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Nonparametric Inference for Meta Analysis with Fixed,
Unknown, Study-specific Parameters

Brian Claggett, Minge Xie, and Lu Tian∗

Abstract

Meta-analysis is a valuable tool for combining information from independent
studies. However, most common meta-analysis techniques rely on distributional
assumptions that are difficult, if not impossible, to verify. For instance, in the
commonly used fixed-effects and random-effects models, we take for granted that
the underlying study parameters are either exactly the same across individual
studies or that they are realizations of a random sample from a population, often
under a parametric distributional assumption. In this paper, we present a new
framework for summarizing information obtained from multiple studies and make
inference that is not dependent on any distributional assumption for the study-
level unknown, fixed parameters, {θ1, . . . , θK}. Specifically, we draw inferences
about, for example, the quantiles of this set of parameters using study-specific
summary statistics. This type of problem is quite challenging (Hall and Miller,
2010). We utilize a novel resampling method via the confidence distributions
of θ’s to construct confidence intervals for the above quantiles. We justify the
validity of the interval estimation procedure asymptotically and compare the
new procedure with the standard bootstrapping method. We also illustrate our
proposal with the data from a recent meta analysis of the treatment effect from
an antioxidant on the prevention of contrast-induced nephropathy.
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1. INTRODUCTION

Meta-analysis is a potentially powerful tool for combining information from multiple,

independent studies for making inferences, for example, about the treatment differ-

ence between two comparative groups. The use of meta-analysis methods has grown

substantially in recent years, with over 2000 papers per year published in PubMed,

as of 2006 (Sutton and Higgins, 2008). Among these approaches, the fixed effect and

random-effects models (particularly the DerSimonian-Laird approach) are two of the

most commonly used models in meta-analysis. In practice, however, it is difficult, if

not impossible, to verify the fundamental assumptions of these two models. That is,

one assumes either that the study-specific parameters of interest are constant across

studies in a fixed-effect model or that these parameters are realizations of a random

sample from a population with a parametric distribution. The standard goodness of

fit test is not informative for validating these models.

In this article, we consider a nonparametric framework without assuming that the

underlying unknown parameters were realization of a random sample from a proper

or degenerate distribution. Specifically, suppose that there are K independent studies

whose fixed, unknown parameters are denoted by {θ1, . . . , θK}. The question is how to

construct point and interval estimates, for example, for the (100q)th percentile, θ(q), of

this set of parameters via individual study-specific summary statistics.

Assume that, from the kth study, k = 1, . . . , K, there is a
√
nk- consistent estimator

for θk, say θ̂k, with a standard error estimate sk, where nk is the sample size for the kth

study, n =
∑

k nk, and the ratio nk/n is stabilized away from 0 as n→∞. Moreover,

assume that (θ̂k − θk)/sk is asymptotically normal. Furthermore, let Θ = {θ1, . . . , θK}

and Θ̂ = {θ̂1, . . . , θ̂K}. Our problem is how to utilize {θ̂k, sk}, k = 1, . . . , K, to make

inference about, for example, the aforementioned θ(q). Note that, for q ∈ (0, 1), θ(q) is

equivalent to θ(m), the mth ordered value of Θ, with m = bqKc+ 1.
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When the (100q)th percentile is rather extreme, (i.e. q is close to 0 or 1), it is quite

challenging to make inferences accurately about θ(q) (Hall and Miller, 2010; Wandler

and Hannig, 2012). In general, when several θ′s are “clustered around” θ(q), the in-

ferential problem becomes non-trivial (Xie et al., 2009; Hall and Miller, 2010). The

approach recommended by Hall and Miller (2010) for this problem, as well as a set of

more general forms of extreme parameters, was to construct a conservative confidence

interval by introducing a constant cα to enlarge the usual confidence interval and use

bootstrap to estimate (tune) the constant cα. Although the approach may be practical,

it is conservative and fails to directly address the difficult problem of making inference

on the extrema and other quantiles of the parameters. This inference setup is associated

with a well-known difficult problem (Hall and Miller, 2010; Wandler and Hannig, 2012).

Hall and Miller (2010), who studied “the problem of constructing confidence intervals

or hypothesis tests for extrema of parameters, for example of max{θ1, . . . , θK},” stated

that this type of problem is one of the “important problems where standard bootstrap

estimators are not consistent, and where alternative approaches . . . also face significant

challenges.” The difficult part is the unknown ‘ties’ and ‘near ties’ cases. Here, a near

tie case is defined as

|θj − θ(m)| = O(N−1/2),

which is interpreted as that, based on current sample size, a “near tie” parameter θj

can not be distinguished from the target parameter θ(m) (Xie et al., 2009; Hall and

Miller, 2010).

In this paper, using the concept of confidence distributions (Xie and Singh, 2012),

we propose a new and simple resampling method to construct confidence interval esti-

mators for θ(q), regardless of the presence or absence of ‘ties’ or ‘near ties’. This new

resampling method can be viewed as an extension of the well-studied and widely-used
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bootstrap method, but enjoys a more flexible interpretation and manipulation. In the

proposed method, we avoid the difficult problem of estimating the limiting distribution

of θ̂(m). Rather, we directly construct an asymptotic confidence distribution for θ(m),

which can lead to asymptotically proper inference for the ordered parameter θ(m).

The rest of the paper is arranged as follows. In section 2, we introduce and review

the idea of confidence distributions as frequentist distributional estimators, along with

connections to the related bootstrap estimators. In section 3, we propose a general

method for deriving an asymptotic confidence distribution for a particular θ(m), which

depends on the choice of weights employed, and propose three reasonable weighting

schemes, including the standard bootstrap estimator. In section 4, we discuss the prop-

erties of a set of weights which will guarantee appropriate asymptotic coverage, show

how to construct weights that possess these properties, and discuss tuning approaches

to improve finite-sample inference. In section 5, we present simulation results showing

that our proposed weights provide appropriate coverage in diverse settings. In sec-

tion 6, we illustrate our method using data from a recently published meta-analysis

investigating the effect of an antioxidant on nephropathy. Overall, the development

in the current paper simultaneously addresses two important problems: it develops a

nonparametric inference framework for meta-analysis and also provides a solution for

the well-established difficult problem of making inference for extrema of parameters.

2. CD-BASED INFERENCE

2.1 Introduction to Confidence Distribution

In frequentist inference, we often use a single sample statistic (point estimator) or an

sample-dependent interval (confidence interval) to estimate a parameter of interest. A

confidence distribution (CD) is quite similar, but uses a sample-dependent distribu-

tion function, rather than a single point (point estimator) or an interval (confidence
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interval), to estimate the parameter of interest (Xie and Singh, 2012). A confidence

distribution has also been loosely referred to as a sample-dependent distribution func-

tion that can represent confidence intervals of all levels for the parameter of interest

(Cox, 1958; Efron, 1993). The concept has a long history, especially with its early

interpretation associated with fiducial reasoning (Fisher, 1973; Cox, 2006). But recent

developments have redefined a confidence distribution as a purely frequentist concept,

without any fiducial reasoning. In his discussion of Xie and Singh (2012), Cox (2012)

characterized the purely frequentist CD-based inference as an effective tool to provide

“simple and interpretable summaries of what can reasonably be learned from data

(and an assumed model).” Efron (2012) considered the recent CD development as “a

grounding process” to solve “perhaps the most important unresolved problem in sta-

tistical inference” on “the use of Bayes theorem in the absence of prior information.”

A simple example of a confidence distribution that has been broadly used in statisti-

cal practice is a bootstrap distribution. Efron (1998) explicitly stated that a bootstrap

distribution is typically a “distribution estimator” and a “confidence distribution” func-

tion of the parameter that it targets. Singh et al. (2005, 2007) showed that a bootstrap

distribution normally satisfies the definition of a confidence distribution or an asymp-

totic confidence distribution.

Another simple example, which is also used by Fisher (1930, 1973) to illustrate

his fiducial function, is from the normal mean inference problem with sample Xi ∼

N(µ, σ2), i = 1, . . . , n. The basic confidence distributions for µ are Φ(
√
n(µ − X̄)/σ)

when σ is known and Tn−1(
√
n(µ − x̄)/S) when σ is not known, and furthermore

Φ(
√
n(µ− X̄)/S) is an asymptotic confidence distribution when n→∞. Here, X̄ and

S2 are the sample mean and variance, respectively, and Tn−1 stands for the cumulative

distribution function of the t-distribution with n−1 degrees of freedom. In other words,

N(X̄, σ2/n) is a “distribution estimator” of µ, when σ2 is known. The distribution

4
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functions Tn−1(
√
n(µ − x̄)/S) or Φ(

√
n(µ − X̄)/S) can be used to estimate µ when

σ2 is not known. Similarly, in the context under consideration in this article, we can

verify from Definition 1.1 of Singh et al. (2005) that

Hi(t) = Φ

(
t− θ̂i
si

)
(1)

satisfies the requirements of being an asymptotic confidence distribution, thus we can

use a distribution estimator N(θ̂i, s
2
i ) to estimate θi, for i = 1, 2, . . . , K.

A confidence distribution is a function of both the parameter and the random

sample. For each given sample Xn, a confidence distribution, say H(·) = H(Xn, ·),

is a cumulative distribution function on the parameter space; cf., Schweder and Hjort

(2002); Singh et al. (2005). We can construct a random variable ξ defined on X × Ξ

such that, conditional on the sample data, ξ has the distribution H. Here, Ξ is the

parameter space of the unknown parameter of interest θ and X is the sample space

corresponding to data Xn = {X1, . . . , Xn}. For example, let U be a Unif [0, 1] random

variable independent of Xn, then ξ = H−1(U) ∼ H(·), given Xn. We call this random

variable ξ a CD random variable (Singh et al., 2007; Xie and Singh, 2012).

Definition 2.1. We call ξ = ξH a CD random variable associated with a confidence

distribution H, if the conditional distribution of ξ given the data Xn is H.

A CD random variable has a close association with a bootstrap estimator. In our

example (1), a CD random variable ξi follows ξi|x̄ ∼ N(θ̂i, s
2
i ) and we have, asymptot-

ically,

ξi − θ̂i
si

∣∣∣∣ θ̂i ∼ θ̂i − θi
si

∣∣∣∣ θi (both ∼ N(0, 1)).

This statement is exactly the same as the key justification for bootstrap, with ξi in

place of the bootstrap sample mean θ̂∗i . Thus, a CD random variable ξ can essentially

5
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be viewed as a model-based bootstrap estimator of θi. Indeed, Xie and Singh (2012)

demonstrated under a very general setting that a CD random variable ξ is in essence

the same as a bootstrap estimator or a simple linear transformation of a bootstrap

estimator. This close connection between the CD random variable and a bootstrap

estimator may inspire a possible view of treating the concept of confidence distribution

as an extension of a bootstrap distribution, albeit the confidence distribution concept is

much broader. The connection and the well-developed theory of bootstrap distributions

can help us to understand inference procedures involving confidence distributions and

develop new methodologies.

In this article, we utilize the CD random variable and develop a new simulation

mechanism to broaden the applications of the standard bootstrap procedures. Since a

CD random variable is not limited solely to use as a bootstrap estimator, this freedom

allows us to utilize ξ more liberally, which in turn allows us to develop more flexible

statistical approaches and inference procedures.

3. PROPOSED METHODOLOGY

As illustrated in (1), from the ith study we have a confidence distribution (CD) function

Hi(t) = Φ((t − θ̂i)/si) that can be used to estimate θi, for i = 1, . . . , K. Denote by ξi

the CD random variable corresponding to Hi(t) = Φ((t− θ̂i)/si), i.e.,

ξi|θ̂i, s2
i ∼ N(θ̂i, s

2
i ), for i = 1, . . . , K. (2)

Given a particular realized set of {ξi, i = 1, . . . , K} from each of the K studies, we

consider the construction of a weighted average of ξi’s:

ξ∗ =
K∑
i=1

wi,(m)ξi

/ K∑
i=1

wi,(m) (3)
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for the purposes of making inference on θ(m). In particular, we can easily simulate

{ξi, i = 1, . . . , K} according to (2) and compute ξ∗ according to (3). If we repeat this

a large number of times, we can obtain a set of ξ∗’s, which may represent a set of

realizations of CD-random variables from a confidence distribution for the parameter

θ(m). If this is indeed the case, we can report the mean/median/mode of the ξ∗’s as a

point estimate of θ(m), and the empirical (α/2)100% and (1 − α/2)100% quantiles of

the ξ∗’s as the level (1− α)100% confidence interval for θ(m).

The proposed procedure is very simple. Naturally, different choices of the weights

wi,(m) lead to different procedures, and each procedure’s resulting validity depends on

the choice of its weights. In particular, we consider in this paper the following potential

choices of weights:

Choice 1:

w
[1]
i,(m) = 1{θ̂i = θ̂(m)},

where 1{·} is an indicator function and θ̂(m) is the mth smallest θ̂i.

Choice 2:

w
[2]
i,(m) = 1{ξi = ξ(m)},

where ξ(m) is the mth smallest ξi.

Choice 3:

w
[3]
i,(m) = K

(
ξi − ξ(m), bL, bR

)
where K is a kernel function, and bL, bR represent the left-side and right-side kernel

bandwidths. Without loss of generality, we henceforth assume a rectangular kernel,

such that

K
(
ξi − ξ(m), bL, bR

)
= 1{−bL ≤ (ξi − ξ(m)) ≤ bR}.

Written this way, it is easy to see that w
[2]
i,(m) represents a special case of w

[3]
i,(m) in which

7
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bL = bR ≡ 0.

Weights w
[1]
i,(m) and w

[2]
i,(m) both represent intuitively appealing ways of estimating

and making inference on θ(m). The use of w
[1]
i,(m) is equivalent to using the confidence

distribution (and resulting confidence interval) associated with the mth ordered θ̂. It is

essentially a naive bootstrap approach, in which we first identify the study associated

with the mth ordered θ̂, then based on this single study, make inference for θ(m). The

use of w
[2]
i,(m) corresponds to the use of the distribution of the mth ordered ξi, and is

therefore equivalent to the conventional bootstrap estimator of θ(m), as discussed in

Hall and Miller (2010). Despite these intuitively attractive qualities, we will show that

both sets of weights may lead to undesirable properties, depending on the true nature

of the data. Our third option is flexible enough to appropriately handle a variety of

scenarios while maintaining appropriate coverage levels, and in many cases, offering

narrower confidence intervals than those obtained via the other weighting schemes. In

the following section, we show that there is a very simple requirement for any given

weighting scheme that allows for the use of ξ∗ for asymptotically valid inference for

θ(m). Namely, wi,(m) must converge to a positive constant if θi belongs to the tie or near

tie set of θ(m), as defined below, and zero otherwise. We will show that this requirement

is not satisfied by w
[1]
i,(m) or w

[2]
i,(m) when there are ties or near ties, but is satisfied by

w
[3]
i,(m) when (bL, bR) = O(N−δ), δ ∈ (0, 1

2
) in any situation, regardless of the presence

or absence of ties or near ties.

4. THEORETICAL RESULTS

First, let us formally define the tie and near tie sets. The same definition has also been

utilized in Xie et al. (2009); Hall and Miller (2010). In particular, we denote by

Θ
(m)
T = {j : θj = θ(m), j = 1, . . . , K}

8
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the “tie set” of θ(m), representing the set of all θ’s which are equal to the parameter of

interest. We also denote by

Θ
(m)
N = {j : |θj − θ(m)| = O(N−1/2), j = 1, . . . , K}

the “near tie set” of θ(m). The interpretation of the “near tie” definition is that,

based on current sample size ni, a “near tie” parameter θi cannot be distinguished

from the target parameter θ(m). An equivalent expression is that, for any j ∈ Θ
(m)
N ,

(θ̂j − θ̂(m))− (θj − θ(m)) 6= op(|θj − θ(m)|), which means that the difference between θj

and θ(m) is not of greater order than the standard error of its estimator. Throughout

the paper, we assume that both Θ
(m)
T and Θ

(m)
N are completely unknown other than

that they contain at least one member θ(m). Thus, without loss of generality, we can

assume the number of studies in the tie set |Θ(m)
T | ≥ 1. The “near tie” case is much

broader than the tie case: Θ
(m)
T ⊆ Θ

(m)
N . So, we also have the number of studies in the

near tie set |Θ(m)
N | ≥ |Θ

(m)
T | ≥ 1. We present next a set of theoretical results using the

more general near tie setup. All results remain valid if Θ
(m)
N is replaced by Θ

(m)
T .

4.1 Asymptotic theorem and properties of proposed weighing schemes

The following set of asymptotic results suggest that ξ∗ may be used to make inference

for θ(m), if weights are chosen carefully. In the theorem, Ξ is the parameter space of

θ(m). A proof of the theorem is provided in Appendix.

Theorem 4.1. Suppose that we can prove that a set of weights possesses the following

property:

lim
N→∞

wi,(m) =


ci if i ∈ Θ

(m)
N ,

0 if i 6∈ Θ
(m)
N ,

for i = 1, 2, . . . , K (4)

for some constants ci > 0. Then, as N →∞, we have the following:

9
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(i)

K∑
i=1

wi,(m)θ̂i

/ K∑
i=1

wi,(m) = θ(m) + op(1) and
K∑
i=1

w2
i,(m)s

2
i

/{ K∑
i=1

wi,(m)

}2

= {s(m)}2 + op(1),

where {s(m)}2 =
∑

i∈Θ
(m)
N

c2
i s

2
i

/{∑
i∈Θ

(m)
N

ci
}2

. Furthermore,

ξ∗ −
∑K

i=1wi,(m)θ̂i/
∑K

i=1wi,(m)√∑K
i=1 w

2
i,(m)s

2
i /{
∑K

i=1wi,(m)}2

∣∣∣∣Θ̂ ∼ ∑K
i=1wi,(m)θ̂i/

∑K
i=1wi,(m) − θ(m)√∑K

i=1 w
2
i,(m)s

2
i /{
∑K

i=1wi,(m)}2

∣∣∣∣Θ, (5)

both converging asymptotically to a N(0, 1) distribution.

(ii) Denote by

H∗(t) = P (ξ∗ ≤ t|Θ̂), for any t ∈ Ξ.

When t = θ(m), we have H∗(θ
(m)) → Unif [0, 1], in distribution; Thus, by Definition

1.1 of Singh et al. (2005), H∗(θ) is an asymptotic CD for θ(m).

The function H∗(t) is a cumulative distribution function on the parameter space Ξ

and it also depends on the sample observations Θ̂. Based on the development on con-

fidence distributions, the distribution estimator H∗(θ) = Pr(ξ∗ ≤ θ|Θ̂) ensures asymp-

totically valid inference, including point estimation, confidence intervals, p-values, etc.,

for θ(m); see, e.g., Singh et al. (2007); Xie and Singh (2012). Thus, in this case, we can

rely on ξ∗ to provide valid inference for θ(m) asymptotically.

The remaining question is whether any of the three sets of weight choices in Sec-

tion 3 satisfy the requirement (4) and, if they do, under which conditions. Since the

asymptotic properties of each of the proposed weighted estimators depend on the true

unknown values of Θ, we start with the simplest setting of no ties and move on to the

more complicated settings of ties and near ties, including the particularly difficult case

in which the presence of such ties or near ties to θ(m) cannot easily be determined.
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Throughout the paper, we assume the following separation condition:

[Csp] dmN
1/2 →∞, where dm = min

j 6∈Θ
(m)
N

∣∣∣∣θj − θ(m)

∣∣∣∣
is the minimal distance between the θj’s inside and outside the near tie set Θ

(m)
N . The

separation condition [Csp] allows that the separation dm tends to zero but at a slower

rate than N−1/2. Condition [Csp] is in fact weaker than the conventional assumption

involving ties or no ties. Under the conventional setting, dm = minθj 6=θ(m) |θj − θ(m)| ≥

co = mini6=j |θi − θj| which is a typically positive constant bounded away from zero.

Condition [Csp] is also much weaker than those assumptions imposed in the conven-

tional fixed-effects and random effects models, since we only assume in our setting that

θ1, θ2, . . . , θK are unknown parameters and we have no information regarding which

ones are inside or outside the tie set.

The ‘no tie’ case is the case in which |Θ(m)
N | = |Θ(m)

T | = 1, referring to the case

that Θ
(m)
N and Θ

(m)
T have only one element, θ(m). There may or may not be ties among

the remaining θj’s, j 6∈ Θ
(m)
N , but this is irrelevant to the problem at hand in making

inference for θ(m).

Lemma 4.1 below states that, under the above no tie condition, all three choices of

weights listed in Section 3 satisfy the condition in (4). A proof is given in the Appendix.

Lemma 4.1 (Any Weight; No tie case). Suppose that |Θ(m)
N | = |Θ(m)

T | = 1 and

also Condition [Csp] holds. For s = 1, 2, we have

lim
N→∞

w
[s]
i,(m) =


1 if θi = θ(m),

0 if θi 6= θ(m),

for i = 1, 2, . . . , K. (6)

Furthermore, if we use w
[3]
i,(m) with bL, bR ∝ τN , where τN/dm → 0, and τN

√
N → ∞,

11

http://biostats.bepress.com/harvardbiostat/paper154



then (6) also holds for w
[3]
i,(m).

In conjunction with Theorem 4.1, we can infer from the lemma that in the no

tie case, we can implement the proposed approach using any of the three weighting

schemes to make asymptotically valid inference for θ(m). In fact, since (6) holds for all

s = 1, 2, 3, it is easy to verify, following the proof of Theorem 4.1, that the inference

based on these three different choices of weights are asymptotically equivalent.

The problem is much more complicated in the presence of ties (i.e., |Θ(m)
T | > 1) or

near ties (i.e., |Θ(m)
N | > 1). In this case, the weights w

[1]
i,(m) or w

[2]
i,(m) for i ∈ Θ

(m)
T or

Θ
(m)
N converge to random quantities, rather than some constants ci. We provide below

a very simple example in a special case to illustrate the phenomenon.

Example 4.1 (Counterexample for w
[1]
i,(m) or w

[2]
i,(m) in a simple tie case).

Without loss of generality, consider a very simple example of a special case with K = 2

and θ1 ≡ θ2. For m = 1, Θ
(m)
T = Θ

(m)
N = {1, 2} but w

[1]
1,(m) = 1 − w

[1]
2,(m) = 1{θ̂1 =

min(θ̂1, θ̂2)} is a binary random variable that equals 1 with probability P{θ̂1 ≤ θ̂2} =

1−P{θ̂2 ≤ θ̂1} = 0.5. Thus, both w
[1]
1,(m) and w

[1]
2,(m) are (dependent) Bernoulli random

variables, each with p = 0.5, therefore violating (4).

Similarly, for m = 1, the second choice of weights w
[2]
1,(m) = 1 − w

[2]
2,(m) = 1{ξ1 =

min(ξ1, ξ2)} is a binary random variable that equals 1 with probability P{ξ1 ≤ ξ2} =

E
[
P{ξ1 ≤ ξ2|Θ̂}

]
= E

[
Φ({θ̂2− θ̂1}

/
{s2

1 + s2
2}1/2)] = 0.5. Again, both w

[2]
1,(m) and w

[2]
2,(m)

are (dependent) Bernoulli random variables, each with p = 0.5, also violating (4).

In the case of more than two ties with either |Θ(m)
T | > 2 or |Θ(m)

N | > 2, the weights

w
[1]
i,(m) or w

[2]
i,(m) for i ∈ Θ

(m)
T or Θ

(m)
N still converge to random quantities, rather than

constants. The patterns are similar to, but more complicated than, those discussed in

the case of |Θ(m)
T | = 2 in Example 4.1. Clearly, neither w

[1]
i,(m) nor w

[2]
i,(m) satisfies the

requirement (4) in this case, so we can no longer ensure that the results from Theorem

4.1 are valid. Our simulation results confirm that these two sets of weights perform
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poorly in situations with ties or near ties. Poor performance of the standard bootstrap

procedure, which corresponds to the use of the second sets of weights w
[2]
i,(m), was also

reported by Hall and Miller (2010).

In contrast, if we use w
[3]
i,(m) with bL, bR ∝ τN , where τN/dm → 0 and τN

√
N →∞,

then we can show that (4) is satisfied. In fact, the requirement (4) is satisfied by w
[3]
i,(m)

in any case, regardless of whether or not any ties or near ties exist, and regardless of

whether or not their existence can be determined from the data . We summarize the

result in the following lemma, together with the result for a slightly modified w
[3]
i,(m)

choice:

w̃
[3]
i,(m) = w

[3]
i,(m)

/
si.

A proof can be found in the Appendix.

Lemma 4.2 (Weight w
[3]
i,(m); Any case). Suppose that Condition [Csp] holds and

we use w
[3]
i,(m) with bL, bR ∝ τN , where τN/dm → 0, and τN

√
N → ∞. For any 1 ≤

|Θ(m)
T | ≤ |Θ

(m)
N | ≤ K, we have

lim
N→∞

w
[3]
i,(m) =


1 if i ∈ Θ

(m)
N ,

0 if i 6∈ Θ
(m)
N ,

and lim
N→∞

w̃
[3]
i,(m) =


1/si if i ∈ Θ

(m)
N ,

0 if i 6∈ Θ
(m)
N ,

(7)

for i = 1, 2, . . . , K.

This lemma, together with Theorem 4.1, provides a theoretical support to use the

weighted sum of CD random variables ξ∗ to make inference for θ(m) in all cases, if

either w
[3]
i,(m) or w̃

[3]
i,(m) is used. From (7), only studies inside the tie and near tie set

will be included for making inference and the studies outside the tie set are filtered

out, asymptotically. Thus, making inference using the proposed method with w
[3]
i,(m)

is asymptotically equivalent to using the average of the θ̂i in the tie set (if we were

13
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to know the true tie set). When si’s or λi = ni/N ’s are heteroscedastic, the modified

version w̃
[3]
i,(m) could be used to improve the efficiency and power of the inference. In

fact, as in Theorem 2 of Xie et al. (2011), we can show that the inference based on

w̃
[3]
i,(m) is also asymptotically most efficient for θ(m). In any case, as long as there is a

separation between the studies not tied with θ(m) and those tied with θ(m) as quantified

in Condition [Csp], our proposal provides a class of approaches that can lead us to

asymptotically correct inference. Further details will be discussed next in Section 4.2

on the tuning of the kernel widths.

4.2 Tuning the bandwidth parameters and a proposed algorithm

While we can guarantee that w
[3]
i,(m) or w̃

[3]
i,(m) will provide appropriate asymptotic in-

ference as long as the tuning parameters (bL, bR) converge to 0 at the proper rate, it is

important in practice to be able to select an appropriate value for the tuning parame-

ters (bL, bR) to ensure good finite sample performance. Specifically, we decompose the

bandwidth parameters by defining

bL = τN · cL and bR = τN · cR,

where τN = O(N−δ), for a fixed 0 < δ < 1/2, and cL, cR = O(1) are positive constants.

In general, we may use τN = (s(m))2δ, where s(m) is the standard error associated with

θ̂(m). Details for the construction of a scale-invariant version of τN are found in the

Appendix.

The constants (cL, cR) can potentially impact the performance of the proposed

approach in finite sample situations. For instance, if we use very large values of (cL,

cR), the bandwidths (bL, bR) can be very large and our inference will mimic a fixed-

effects analysis, which is only reasonable under the assumption that |Θ(m)
T | = K. On

the other hand, if we use very small values of (cL, cR), the bandwidths (bL, bR) can

14
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be very close to 0; thus the performance of our weights will be similar to w
[2]
i,(m), which

we have shown to be asymptotically valid only when |Θ(m)
T | = 1. It seems reasonable

that the tuning constants should be relatively large when ties are present and relatively

small when no ties are present. Specifically, we refer to θ̂j : {θ̂j < θ̂(m), j ∈ ΘN} as

“left side ties” and θ̂j : {θ̂j > θ̂(m), j ∈ ΘN} as “right side ties”. We propose the usage

of (cL, cR) in order to ensure that the kernel smoother includes approximately the

correct number of left and right side ties, respectively. This is a two-step process that

involves estimating the potential number of left and right side ties, and then adjusting

the kernel bandwidths to accommodate this estimated tie set.

We first attempt to detect the presence or absence of left side ties and/or right

side ties by observing the behavior of the realized values of the CD random variables

ξ. In general, we will simulate some large number, R, of samples of our CD random

variables {ξ}. For r = 1, 2, . . . , R, we may denote the rth sampled value corresponding

to θ̂i as ξi,r, the rth collection of sampled values as {ξr} = {ξi,r, i = 1, . . . , K}, and ξ
(m)
r

as the mth smallest value among {ξi,r, i = 1, . . . , K}. Here, without loss of generality,

we assume θ̂1 ≤ θ̂2 ≤ . . . ≤ θ̂K ; otherwise, we can re-index the studies by the ordering

of the θ̂i values. We define π̂i =
∑R

r=1 1{ξ
(m)
r =ξi,r}
R

. We may declare a particular study i

to be a candidate for inclusion in the tie set if π̂i exceeds some threshold γ near 0. The

number of potential left side ties T ∗L is then given by
∑

i≤m I{π̂i > γ}, and similarly,

T ∗R =
∑

i≥m I{π̂i > γ} for the number of potential right side ties.

For a set of T studies with similar sample size, all sharing the same underlying study

parameter θ, the maximum distance between any of the T values θ̂ is proportional to the

range of T standard normal random variables, R(T ). We find that the 95th percentile

of R(T ) can be well approximated by R∗(T ) = 2.58 + 0.79log(T ), T > 1. Thus, we

may use cL = R∗(T ∗L), cR = R∗(T ∗R), with R∗(1) = 0.

However, it is important to recognize that T ∗L and T ∗R are only crude estimates

15
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based on the data at hand, and may not reflect the true number of left and right side

ties, particularly in small sample settings. As such, it is important to acknowledge the

uncertainty in these estimates. Often, these estimates will serve as upper bounds for the

true numbers of ties and we may perturb our constants (cL, cR) in order to reflect our

uncertainty about the true number of ties, and thus the optimal smoothing bandwidths.

To this end, we introduce a random tuning technique by setting cL = u · R∗(T ∗L) and

cR = u · R∗(T ∗R), where u is a positive random number bounded between 0 and 1. In

the simulation results presented, we generate u ∼ Unif(0, 1). We also implemented

u = {0.001} or {1} with equal probability, and obtained similar results.

The introduction of the random tuning often increases the variability of the ξ∗ in

the proposed approach, thus effectively increasing the length of the reported confidence

intervals. However, since u is bounded away from 0 and ∞, we can easily show that

Lemma 4.2 still holds for this set of randomly tuned bandwidth choices. Indeed, with

this set of bandwidth choices, there is no change in large sample properties and we

observe very little change in numerical performance in large sample settings. However,

under finite sample settings, this random tuning step accounts for additional variation

and uncertainty due to lack of sample size and we observe a significant improvement

in performance in our numerical studies.

Thus the algorithm for obtaining the CD used to estimate θ(m) is as follows:

1. Calculate τN using observed (θ̂, ŝ2, n) data.

2. Generate {ξi,r, r = 1, . . . , R} for each study from N(θ̂i, ŝ
2
i ); Here, without loss of

generality, we assume θ̂1 ≤ θ̂2 ≤ . . . ≤ θ̂K .

3. For each vector {ξr}, determine which study i is associated with ξ
(m)
r . We then

use these counts to calculate π̂i for each study, and functions thereof T ∗L and T ∗R.

4. For each r in 1, . . . , R

16
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(a) Generate ur from Unif(0, 1)

(b) ξ∗r =
∑

i ξi,r1{−cL≤(ξi,r−ξ
(m)
r )/τN≤cR}∑

i 1{−cL≤(ξi,r−ξ
(m)
r )/τN≤cR}

, with cL = urR
∗(T ∗L) and cR = urR

∗(T ∗R).

5. The CD for θ(m) is approximated by the empirical distribution Ĥξ∗(θ), and a

(1− α)100% confidence interval can be estimated by (ξ∗(R[α/2]), ξ
∗
(R[1−α/2])).

5. SIMULATIONS

In order to demonstrate both small and large sample properties of our proposed es-

timator under different scenarios, we generate random data Xij ∼ N(θi, 1), with

θi, i ∈ {1, 2, . . . , K}, 1 ≤ j ≤ ni, taking different values according to the particular

scenario:

1. Ties: θi = 0 ∀i

2. Uniform: θi = 2i
K+1
− 1

3. Normal: θi = Φ−1( i
K+1

)

For each scenario, we consider K = 7, 11, or 21, and we let the sample size from

each study ni = 40, 400, or 4000. Using 500 simulated data sets for each setting, we

show the coverage and median width of the nominal 95% and 80% confidence intervals.

We consider each of w[1], w[2], and w[3] as proposed in Section 2. The results are

shown below. Because each set of {Θ} is symmetric, we need not show results for each

ordered θi. Results are presented for the 5th, 10th, 25th, and 50th percentiles. Note

that for K = 7, the first ordered θ represents both the 5th and 10th percentile, and

thus is shown only once. In particular, the coverage and median interval width for any

θ(k) will be identical to that for θ(K+1−k).

For our proposed method using kernel smoothing, the results shown use the tuning

procedure described in the previous section with R=1000 random samples drawn from

each study’s confidence distribution and using γ = 0.05/K and δ = 2/5. Simulation
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results are shown below for K = 7 and 21. Simulation results corresponding to K = 11

show similar patterns and are available upon request.

We first note that Method 1 will always return confidence intervals of equal or

greater width than those returned by Method 2. Correspondingly, we find many set-

tings in which the coverage of Method 2 is far below the nominal level (e.g. the Ties

setting, the Uniform setting with ni = 40). This result matches the report of poor

performance of the regular bootstrap approach in Hall and Miller (2010) on extrema

of parameters. In almost all of these settings (except the extreme quantiles in the Ties

setting), Method 1 will provide appropriate, but conservative, confidence intervals.

Our proposed Method 3, on the other hand, is shown to have appropriate coverage

levels in all settings, as well as noticeably narrower confidence interval widths relative

to Method 1 in nearly all cases. Relative to the bootstrap estimator (Method 2), the

intervals from our proposed method are narrower, in the ties setting, for the few cases

in which the bootstrap estimator does provide appropriate coverage. Furthermore, the

interval widths are similar (and asymptotically equal) to those from Method 2 in the

uniform and normal settings.

6. EXAMPLE

To illustrate our proposed methodology, we use the data from 14 studies which assessed

the effect of an antioxidant (acetylcysteine) in preventing contrast-induced nephropa-

thy, a leading cause of acquired acute reduction in kidney function (Bagshaw and

Ghali, 2004). The outcome of interest in each study was incidence of contrast-induced

nephropathy, and so the parameter of interest was the odds ratio for the association

between antioxidant usage and incidence of nephropathy. The summary data for each

study is shown below.

A fixed effects analysis of this data by Bagshaw and Ghali (2004) resulted in a 95%
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Table 3: Summary results of 14 studies of acetylcysteine for prevention of contrast-
induced nephropathy

Study N OR 95% CI

Allaqaband 85 1.23 (0.39, 3.89)
Baker 80 0.20 (0.04, 1.00)
Briguori 183 0.57 (0.20, 1.63)
Diaz-Sandova 54 0.11 (0.02, 0.54)
Durham 79 1.27 (0.45, 3.57)
Efrati 49 0.19 (0.01, 4.21)
Fung 91 1.37 (0.43, 4.32)
Goldenberg 80 1.30 (0.27, 6.21)
Kay 200 0.29 (0.09, 0.94)
Kefer 104 0.63 (0.10, 3.92)
MacNeill 43 0.11 (0.01, 0.97)
Oldemeyer 96 1.30 (0.28, 6.16)
Shyu 121 0.11 (0.02, 0.49)
Vallero 100 1.14 (0.27, 4.83)

confidence interval of (0.41, 0.87) for the (assumed) common odds ratio. However, sig-

nificant heterogeneity was found in the study-level treatment effects (p=0.032). Thus,

a random effects analysis was performed in Bagshaw and Ghali (2004), assuming that

the logs of the study-level odds ratios are normally distributed, which resulted in a

somewhat wider confidence interval (0.32, 0.91).

Below we show the resulting 95% confidence intervals for each of the 14 ordered

study-level treatment effects. The three columns of confidence intervals correspond to

the weighting methods discussed in this article, with the third column representing our

proposed procedure, which we have shown in simulations to have appropriate coverage,

regardless of whether any or all of the true treatment effects are equal across studies.

Even though we have some evidence to reject the fixed effects assumption, in this

example it is particularly difficult, due to small sample sizes, to assess with any certainty

whether or not any subsets of the study parameters are equal to one another, or whether
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the assumption of a normal distribution for the log-odds-ratios is justified.

We note that, in general, the intervals provided by Method 1 are essentially a

re-ordering of the original study intervals, and thus do not provide substantially new

information in terms of summarizing the treatment effects. The bootstrap intervals cor-

responding to Method 2 are noticeably narrower in some cases; however, it is alarming

that the bootstrap interval for θ(14), (1.44, 9.56), excludes even the maximum esti-

mated treatment effect (estimated odds ratio = 1.37 from the Fung study). Using

our proposed weights w[3] (Method 3) with the scale-invariant version of τN , we es-

timate that six of the fourteen studies exhibited significant treatment effects, while

the remaining eight studies were found to be neutral. The confidence intervals for the

7th and 8th ordered treatment effects are (0.25, 1.01) and (0.31, 1.11), respectively.

Using the conventional method of averaging the (K/2)th and (K/2 + 1)th ordered ob-

servations to estimate the median when K is an even number, we obtain a confidence

interval of (0.28, 1.06) for the “median” treatment effect across these studies. This

interval is slightly wider than the previously reported random effects analysis, though

our inference is free of any distributional assumptions regarding the true values of the

study-level treatment effects. Furthermore, if the true distribution of the parameters

is not symmetric on the log scale, then our estimate of the median treatment effect will

not necessarily be directly comparable to the random effects analysis, which estimates

the mean of the random-effects distribution.

In Figure 1, we present the 95% confidence intervals for each ordered element of

{Θ}, with point estimates given by the mean of the associated confidence distribu-

tion. For comparison, the confidence intervals for the fixed-effects and random-effects

meta-analysis are denoted by the vertical solid and dashed lines, respectively. Our

estimates for θ(7) and θ(8) are highlighted for comparison. From Figure 1, we see that

the six best performing trials suggest that acetylcysteine can prevent contrast-induced
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nephropathy, but we can not reach such a conclusion for the remaining eight trials.

Table 4: 95% Confidence Intervals for ordered study-level treatment effects (odds ra-
tios) using nephropathy data

OS CI (Method 1) CI (Method 2) CI (Method 3)

1 (0.02, 0.48) (0.01, 0.13) (0.01, 0.60)
2 (0.02, 0.51) (0.03, 0.20) (0.04, 0.64)
3 (0.01, 0.94) (0.05, 0.28) (0.07, 0.68)
4 (0.01, 4.64) (0.07, 0.40) (0.11, 0.70)
5 (0.04, 1.04) (0.12, 0.54) (0.14, 0.75)
6 (0.09, 0.94) (0.17, 0.70) (0.19, 0.86)
7 (0.19, 1.67) (0.25, 0.91) (0.25, 1.01)
8 (0.10, 3.85) (0.33, 1.16) (0.31, 1.11)
9 (0.27, 4.93) (0.45, 1.46) (0.32, 1.33)
10 (0.39, 3.94) (0.56, 1.79) (0.35, 1.65)
11 (0.45, 3.49) (0.70, 2.27) (0.38, 1.94)
12 (0.26, 6.06) (0.87, 2.99) (0.34, 2.27)
13 (0.28, 6.14) (1.09, 4.38) (0.35, 3.05)
14 (0.44, 4.26) (1.44, 9.56) (0.42, 6.17)

While our proposed procedure was motivated by a desire to avoid making any

assumptions about the existence or nature of the distribution of our quantity of interest

{Θ}, we note that a plot such as that given in Figure 1 may resemble an empirical CDF

for the “true” distribution F (Θ). As sample size increases, the confidence distribution

estimates for each θ(m) converge to the true values (θ(1), θ(2), ..., θ(K)). If it can further be

assumed that (θ(1), θ(2), ..., θ(K)) are a random sample from some overall distribution

F (Θ), then it can be seen that θ̃(q) = θ(bqKc+1) will converge, as K grows large, to

F−1
Θ (q).

In an attempt to assess the robustness of our procedure in a realistic setting in which

the assumption of normality of study-level confidence distributions may not hold, we

also performed a simulation study mimicking the data structure of the well-known

rosiglitazone data set, previously analyzed in Tian et al. (2009). This data set features
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48 randomized comparative studies of the diabetes drug rosiglitazone vs control, and

we focus on the occurrences of myocardial infarction (MI) in each treatment arm. A

key feature of the data is the low event rate (31 of the 48 trials featured ≤ 1 events),

and thus large-sample approximations may not be valid. Tian et al. (2009), using

exact binomial confidence intervals, assumed a constant risk difference in the event

rates across studies and reported a 95% confidence interval of (−0.08, 0.38)% for the

non-significantly increased risk associated with rosiglitazone. In our simulation study,

we randomly generated 500 data sets, assuming the true event rates in each arm of each

study is given by (x+0.5)/(N+1), where (x,N) represent the observed number of MI’s

and total sample in a given study arm, respectively. We then applied our proposed

procedure, sampling 1000 times from the exact binomial CD for the risk difference in

each study, omitting studies with sample sizes larger than 500 in order to focus on

small-sample performance. We examined the 25th, 50th, and 75th percentiles of the

study-specific parameters, and found that both the 95% and 80% confidence intervals

from our proposed method provided appropriate coverage for each percentile. Method

1 provided conservative coverage, with intervals approximately 2-3 times the width

of those from our proposed method, and Method 2 was found to provide appropriate

coverage only for the 50th percentile, but exhibited severe under-coverage for the 25th

and 75th percentiles. These results are shown below in Table 5. When applied to the

full Avandia data set analyzed by Tian et al. (2009), we report a 95% confidence interval

of (−0.21, 0.49)% for the “median” treatment effect, with intervals of (−0.46, 0.49)%

and (−0.13, 0.91)% for the 25th and 75th percentiles, respectively.

7. DISCUSSION

In this paper, we introduce a unified framework which simultaneously addresses two

important problems. By introducing a procedure for making inference on any ordered
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Table 5: Simulation results using data mimicking rosiglitazone data from Tian et al.
(2009)

95% interval 80% interval
Quantile OS Cov Wid Cov Wid

Method 1
25th 8 1.000 0.049 1.000 0.029
50th 15 1.000 0.040 1.000 0.024
75th 22 1.000 0.048 0.998 0.027

Method 2
25th 8 0.888 0.019 0.532 0.012
50th 15 0.986 0.012 0.886 0.007
75th 22 0.734 0.017 0.316 0.011

Method 3
25th 8 0.994 0.022 0.830 0.013
50th 15 0.994 0.014 0.930 0.009
75th 22 0.998 0.021 0.904 0.012

-4 -3 -2 -1 0 1 2

2
4

6
8

10
12

14

95% CI's for Ordered Parameters

Log-Odds Ratio

M
-th

 O
rd

er
ed

 T
he

ta

Figure 1: Confidence distribution estimates of treatment effects from 14 studies of
acetylcysteine on nephropathy: Vertical solid (dashed) lines represent 95% CI from
fixed-effects (random-effects) meta-analysis
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value of a set of parameters, we may provide a summary of the treatment effects ob-

served over a collection of studies without having to rely on any assumptions about

the nature of or relationship between those treatment effects, thus enabling a non-

parametric, model-free form of meta-analysis. While the resulting confidence interval

from such a procedure will likely be wider than those provided by methods with more

restrictive assumptions, the general applicability of our new method is appealing and

may serve as a good point of comparison, just as many analysts now present results

corresponding to both fixed-effects and random-effects meta-analysis models. Addi-

tionally, our procedure also allows us to make inference on the extreme values of a

set of parameters, a well-established problem that has proven to be intractable with

respect to many statistical approaches. By taking advantage of the flexibility afforded

by confidence distributions as functional estimators, as well as a tuning technique that

accounts for the unknown presence or absence of ties and near-ties in small-sample

settings, we are now able to provide valid inference in a wide variety of settings.

APPENDIX

A1. Proof of Theorem 4.1.

(i) The first two results follow immediately from (4) and the fact that |θ̂i− θ(m)| ≤ |θ̂i− θi|+

|θi − θ(m)| = Op(N
−1/2) for any θi ∈ ΘN. We only need to prove (5).

Note that, θ̂i ∼ (θi, s
2
i ), for any i, it follows that

∑
i∈ΘN

ciθ̂i
/∑

i∈ΘN
ci −

∑
i∈ΘN

ciθi
/∑

i∈ΘN
ci√∑

i∈ΘN
c2
i s

2
i

/
{
∑

i∈ΘN
ci}2

∼ N(0, 1).

Again, from (4) and the fact that |θi − θ(m)| = O(N−1/2) for any θi ∈ ΘN, we have∑K
i=1wi,(m)θ̂i =

∑
i∈ΘN

ciθ̂i + op(1),
∑K

i=1w
2
i,(m)s

2
i =

∑
i∈ΘN

c2
i s

2
i + op(1),

∑K
i=1wi,(m) =
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∑
i∈ΘN

ci + op(1) and
∑

i∈ΘN
ciθi = {

∑
i∈ΘN

ci} θ(m) +O(N−1/2). Thus, we have

∑K
i=1wi,(m)θ̂i

/∑K
i=1wi,(m) − θ(m)√∑K

i=1w
2
i,(m)s

2
i

/
{
∑K

i=1wi,(m)}2
→ N(0, 1), as N →∞ (A.1)

On the other hand, since ξ∗ =
∑K

i=1wi,(m)ξi/
∑K

i=1wi,(m) and ξi are CD random variables

from N(θ̂i, s
2
i ), we have

ξ∗ −
∑K

i=1wi,(m)θ̂i
/∑K

i=1wi,(m)√∑K
i=1w

2
i,(m)s

2
i

/
{
∑K

i=1wi,(m)}2

∣∣∣∣Θ̂ ∼ N(0, 1). (A.2)

It follows immediately the third result of (i).

(ii) Based on (A.1) and (A.2) and the definition of H∗(t), we have, for any 0 < s < 1 and

as N →∞,

P
{
H∗(θ

(m)) ≤ s
}

= P

P
 ξ∗ −

∑K
i=1wi,(m)θ̂i

/∑K
i=1wi,(m)√∑K

i=1w
2
i,(m)s

2
i

/
{
∑K

i=1wi,(m)}2
≤
θ(m) −

∑K
i=1wi,(m)θ̂i

/∑K
i=1wi,(m)√∑K

i=1w
2
i,(m)s

2
i

/
{
∑K

i=1wi,(m)}2

∣∣∣∣Θ̂
 ≤ s


= P

θ(m) −
∑K

i=1wi,(m)θ̂i
/∑K

i=1wi,(m)√∑K
i=1w

2
i,(m)s

2
i

/
{
∑K

i=1wi,(m)}2
≤ Φ−1(s)

→ Φ(Φ−1(s)) = s.

Thus, H∗(θ
(m))→ Unif [0, 1], as N →∞. The conclusion of (ii) follows.

A2. Proof of Lemma 4.1

Recall that the condition described in (4) is as follows:

lim
n→∞

wi,(m) =


ci if ı ∈ Θ

(m)
T ,

0 if ı 6∈ Θ
(m)
T ,

for i = 1, 2, . . . ,K .

Without loss of generality, let θ1 < θ2 < . . . < θK . Also let θ̂j ∼ N(θj , σ
2
j /nj) for each

j and define θ̂(j) : θ̂(1) ≤ θ̂(2) ≤ ... ≤ θ̂(K). Furthermore, suppose we are interested in θm.
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Recall w
[1]
m,(m) = 1{θ̂m = θ̂(m)} is a binary random variable that equals 1 with probability

P{θ̂i = θ̂(m)}.

P{θ̂m = θ̂(m)} <
∏
i<m

[P{θ̂i < θ̂m}]
∏
j>m

[P{θ̂j > θ̂m}]

=

∫ ∏
i<m

[P{θ̂i < c}]P{θ̂m = c}
∏
j>m

[P{θ̂j > c}] dc

=

∫ ∏
i<m

[Φ(
c− θi
σi/
√
ni

)]φ(
c− θm
σm/
√
nm

)
∏
j>m

[Φ(
θj − c
σj/
√
nj

)] dc

<

∫ θm+1−ε

θm−1+ε

∏
i<m

[Φ(
c− θi
σi/
√
ni

)]φ(
c− θm
σm/
√
nm

)
∏
j>m

[Φ(
θj − c
σj/
√
nj

)] dc

→
∫ θm+1−ε

θm−1+ε
φ(

c− θm
σm/
√
nm

) dc→ 1

Thus w
[1]
m,(m) converges in probability to 1. Because we have that w

[1]
m,(m) → 1 and

∑
iw

[1]
i,(m) =

1, then w
[1]
i,(m) → 0 ∀i 6= m, thus satisfying (4). Noting that θ̂j ∼ N(θj , σ

2
j /nj) and, uncon-

ditionally, ξj ∼ N(θj , 2σ
2
j /nj), we can replace each σ2

j with 2σ2
j in the proof above, and the

result remains unchanged.

Recall that w
[3]
i,(m) = 1{−bL ≤ (ξi − ξ(m)) ≤ bR}, where (bL, bR) ∝ τN , τN = O(N−δ), δ ∈

(0, 1
2). For i = m, we use the argument above that P{ξm = ξ(m)} → 1, and so K

(
ξi−ξ(m)

τN

)
→

K

(
0
τN

)
= 1. For i 6= m, (ξi − ξ(m)) converges in probability to Di = θi − θm. For i < m,

Di/τN → −∞, and thus K

(
ξi−ξ(m)

τN

)
→ 0. Similarly, for i > m, Di/τN → +∞, and thus

K

(
ξi−ξ(m)

τN

)
→ 0. Thus, we have satisfied (4).

A3. Proof of Lemma 4.2.

Recall that w
[3]
i,(m) = 1{−bL ≤ (ξi − ξ(m)) ≤ bR}, where (bL, bR) ∝ τN , and τN = O(N−δ),

with 0 < δ < 1/2. Let us denote cL = bL/τN , cR = bR/τN , so that cL, cR = O(1).

Now w
[3]
i,(m) = 1{−bL ≤ (ξi − ξ(m)) ≤ bR} = 1{−cL ≤ (ξi−ξ(m))

τN
≤ cR}.
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Note that in general, ξi = θ̂i + ε̃n, and θ̂i = θi + εn, where both ε̃n and εn = O(N−1/2).

Substituting, we have that (ξi−ξ(m)) = θi−θ(m)+ε̃in−ε̃(m)
n +εin−ε(m)

n = θi−θ(m)+O(N−1/2).

Thus, when i ∈ Θ
(m)
N , θi = θ(m) + o(N−1/2), then (ξi − ξ(m)) = O(N−1/2), (ξi−ξ(m))

τN
=

O(N δ−1/2) = o(1)⇒ (ξi−ξ(m))
τN

→ 0 as N →∞, and so w
[3]
i,(m) → 1 as N →∞.

Recalling that dm = min
j 6∈Θ

(m)
T

|θj − θ(m)| is O(N−δ
∗
), for any δ∗ ∈ [0, 1/2), we require

that the convergence rate for τN , δ must be restricted to (δ∗, 1/2).

When i 6∈ Θ
(m)
N , θi 6= θ(m), then (ξi − ξ(m)) = O(N−δ

∗
), (ξi−ξ(m))

τN
= O(N δ−δ∗) ⇒

(ξi−ξ(m))
τN

→∞ as N →∞, and so w
[3]
i,(m) → 0 as N →∞.

A4. Scale-invariant version of τN

We may instead use τN = (σ)(s(m)/σ)2δ, where s(m) is the standard error associated with θ̂(m)

and σ is reasonable maximum value for the tuning parameter, such as σ =

√∑
i s

2
ini

K . This

particular formulation of σ ensures that s(m)/σ ≈ n
−1/2
(m) , and that (s(m)/σ)2δ > (s(m)/σ).

Note that σ = O(1), s(m) = O(N−1/2), and so τN = O(−δ).
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