linear optimizations. The parameter bootstrap is similar to the parametric

bootstrap, but is much more time-efficient. It involves estimating a sampling distribution for α̂uk and

log(θ̂θθ), and sampling α̂uk,j and log(θ̂θθj) from this distribution rather than estimating them via nonlinear

optimization as in Step 4(b) of the parametric bootstrap (Szpiro et al., 2011b). For our implementation

we estimated the sampling distribution of (α̂uk,j , log(θ̂θθj)) with a multivariate Gaussian distribution

centered at (α̂uk, log(θ̂θθ)) with a covariance matrix specified by the estimated inverse Hessian of the

likelihood.

Another attractive feature of the parameter bootstrap is the ability to control the amount of

variability in the sampling distribution of α̂uk,j and θ̂θθj , by simply multiplying the estimated covariance

matrix by a factor λ ≥ 0. This generalization of the parameter bootstrap allows for investigation of

how variability in the sampling distribution of (α̂uk, log(θ̂θθ)) affects the bias of β̂X , which can be useful

in refining our bootstrap bias estimates by simulation extrapolation (SIMEX) (Stefanski and Cook,

1995). In the Appendix we describe our approach to SIMEX in greater detail and give the results of

applying it to the MESA data.

The partial parametric bootstrap simulates bootstrap exposures from Equation 1 using the original

estimates (α̂uk, log(θ̂θθ)) throughout. This approach corrects for the Berkson-like error only, since the

parameter estimates remain fixed. The partial parametric bootstrap is equivalent to the generalization

of the parameter bootstrap with λ = 0.

Let Eλ(β̂BX) denote the empirical mean of the parameter bootstrapped β̂X implemented with a

given value λ, and Ep(β̂
B
X) the empirical mean of the parametric bootstrapped β̂BX . The bias of β̂X
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estimated by the parameter bootstrap with multiplier λ is then defined as

B̂iasλ(β̂X) =
(
Eλ(β̂BX)− E0(β̂BX)

)
.

For our main analysis we implemented the parameter bootstrap for λ = 1, the value which makes

the parameter bootstrap theoretically equivalent to the parametric bootstrap. The corresponding

bias-corrected effect estimate is

β̂correctedX,1 = β̂X − B̂ias1(β̂X).

The bias estimated by the parametric bootstrap is similarly derived as

B̂iasp(β̂X) =
(
Ep(β̂

B
X)− E0(β̂BX)

)
,

with corresponding correction

β̂correctedX,p = β̂X − B̂iasp(β̂X).

3 Results

3.1 Data

3.1.1 MESA cohort

Summary statistics for the MESA cohort are in Table 1. Mean CIMT was 0.68 mm. The other variables

summarized are the ones that were included as covariates in the health model. The mean age was 62

years, and the cohort was 52% female. 39% were white, 27% African-American, 22% Hispanic, and 12%

Chinese. 44% had hypertension and 15% used a statin drug. The highest percentage of participants

resided in Los Angeles (19.7%), but the distribution across the 6 cities was quite homogeneous. Only

the 5,298 participants that had complete values of all the variables listed in Tables 1 were included in

the analysis.

3.1.2 Monitoring data

Concentrations of the four pollutants by monitoring network are shown in Table 2. Table 2 indicates

that the EC and OC concentrations measured by CSN monitors tended to be higher than those
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measured by IMPROVE monitors. Average Si and S concentrations measured by CSN monitors were

also higher than the IMPROVE averages, but relative to their standard deviations the differences

between CSN and IMPROVE monitors in Si and S concentrations were not as great as the EC and

OC concentrations.

3.1.3 Geographic Covariates

The geographic variables that were selected as a result of the pre-processing procedure discussed in

Section 2.1.3 are shown in Table 3. Table 2 shows the distributions of select geographic covariates,

by monitoring network and at MESA locations. The summaries in Table 2 reflect the difference in

placement between the IMPROVE and CSN monitors. Although relatively few monitors belonging

to either IMPROVE or CSN were within 150 m of an A1 road there was a larger proportion of CSN

monitors within 150 m of an A3 road (44%) than IMPROVE (19%). The median distance to commercial

and service centers was much smaller for CSN monitors (127 m) than it was for IMPROVE monitors

(4696 m). The median population density was much larger for CSN monitors (805 people/mi2) than for

IMPROVE monitors (only 3 people/mi2). The median summer NDVI values within 250 m were slightly

smaller for CSN monitors than for IMPROVE monitors, indicating IMPROVE monitors were located

in greener areas. Table 2 also shows that MESA participant locations had covariate distributions that

more closely mirrored the CSN monitors, as is especially evident for the number of sites less than 150

m from an A3 road and median population density.

3.2 Spatial prediction models

3.2.1 Model evaluation

The selected models corresponding to lowest cross-validated R2 all used PLS and UK. Table 4 shows

the number of PLS components used and the R2 and RMSEP for the selected prediction models.

The CV statistics for the PLS only models are shown to illustrate the extent to which UK improved

prediction accuracy. EC and OC were minimally improved; there was more improvement evident for

Si and substantial improvement for the S predictions. The ratio of the nugget to the sill given in Table

4 also indicates the importance of spatial smoothing. For a fixed range, smaller values of this ratio

indicate that there is more information about concentration variability at nearby locations and thus

UK predictions draw heavily from nearby monitors.
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3.2.2 Interpretation of partial least squares

Figure 2 can be used to examine which of the geographic covariates were most important for explaining

pollutant variability. Specifically, Figure 2 summarizes the p × 1 vector M = Hα̂pls, the vector such

that RM equals the PLS-only predicted exposures. Positive coefficient values indicate that increases

in that geographic covariate were associated with higher predicted exposure; the larger the value,

the more marked the association. For EC, OC and S, population density was heavily relied on to

explain exposure. In addition, the NDVI, intense land use, emissions, and line-length variables were all

positively associated with exposure, while the distance to source variables were negatively associated.

The NDVI variables were more heavily exploited for OC and S than they were for EC. For Si, the

NDVI and intense land use variables appeared to be the most informative and were mostly negatively

associated with Si exposure. Proximity to features appeared to be informative for all four pollutants.

3.2.3 Exposure predictions

Figure 1 shows the predicted national concentrations, with finer detail illustrated for St. Paul, MN.

The EC and OC predictions were much higher in the middle of urban areas, and quickly dissipated

further from urban centers. S predictions were high across the midwestern and eastern states and in

the Los Angeles area, and lower in the plains and mountains. Si predictions were low in most urban

areas, and high in desert states.

Table 2 summarizes the predicted exposures for the MESA participants. Mean predicted EC and

OC exposure concentration were 0.74 and 2.17 µg/m3, respectively. Mean predicted Si and S exposure

concentration was 0.09 ng/m3 and 0.78 µg/m3, respectively.

3.3 Health models

The results from the näıve health model that did not include any measurement error correction, as

well as the results from the health modeling that included bootstrap-corrected point estimates and

standard errors of β̂X , are displayed in Table 5. The näıve analysis found significant associations

between OC, Si, and S and elevated CIMT. There was also evidence of association with EC, but

this was not statistically significant. The point estimates and standard errors for the EC and OC

health effects were virtually unchanged when measurement error correction was implemented, while

the bootstrap-corrected standard errors for Si and S were about 50% larger than their respective näıve
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estimates. The estimated biases resulting from the classical-like measurement error were so small as

to be uninteresting from an epidemiologic perspective; however we found notable differences between

the bias estimates from the parameter and parametric bootstraps which we discuss in the Appendix.

4 Discussion

We have presented a comprehensive 2-step approach to analyzing long-term effects of air pollution

exposure. We estimated exposure to PM2.5 components and assessed their impact on a sub-clinical

measure of atherosclerosis (CIMT) in the MESA cohort. This approach includes a national prediction

model for individual components and correction for measurement error in the epidemiologic analysis

using a methodology that accounts for differing amounts of spatial structure in the exposure surfaces.

We find that a national approach to exposure modeling is reasonable and performs well in terms of

prediction accuracy, with R2 no lower than 0.62 for any of the PM2.5 components and ranging to as

large as 0.95. Our exposure models are also useful in terms of understanding the spatial nature of our

exposure surfaces, which can be ascertained by comparing cross-validation results from models based

purely on PLS to those from models that also incorporate kriging.

To interpret the measurement error results, it is helpful to take note of the relative importance of the

PLS and kriging aspects of the four prediction models. For EC and OC, using PLS alone was sufficient

to make accurate predictions, whereas the spatial smoothing from UK was much more important

in improving prediction accuracy for Si and S. It is accordingly no coincidence that the bootstrap-

corrected standard error estimates for EC and OC were unchanged from the näıve estimates, while the

corrected SE estimates for Si and S were about 50% larger than their respective näıve estimates. The

fact that the EC and OC exposure predictions were derived mostly from the PLS components only

with independent residuals implies that the Berkson-like error was almost pure Berkson error (i.e.,

independent across location), which is correctly accounted for by näıve standard error estimates. On

the other hand, the importance of kriging for Si and S indicates that much more spatial smoothing

took place for these pollutants which induced spatial correlation in the residual difference between

true and predicted exposure. Accordingly, standard errors that correctly account for the Berkson-like

error in these two pollutants are inflated because the correlated errors in the predictions translate

into correlated residuals in the disease model that are not accounted for by näıve standard error

estimates (Szpiro et al., 2011b) . The fact that the standard error estimates from the parameter and
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parametric bootstraps (which account for both Berkson-like and classical-like error) and the partial

parametric bootstrap (which accounts only for Berkson-like error) were so similar further indicates

that the larger corrected SE estimates were indeed most likely a result of the Berkson-like error. None

of our measurement error analyses indicated that any important bias was induced by the classical-like

error.

We can interpret our measurement error findings from the perspective of how the exposure variab-

ility is partitioned into between-city and within-city variability. For Si and S most of the variability

is between-cities, so näıve standard error estimates fail to account for uncertainty due to the choice

of the specific six MESA Air cities. On the other hand, for EC and OC the variability in exposure is

primarily within-city so the choice of specific cities is not as important. For all components, we cannot

rule out confounding by city in the present analysis without adjusting for city with a fixed effect. Doing

this results in a significant loss of study power (results not shown).

We also note that our measurement error correction methods rely on a linear health model. Since

the exposure modeling was done on the square root scale and the health modeling on the native scale,

the Berkson-like error could potentially induce bias in β̂X . However, if this were a significant source

of bias the bootstrap methods would detect it. In our application we did not see any evidence of bias

from the Berkson-like error.

Our results show that careful investigation of the exposure model characteristics can help to clarify

the implications for the subsequence epidemiologic analyses that use the predicted exposures. As is

pointed out in Szpiro et al. (2011a), such an overarching framework that considers the end goal of

health modeling is a more reasonable and scientifically valid approach than treating exposure models

as if they exist for their own sake; doing the latter can even potentially lead to selecting exposure

models that generate accurate predictions but lead to anti-conservative or more biased health effect

inference. This analysis serves as an example that will inform ongoing efforts by our group and others

to construct and utilize exposure prediction models that are most suitable for epidemiologic studies.
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Variable N
Mean (SD)
or %

CIMT 5501 0.68 (0.19)

Age 5501 61.9 (10.1)
Weight (lb) 5501 173.0 (37.5)
Height (cm) 5501 166.6 (10.0)
Waist (cm) 5500 97.8 (14.1)

Body surface area 5501 1.9 (0.2)
BMI (kg/m2) 5501 28.2 (5.3)

DBP 5499 71.8 (10.3)

Gender

Female 2872 52.2
Male 2629 47.8

Race

White, caucasian 2168 39.4
Chinese American 675 12.3

Black, African-American 1459 26.5
Hispanic 1199 21.8

Site

New York 867 15.8
Baltimore 776 14.1

St. Paul & Minneapolis 899 16.3
Chicago 998 18.1

Los Angeles 1083 19.7

Education

Complete high school 991 18.0
Some college 1571 28.6

Complete college 2010 36.5
Missing 13 0.2

Income

< $12, 000 566 10.3
$12,000-24,999 1022 18.6
$25000-49999 1543 28.0
$50000-74999 901 16.4
> $75000 1271 23.1
Missing 198 3.6

Hypertension

No 3106 56.5
Yes 2395 43.5

Statin use

No 4681 85.1
Yes 817 14.9

Missing 3 0.1

Table 1: Summary of characteristics of the MESA cohort. Only variables that were used in the health
modeling are summarized here.
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Location # Sites EC (µg/m3) OC (µg/m3) Si (ng/m3) S (µg/m3)
#Sites <150m
to A1 (%)

# Sites <150m
to A3 (%)

Med dist to
Comma Med Pop densb NDVIc

IMPROVE 190 0.19 (0.18) 0.93 (0.55) 0.16 (0.12) 0.41 (0.27) 4 (2) 36 (19) 4696 3 150
CSN 98 0.66 (0.24) 2.23 (0.71) 0.10 (0.09) 0.69 (0.25) 3 (3) 43 (44) 127 805 140

All monitors 288 0.37 (0.30) 1.43 (0.88) 0.14 (0.11) 0.51 (0.29) 7 (2) 79 (27) 1235 20 146
MESA Air 5501 0.74 (0.18) 2.17 (0.36) 0.09 (0.03) 0.78 (0.15) 349 (6) 2763 (50) 302 3496 137

a Median distance to commercial or service centers, in meters
b People/mi2 for census block/block group monitor/subject belongs to
c Median value of summer NDVI medians within 250m buffer

Table 2: Mean (SD) concentration at IMPROVE and CSN monitoring networks and over both networks
taken together; and predicted concentrations for the MESA Air cohort. Also shown are summary
statistics of selected land-use regression covariates.
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Figure 2 abbreviation Variable description Buffer sizes
Distance to features, in kma

distance to features

A1 road NA
Nearest road NA
Airport NA
Large airport NA
Port NA

Coastline‡ NA
Commercial or service center NA
Railroad NA
Railyard NA

Emissionsb

so2 SO2 30km

pm25 PM
†
2.5 30km

pm10 PM
†
10 30km

nox NOX 30km
Population

population log10 population density 500m, 1km, 1.5km, 2km,
2.5km, 3km, 5km, 10km, 15km

NDVI
ndvi.winter Median winter 250m, 500m, 1km, 2.5km,

5km, 7.5km, 10km
ndvi.summer Median summer 250m, 500m, 1km, 2.5km,

5km, 7.5km, 10km

ndvi.q75 75th %ile 250m, 500m, 1km, 2.5km,
5km, 7.5km, 10km

ndvi.q50 50th %ile 250m, 500m, 1km, 2.5km,
5km, 7.5km, 10km

ndvi.q25 25th %ile 250m, 500m, 1km, 2.5km,
5km, 7.5km, 10km

Land use
transport Transportation, communities and utilities 750m, 3km, 5km,

10km, 15km
transition Transitional areas 15km

stream Streams and canals 3km†, 5km, 10km, 15km
shrub Shrub and brush rangeland 1.5km, 3km, 5km,

10km, 15km
resi Residential 400m, 500m, 750m, 1km,

1.5km, 3km, 5km, 10km, 15km

oth.urban Other urban or built-up 400m†, 500m, 1.5km, 3km,
5km, 10km, 15km

mix.range Mixed rangeland 3km, 5km, 10km, 15km
mix.forest Mixed forest land 750m, 1km, 1.5km, 3km,

5km, 10km, 15km

lakes Lakes † 10 km
industrial Industrial 1km∗, 1.5km∗, 3km, 5km,

10km, 15km

industcomm Industrial and commercial complexes † 15km

herb.range Herbaceous rangeland 3km†, 5km, 10km
green Evergreen forest land 400m, 500m, 750m, 1km,

1.5km, 3km, 5km, 10km, 15km
forest Deciduous forest land 750m, 1km, 1.5km, 3km,

5km, 10km, 15km
crop Cropland and pasture 400m, 500m, 750m, 1km,

1.5km, 3km, 5km, 10km, 15km
comm Commercial and services 500m, 750m, 1km, 1.5km,

3km, 5km, 10km, 15km
Line lengths

a23 Total dist of A2 and A3 roads within buffer 100m, 150m, 300m, 400m,
500m, 750m, 1km, 1.5km, 3km, 5km

a1 Total dist of A1 roads within buffer 1km, 1.5km, 3km, 5km
a Truncated at 25km and log10 transformed
bTons per year of emissions from tall stacks
† Variable used for modelling Si, S only
∗ Variable used for modelling EC, OC only
‡ log10 and untransformed values both included

Table 3: Land-use regression covariates and (where applicable) covariate buffer sizes that
made it through pre-processing and were considered by PLS. Most variables were used in
each of the four PM2.5 component models; however the pre-processing procedure selected
some variables for EC and OC that were not selected for Si and S, and vice versa. This is
due to the fact that the monitors used to measure EC and OC were not all identical to the
ones used to measure Si and S.
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R2 RMSEP Est. UK pars

Pollutant # Scores PLS only PLS+UK PLS only PLS+UK (τ2)a (σ2)b (φ)c τ2/σ2

EC 3 0.79 0.82 0.11 0.10 0.0074 0.0025 413 2.96
OC 2 0.60 0.69 0.22 0.20 0.0251 0.0199 304 1.26
Si 2 0.36 0.62 0.10 0.08 0.0043 0.0086 2789 0.50
S 2 0.63 0.95 0.13 0.05 0.0007 0.0251 2145 0.03

a Nugget used in kriging
b Partial sill used in kriging
c Range used in kriging

Table 4: Cross-validated R2 and RMSEP for each component of PM2.5, both for when PLS only was
used and when PLS was used in conjunction with universal kriging. The estimated kriging parameters
from the likelihood fit on the entire data set for each pollutant is also shown. The R2 and RMSEP for
the PLS + UK models reflect the effectiveness of the final prediction models.
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EC OC Si S

β̂X ŜE(β̂X) β̂X ŜE(β̂X) β̂X ŜE(β̂X) β̂X ŜE(β̂X)
Näıve 0.001 0.014 0.025 0.008 0.408 0.081 0.055 0.017

Partial parametric 0.001 0.015 0.025 0.008 0.408 0.126 0.055 0.025
Parameter 0.001 0.015 0.025 0.008 0.408 0.127 0.055 0.025
Parametric 0.001 0.015 0.025 0.008 0.405 0.131 0.055 0.025

Table 5: Point estimates and standard errors for the different pollutants, using näıve analysis and with bootstrap correction
for measurement error in covariate of interest. The two parameter bootstrap results are from 30,000 bootstrap samples, while the
parametric results are from 15,000 samples.
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(a) EC (b) OC

(c) Si (d) S

Figure 1: Locations of IMPROVE and CSN monitors and predicted national average PM2.5 component
concentrations from final predictions models. Predictions are also shown for St. Paul, MN.
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Figure 2: Coefficients of the PLS fit, by geographic covariate type. The size of each circle represents
the buffer size, with larger circles indicating larger buffers. Explanation of variable abbreviations are
given in Table 3.
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Appendix

The extension of the parameter bootstrap discussed in Section 2.3.2 wherein we sample (α̂uk,j , log(θ̂θθj))

from a covariance multiplied by a non-negative λ provides additional insight into how to estimate the

bias of β̂X resulting from the classical-like error, and can be thought of in the framework of simulation

extrapolation (SIMEX) (Stefanski and Cook, 1995). Consider first the partial parametric bootstrap.

Though we use the originally estimated parameters (α̂uk, log(θ̂θθ)) throughout (corresponding to λ = 0),

these original estimates are a realization from a sampling distribution with some amount of variance,

which can be thought of heuristically as “one unit of variance.” The bias estimate from the parameter

bootstrap with λ = 1 (corresponding to “two units of variance”) assumes that the bias from the

classical-like error obtained by going from λ = 0 to λ = 1 is the same as the bias induced by using

the originally estimated parameters instead of the true, unknown parameters; in other words, the bias

is treated as linear in λ. However if we perform the parameter bootstrap using different values of λ

and estimate the bias for each one, we can get a more flexible representation of how the bias varies

as a function of λ. Plotting realized B̂iasλ(β̂X) versus λ for several values of λ and extrapolating

to B̂ias−1(β̂X) gives an alternative estimate of the bias. This extension is equivalent to performing

a SIMEX analysis to extrapolate to the hypothetical setting where the variance of the measurement

error is zero (Stefanski and Cook, 1995). We performed the parameter bootstrap using sample sizes

of 30,000, sampling (α̂uk,j , log(θ̂θθj)) from the inverse Hessian inflated by factors of λ ∈ {0, 0.5, 1, 1.5, 2}

and plotted the corresponding B̂iasλ(β̂X) against these values of λ. We then performed both linear

and quadratic extrapolation to B̂ias−1(β̂X). The SIMEX-corrected estimate of β̂X is defined as:

β̂correctedX,S = β̂X + B̂ias−1(β̂X)

This estimate was compared to the other corrected estimates defined in Section 2.3.2. Note that

although the generalizations of the parameter bootstrap used 30,000 samples, the 15,000 parametric

bootstrap samples were only compared to the first 15,000 partial parametric samples.

Figure A1 shows the results of the SIMEX implementation of the parameter bootstrap using lin-

ear and quadratic extrapolation. The green line indicates the linear correction from the parametric

bootstrap. The choice of extrapolating function did not affect β̂X for Si or OC, while there were slight

differences for the other two components. Overall, while the SIMEX bias corrections did not suggest
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any meaningful bias for any of the pollutants, all of these plots suggest that the bias from classical-like

measurement error is away from the null, similar to previously published simulation results (Szpiro

et al., 2011b). This is different from the usual bias toward the null from classical measurement error,

confirming that additional caution is needed in the air pollution setting since we cannot always assume

that ignoring measurement error results in conservative inference.

It is of interest that the bias estimated using SIMEX and the parameter bootstrap is noticeably

different from the corresponding parametric bootstrap bias estimates; in the cases of OC and S, the

parametric bootstrap estimates a bias toward the null. There are two key assumptions that justify

regarding the parameter bootstrap as a more efficient version of the parametric bootstrap. The first

assumption is that the estimated sampling distribution of log(θ̂θθj) from which the parameter bootstrap

estimates are sampled is a good approximation to the true sampling distribution. The second, heurist-

ically stated, is that the process of sampling exposures and estimating exposure model parameters can

be considered to be independent of each other. In other words, the exposure model parameters in the

parametric bootstrap are “decoupled” from the data from which they were derived, which is clearly

the case for the parameter bootstrap since log(θ̂θθj) is sampled independently of X∗j . We examined both

of these assumptions for OC, Si and S, as the differences between the parameter and parametric bias

estimates were most pronounced for these pollutants. To examine the first assumption we compared

density plots of log(θ̂θθj) from the parametric bootstrap to the ones used for the parameter bootstrap.

This showed some mismatch between the distributions, indicating that this first assumption might be

violated. To examine the second assumption, we sampled exposure model parameters at random from

the empirical distribution of the parametric bootstrap log(θ̂θθj), and compared the resulting β̂BX to those

derived using matching log(θ̂θθj) and X∗j (see Szpiro et al. (2011b) for more details). We found that

for OC and Si, the mean of the bootstrapped coefficients from the two approaches were significantly

different from each other, indicating mild violation of the decoupling assumption. For S, however,

the decoupling did not affect the bias, indicating that the discrepancy between the parametric and

parameter bootstrap bias estimates must be due to violation of the first assumption.

In the end, however, it is important to point out that the estimated biases are so small that the

bias-corrected effect estimates are no different from the näıve estimates, to a reasonable number of

significant digits. Indeed we are only able to detect these biases with a very large number of bootstrap

samples. The important impact of measurement error appears in the standard error estimates, and
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the parameter and parametric bootstrap methods agree closely there.
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Figure A1: SIMEX bias estimates, when using either a linear or a quadratic extrapolation. The green
line represents the bias extrapolation as estimated by the parametric bootstrap. Confidence intervals
from a t-test testing zero bias are also shown.
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