
Harvard University
Harvard University Biostatistics Working Paper Series

Year  Paper 

Treatment Selections using Risk-benefit
Profiles Based on Data from Comparative
Randomized Clinical Trials with Multiple

Endpoints

Brian Claggett∗ Lu Tian†

Davide Castagno‡ L. J. Wei∗∗

∗Harvard School of Public Health, bclagget@hsph.harvard.edu
†Stanford University School of Medicine, lutian@stanford.edu
‡University of Turin
∗∗Harvard School of Public Health, wei@hsph.harvard.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/harvardbiostat/paper153

Copyright c©2012 by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61321535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Treatment Selections using Risk-Benefit Profiles Based on Data from

Comparative Randomized Clinical Trials with Multiple Endpoints

Brian Claggett, Lu Tian, Davide Castagno, and L. J. Wei∗

Abstract

In a longitudinal, randomized clinical study to compare a new treatment with a
control, oftentimes each study subject may experience any of several distinct outcomes
during the study period, which collectively define the “risk-benefit” profile. To assess
the treatment difference, it is desirable to utilize the entirety of such outcome infor-
mation. The times to these events, however, may not be observed completely due to
competing risks. The standard analyses based on the time to the first event, or in-
dividual component analyses with respect to each event time, are not ideal. In this
paper, we classify each patient’s risk-benefit profile, by considering all event times dur-
ing follow-up, into several clinically meaningful ordinal categories. We first show how
to make inferences for the treatment difference in a two-sample setting with incomplete
categorical data. To bring the study results to the individual patient’s bedside, we then
present a systematic procedure to identify patients who would benefit from a specific
treatment using baseline covariate information. Specifically, we split the data set into
two independent pieces. Using the data from the first piece, we build, as a function of
the baseline covariates, a scoring system for assessing treatment differences, with the
final model(s) chosen via a cross-validation process. With the data from the second
piece, we non-parametrically estimate the treatment differences across a range of the
resulting scores. A desirable subgroup of patients can then be identified with respect
to the size of the treatment difference for treatment selection. The proposal is illus-
trated with the data from a clinical trial to evaluate a beta-blocker for treating chronic
heart failure patients, for whom it was unclear whether known risks of beta-blocking
agents would outweigh anticipated benefits (Beta-Blocker Evaluation of Survival Trial
Investigators, 2001).
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1. INTRODUCTION

Consider a randomized, comparative clinical trial in which a treatment is assessed against a

control with respect to their risk-benefit profiles. For each study patient, the outcome vari-

ables include a set of distinct event time observations reflecting such profiles during the study

period. Often these event times cannot be observed completely due to the presence of com-

peting risks. For example, to investigate if the beta-blocking drug, bucindolol, would benefit

patients with advanced chronic heart failure (HF), a clinical trial, Beta-Blocker Evaluation of

Survival Trial (BEST), was conducted (Beta-Blocker Evaluation of Survival Trial Investiga-

tors, 2001). There were 2708 patients enrolled and followed for an average of two years. The

primary endpoint of the study was the patient’s overall survival time. For patients in the

two treatment arms, the Kaplan-Meier estimates for survival are given in Figure 1(a) with

a p-value of 0.10 based on the standard two-sample logrank test, favoring the beta-blocker

but not reaching statistical significance. Although mortality is an important endpoint, the

treatment benefit evaluation should also include morbidity for chronic heart failure patients.

One important morbidity measure is the time to hospitalization, especially due to worsening

HF. Unfortunately such event times may be “informatively” censored, for example, by the

patient’s survival time. To avoid such competing-risk problems, one may consider the time

to the first event among all competing events of interest as the endpoint. For example, for

the BEST study, the competing events are death and HF or non-HF hospitalization. In

Figure 1(b), we present the corresponding KM estimates for such an event time analysis.

With this endpoint, the beta-blocker is not statistically significantly better than the control,

with a p-value of 0.14. Note that this type of endpoint does not fully reflect the disease

burden or progression over the entire duration of the patient’s follow-up, since only one

event at most is utilized per patient. In Table 1, we show the frequencies of the occurrences

of these component endpoints from the study patients whose data were obtained from the

National Heart, Lung and Blood Institute. Note that mortality may be classified as either

cardiovascular (CV) or non-CV related, in which case it may be expected that an effective
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(a) Overall survival
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(b) Time to first event

Figure 1: Kaplan-Meier estimates from BEST trial. Solid and dashed lines represent control
and treated groups, respectively.

beta-blocker would lower the rate of events classified into the former category, but have no

impact on the latter category. In general, it is not expected that a beta-blocker would have

any beneficial effect on non-CV outcomes. In addition, part of the undesirable side effects

of beta-blockers may be captured by non-CV outcomes (for example, non-CV related death

or non-HF hospitalization). It is also important to note that a patient may have multiple

events during the study follow-up reflecting the disease progression. The times to all these

events contain valuable clinical information for comparing two groups with respect to overall

disease burden and should not be ignored for the analysis.

Table 1: Numbers of Patients Experiencing Specific Clinical Endpoints in Control and Treat-
ment Groups in BEST

Outcome Control Treated
Death 448 411
CV Death 388 342
Non-CV Death 60 69
Any Hosp. 874 829
HF Hosp. 568 476
Non-HF Hosp. 634 619
Total Patients 1353 1354
∗CV=Cardiovascular, ∗HF=Heart Failure

For a typical cardiovascular study like BEST with multiple event time observations,
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conventional secondary analyses for risk-benefit assessments are often conducted with each

type of endpoint (for example, the time to HF hospitalization). The conclusions of such

component analyses can be misleading due to competing risks. Moreover, because component

events are analyzed separately rather than jointly, they cannot provide a global, clinically

meaningful evaluation of the new treatment. To this end, there are novel procedures for

handling multiple event time observations proposed, for example, by Andersen and Gill

(1982), Wei et al. (1989), and Lin et al. (2000). In the presence of competing risks, however,

the above procedures or their modifications are not entirely satisfactory for assessing the

treatment’s overall risk and benefit (Li and Lagakos, 1998; Ghosh and Lin, 2003; Pocock

et al., 2012).

In this article, we create an ordinal categorical outcome variable which reflects the in-

dividual patient’s morbidity, including toxicity, and mortality over the entire study period

for evaluating the treatments. Such a classification system may be constructed by a panel

of clinical experts who can classify various possible patient outcome patterns into categories

(e.g., “improved”, “stabilized”, or “worsened”, or finer ordinal subcategories). For example,

for the BEST study, with guidance from our cardiologist co-author, we classified patient

response, using five ordinal categories, based on the disease burden during 18 months of

follow-up. Category 1 is assigned if the patient has experienced neither death nor any hospi-

talization prior to the time of evaluation. The patient is classified as Category 2 if he or she

is alive and has experienced only non-HF hospitalization (reflecting potential toxicity). Cat-

egory 3 denotes patients who are alive, but have experienced HF-hospitalization (reflecting

lack of efficacy). Category 4 is assigned if the patient has died from non-CV related causes.

Finally, Category 5 refers to those patients who suffered CV-related death. Note that often,

study patients might not have their entire clinical history, until their time of death or at 18

months after randomization, available due to non-informative, or administrative, censoring.

In the paper, we first present methods for analyzing such ordinal, possibly incomplete,

data in a two-sample overall comparison setting. Note that making patient-specific decisions
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based on estimated population-averaged effects can lead to sub-optimal patient care (Kent

and Hayward, 2007). A positive (negative or neutral) trial based on some overall assessment

does not mean that every future patient should (should not) be treated by the new treat-

ment. To bring the clinical trial results to the patient’s bedside, we may utilize the patient’s

characteristics to perform personalized or stratified medicine. Unfortunately, the typical ad

hoc subgroup analysis of clinical studies is not credible (Wang et al., 2007). Moreover, such

subgroup analysis is often conducted by investigating the effect of only a single predictor

at a time and therefore may not be effective, from a risk-benefit perspective, in identifying

patients who would benefit from the new treatment. Here, we present a systematic approach

to create a scoring system using the patient’s multiple baseline covariates and utilize this sys-

tem to stratify the patients for evaluation with respect to the ordinal categorical outcomes.

More specifically, to avoid overly optimistic model selections, we first divide the data set

into two pieces. The two pieces may be obtained by splitting the entire data set randomly

or sequentially, dividing the data according to the order in which patients entered into the

study. With the first piece, a cross-validation procedure is utilized to select the best scoring

system among all of the competing models of interest for ordinal categorical data. We then

use the second piece (the so-called holdout sample) to make inferences about the treatment

differences over a range of the score selected from the first stage. All proposals are illustrated

with the data from the BEST study.

When there is a single baseline covariate involved, Bonetti et al. (2000), Song and Pepe

(2004), and Bonetti and Gelber (2004) have proposed novel statistical procedures for iden-

tifying a subgroup of patients who would benefit from the new treatment with respect to

a single outcome. A recent paper by Janes et al. (2011), based on previous work by Pepe

(2004), Huang et al. (2007), and Pepe et al. (2008), provides practical guidelines for assessing

the performance of individual markers for the purposes of treatment selection. By incorpo-

rating more than one baseline covariate, our approach is similar in spirit to Cai et al. (2011)

and Li et al. (2011). However, they used the data from the entire study to create a scoring

4
Hosted by The Berkeley Electronic Press



system by fitting a prespecified model without involving model evaluation or variable selec-

tion and then used the same data set to make inferences for either the treatment difference

with respect to a single outcome or for risk predictions for a single treatment group only.

Note that Chuang-Stein et al. (1991) utilized an ordinal categorical outcome with individual

patients’ subjective weightings of the categories for a summary measure for personalized

treatment selection. Their novel approach is quite different from our proposal.

2. TWO-SAMPLE ASSESSMENT OF TREATMENT EFFECT USING

INCOMPLETE CATEGORICAL OBSERVATIONS

For the jth patient in the ith treatment group, (j = 1, . . . , ni; i = 1, 2), let Tij be the time

to the first occurrence of a terminal event from among the competing risks of interest. Note

that Tij may be infinite if there is no terminal event. Let Cij be the independent censoring

variable for Tij. Let Xij = min(Tij, Cij) and ∆ij is an indicator variable, which is one if

Tij ≤ Cij. Let Gi be the survival function of the censoring variable Cij. For each study

patient, assume that based on his/her entire morbidity and mortality endpoint information

up to time t0, where pr(Cij > t0) > 0 (i = 1, 2), one can classify the outcome ε as one of K

ordered categories. In general, we make no assumptions about how the patient’s classification

may change over time. That is, the patient’s classification may improve or worsen during

the follow-up time. Note that we do not require traditional “competing risks” methods to

account for informative censoring because we include such informative events in the definition

of the patient outcome categories.

Let πik be the probability of ε = k with treatment i, (i = 1, 2; k = 1, . . . , K). Let

εij, j = 1, . . . , ni, be the response for the jth patient in the ith group. Noting that a patient’s

outcome status is observable only when min(Tij, t0) ≤ Cij, the cell probabilities πik can be

consistently estimated, via inverse probability of censoring weighting, by

π̂ik =

ni∑
j=1

wijI(εij = k)

Ĝi(Xij ∧ t0)
/

ni∑
j=1

wij

Ĝi(Xij ∧ t0)
, (1)
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where I(·) is the indicator function, wij = I(Xij ≤ t0)∆ij + I(Xij > t0), and Ĝi(·) is

the Kaplan-Meier estimator for Gi(·) (Li et al., 2011). In order to compare two treatment

groups with such ordinal categorical outcomes, one may compare the cumulative distributions

γik =
∑k

l=1 πil, i = 1, 2; k = 1, . . . , K. Let Γk = γ2k − γ1k and let γ̂ik be the corresponding

estimators via π̂ik. Note that each value Γk, k = 1, . . . , K − 1, may be interpreted as the

risk difference with respect to a binomial outcome in which “success” is defined by a patient

experiencing (ε ≤ k). To make inferences on the difference of these two distribution functions,

we may use bootstrapping or perturbation-resampling methods (Uno et al., 2007). Details

are provided in the Appendix.

For the data from BEST, let t0 = 18 months. Using the five ordinal categories described

in the Introduction, Table 2 displays the profiles of the estimated distribution functions for

each treatment group γik and the differences Γk. For each level k, the estimated distribution

function for the beta-blocker group (γ̂2k) is larger than for the control group (γ̂1k), indicating

that the beta-blocker group is numerically better than its control counterpart with respect

to each outcome.

Table 2: Estimated distribution functions for control and treated groups with BEST data
with t0 = 18 months

Control (γ̂1) Treated (γ̂2) Contrast (Γ̂)
Outcome Category n pr(ε ≤ k) n pr(ε ≤ k) Est SE

1 397 0.37 442 0.41 0.04 0.03
2 174 0.54 224 0.62 0.08 0.02
3 251 0.77 190 0.80 0.03 0.02
4 35 0.80 39 0.83 0.03 0.02
5 246 1.00 211 1.00 - -

(censored) 250 - 248 - - -

To compare two groups with respect to ordinal categorical outcomes, a conventional way

to summarize the treatment difference is to use an ordinal regression model. Let τij = 1 for

patients in treated group and 0 otherwise, then this model is:

g(pr(εij ≤ k)) = αk − βτij, (2)
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where g(·) is a known, increasing function and αk and β are unknown parameters. Here

β can be interpreted as an overall measure of the treatment difference even if the model is

not correctly specified. Under such parameterization, for the present case, a negative value

for β corresponds to an reduction in overall “risk” associated with treatment. With cen-

sored observations, the treatment difference β can be estimated by maximizing the standard

weighted multinomial log-likelihood function:

∑
ij

wij

Ĝi(Xij ∧ t0)
[
K∑
k=1

I(εij = k)log{g−1(αk − βτij)− g−1(αk−1 − βτij)}], (3)

where α0 = −∞, αK = ∞, and standard error estimates can be obtained via perturbation-

resampling methods. Under mild conditions, the estimator β̂ from the above model converges

to a finite constant β as n→∞ even when the model is not correctly specified (Zheng et al.,

2006; Uno et al., 2007; Li et al., 2011). For the data from BEST, when g(·) is the logit

function, β̂ is −0.227 with a standard error estimate of 0.072. This indicates that the beta-

blocker indeed reduces the disease burden. Details are given in the Appendix.

Rather than using a parametric summary of the treatment difference, an intuitively in-

terpretable, nonparametric summary measure is the so-called general risk difference, which

has been studied extensively as an extension of the simple risk difference for ordinal data (Si-

monoff et al., 1986; Agresti, 1990; Edwardes, 1995; Edwardes and Baltzan, 2000; Lui, 2002).

In this setting, the general risk difference, which is closely related to Wilcoxon’s rank-sum

statistic, is D = pr(ε1 > ε2)− pr(ε1 < ε2), where εi, i = 1, 2, is a patient response randomly

chosen from treatment group i, with positive values suggesting that treated patients (i = 2)

are generally more likely to be in a “healthier” state rather than an “unhealthier” state, com-

pared to their control counterparts (i = 1). Here ε1 and ε2 are independent. A consistent

estimator for D then is D̂ =
∑K

k=2 π̂1,kγ̂2,k−1 − π̂2,kγ̂1,k−1. The standard error estimate can

be obtained via bootstrap (Simonoff et al., 1986) or perturbation-resmapling methods as in

Uno et al. (2007). For the data from the BEST trial, D̂ = 0.069 with standard error estimate

of 0.023. Using this model-free summary of the treatment difference, the beta-blocker again
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appears better than the control. Details are given in the Appendix.

3. CONSTRUCTION AND SELECTION OF A PATIENT-LEVEL

STRATIFICATION SYSTEM

Suppose that Ui is the baseline covariate vector for a subject randomly chosen from the ith

treatment group (i = 1, 2). Our goal is to make inference about the treatment difference

based on ε1 and ε2, conditional on U1 = U2 = u, any given value in the support of the

covariate vector. Ideally, one would estimate this conditional treatment difference via a

nonparametric procedure. However, if the dimension of U is greater than one, it seems

difficult, if not impossible, to do so. A practical alternative is to model the relationship

between the treatment difference and U parametrically and then validate the selected model.

To avoid an “overly optimistic” personalized prediction model, we split the data set into two

pieces, say, part A and part B. With the data from part A, we build various candidate models

for the conditional treatment differences and evaluate them via a cross-validation procedure.

This results in a univariate scoring system with which to stratify the patients, which we refer

to as a treatment selection score. In this section, we present the first step using the part A

data, i.e., the construction and selection of the scoring system, and in the next section, we

show how to make inferences about the treatment differences based on the selected scoring

system using the part B data. It is important to note that, to validate the scoring system,

we need a model-free summary measure for the treatment difference. For the present case

with the ordinal categorical response discussed in Section 2, the treatment contrast,

D(u) = pr(ε1 > ε2|U1 = U2 = u)− pr(ε1 < ε2|U1 = U2 = u), (4)

is model-free and heuristically interpretable. Note also that to obtain a coherent prediction

system, it is preferable to use the same treatment contrast measure for model building,

selection and validation.
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3.1 Creating Treatment Difference Scoring Systems

There are numerous ways to estimate (4) parametrically. For instance, one can model the

ordinal categorical response via two separate ordinal regression models, that is, for each

treatment i and conditional on Uij:

gi(γik(Uij)) = αik − β′iZij, i = 1, 2; j = 1, . . . , ni (5)

where γik(Uij) = pr(εi ≤ k|Uij), Zij is a function of Uij, gi(·) is a known monotone increasing

function, and αik and βi are unknown parameters. It follows that a parametric estimate

D̂(u) for D(u) is given by

D̂(u) =
K∑
k=1

π̂1,k(u)γ̂2,k−1(u)− π̂2,k(u)γ̂1,k−1(u) (6)

where estimated probabilities γ̂ik(u) are obtained from the fitted models (5) and π̂i,k(u) =

γ̂i,k(u)− γ̂i,k−1(u), with γ̂i,0 = 0, i = 1, 2.

Alternatively, we may use a single model

g(γik(Uij)) = αk − β′Zij − τij(θ
′
Z∗ij), (7)

where Z∗ij = (1, Z ′ij)
′, and α, β, and θ are unknown parameters. The resulting probability

estimates γ̂ik(u) may similarly be used to estimate D̂(u) via (6).

Models (5) may be fitted to the data by applying inverse probability of censoring weights

and maximizing the group-specific weighted multinomial log-likelihood functions

ni∑
j=1

wij

Ĝi(Xij ∧ t0)
[
K∑
k=1

I(εij = k)log{g−1(αik − β′iZij)− g−1(αi,k−1 − β′iZij)}], (8)
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where α0 = −∞, αK =∞, i = 1, 2. For model (7), the log-likelihood function is

∑
ij

wij

Ĝi(Xij ∧ t0)
[
K∑
k=1

I(εij = k)log{g−1(αk−β′Zij−τij(θ
′
Z∗ij))−g−1(αk−1−β′Zij−τij(θ

′
Z∗ij)}],

(9)

Under some mild conditions, the resulting estimators (α̂, β̂, θ̂) from the above models con-

verge to a finite constant vector as n → ∞ even when the model (5) or (7) is not correctly

specified (Uno et al., 2007). Note that one may repeatedly utilize (5) or (7) along with (8)

or (9) using various Z and g(·) via, for instance, a stepwise regression procedure, to obtain

final estimates γ̂ik(U) and D̂(U).

3.2 Evaluation and Selection of a Final Model for Stratification

To choose the “best” stratification system from among many possible candidates obtained

via the process described in Section 3.1, we use a cross-validation procedure. Specifically, we

split the data into two parts randomly. We fit the data from the first part with each of the

models of interest, then use the data from the second part to evaluate them via an intuitively

interpretable, model-free criterion. Note that unlike the one-sample risk prediction problem,

most standard evaluation criteria based on individual prediction errors (e.g., with respect to

the L1 or L2 norm) are not applicable here because each study patient was only assigned to

either the treatment or control, not both. However, a “goodness of fit” measure using the

concordance between the true treatment difference D(u) in (4) and the rank of the parametric

score D̂(u), say, C = Cov{H(D̂(U)), D(U)}, can be estimated consistently under the current

setting, where H(·) is the distribution function of D̂(U) and the covariance is with respect

to the random covariate vector U . Here, C can be estimated by

Ĉ =

∫ 1

0

(1− q)
[∑n1

j=1

∑n2

j′=1

[I(ε1j>ε2j′ )−I(ε1j<ε2j′ )]I{Ĥ(D̂1j)>q,Ĥ(D̂2j′ )>q}
{Ĝ1(X1j∧t0)/w1j}{Ĝ2(X2j′∧t0)/w2j′}∑n1

j=1

∑n2

j′=1

I{Ĥ(D̂1j)>q,Ĥ(D̂2j′ )>q}
{Ĝ1(X1j∧t0)/w1j}{Ĝ2(X2j′∧t0)/w2j′}

− D̂
]

dq, (10)
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where Ĥ(·) is the empirical cumulative distribution function of D̂(U) and D̂ij = D̂(Uij). The

justification of the consistency of (10) can be derived using similar arguments to those given

by Zhao et al. (2012). Now, since the variances of D(U) and H(D̂(U)) are independent of

the fitted model, the correlation ρ corresponding to C can be estimated up to a common

constant across all candidate models. Therefore, to quantify the improvement of, say, Model

I relative to Model II, we may take the ratio of the resulting covariance estimates Ĉ1/Ĉ2

to estimate the ratio of the two corresponding correlation coefficients ρ̂1/ρ̂2, to guide model

selection.

We use a repeated random cross-validation procedure, in each iteration randomly dividing

this part A data set into two mutually exclusive subsets, B and E, the “model building set”

and “evaluation set”, respectively. For each model building set and for a given link function

and variable selection procedure, we can construct a model, using only data in B to obtain

D̂(·) via (6), then compute all D̂(Uij), for all Uij in E. We repeatedly split the training

data set M times. For each m, and for each modeling procedure, we obtain an estimate of

the concordance Ĉ(m). Lastly, we average these estimates over m = 1, ...,M to obtain final

estimates Ĉ. The modeling procedure which yields the largest cross-validated C values will

be used for the construction of our final working model. We then refit the entire part A data

set with this specific modeling procedure in order to construct the final score.

3.3 Construction and Selection of Scoring Systems Using the BEST Data Set

We first split the data set into parts A and B, using the first 900 (33%) patients entering

the study as part A and using the remaining patients as part B. In this sense, we mimic the

traditional prediction process, using current data to predict the future outcomes of patients.

Note that Shao (1993) presents theoretical justifications for the preference of a relatively large

holdout sample, and a comparatively smaller sample size devoted to “model construction”.

Within part A data, 123, 60, 86, 9, and 84 patients in the control group were classified into

categories 1 through 5, respectively, after 18 months of followup. The corresponding counts

for the treatment group were 148, 74, 52, 13, and 68 patients, respectively. The numbers of
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censored patients in part A were 94 and 89 in the control and treatment groups, respectively.

Here the covariate vector U consists of 16 clinically relevant covariates from Table 1

of Castagno et al. (2010). These baseline variables are: age, sex, left ventricular ejection

fraction (LVEF), estimated glomerular filtration rate adjusted for body surface area (eGFR),

systolic blood pressure (SBP), class of heart failure (Class III vs. Class IV), obesity (Body

mass index (BMI) > 30 vs. BMI ≤ 30), resting heart rate, smoking status (ever vs. never),

history of hypertension, history of diabetes, ischemic heart failure etiology, presence of atrial

fibrillation at baseline, and race (white vs. non-white). As in Castagno et al. (2010), we

used 3 indicator variables to discretize eGFR values into 4 categories, with cut-points of 45,

60, and 75.

Models (5) and (7) were utilized with the logit and complementary log-log links, g(p) =

log( p
1−p), and g(p) = log(−log(1−p)), respectively. For each of type of model, first we let Z

be the vector of the above 16 covariates. We then consider a stepwise regression procedure

with the weighted likelihood function as the objective function and an Akaike information

criterion (AIC) as the criterion for covariate inclusion/exclusion. For each type of model

(5) or (7), we started with all covariates (and first order interactions with the treatment

indicator for (7)), and successively added/eliminated terms until no more covariates could

be added/removed without subsequently increasing the AIC. For illustration, a total of eight

modeling procedures were considered in our analysis. To evaluate these models, we used a

repeated random cross validation procedure with 80% of the part A data used for model

building and 20% for evaluation for each iteration of the procedure with M = 25 iterations.

In Table 3, we present these modeling procedures along with their relative concordance

value, based on Ĉ with the modeling approach of separate logistic regression models with

no variable selection as the reference model.

The model building procedure found to provide the most overall discriminatory ability

was the one which models each treatment group separately, using the complementary log-log

link, and performs AIC-based variable selection. This procedure is marked with ∗ in Table
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3. We then used this model building procedure to fit the entire part A data. The resulting

model is given in Table 4. We note that six variables were eliminated from both models, six

variables were retained in one model only, and four variables were retained in both models.

Table 3: Model building procedures with average cross-validated concordance values

Separate/Single Models Link Var. Selection Ĉ Ratio
Separate logit None (ref)
Separate logit AIC 2.01
Separate c-log-log None 1.62
Separate c-log-log AIC 2.17∗

Single logit None 0.99
Single logit AIC 1.91
Single c-log-log None 1.61
Single c-log-log AIC 0.90

Table 4: Regression coefficients for the final working models using BEST training data with
log(−log) link function

Control Group Treated Group
Covariate β1 β2

LVEF -0.018 -0.034
I(eGFR>75) -0.237 -0.489
I(eGFR>45) -0.673 -0.753

SBP -0.012 -
Class IV Heart Failure - 0.843

I(BMI>30) 0.218 0.212
Heart Rate - -0.008

History of hypertension 0.213 -
History of diabetes 0.359 -
Atrial Fibrillation 0.263 -

4. MAKING INFERENCES ABOUT THE TREATMENT DIFFERENCES OVER A

RANGE OF SCORES USING THE HOLDOUT SAMPLE

Let d̂(u) be the observed score, obtained from the part A data set, for a patient in the part

B data set with covariates u. In this section, using the data from Part B, we make inferences

about the general risk difference E(s) = pr(ε1 > ε2|d̂(u) = s)− pr(ε1 < ε2|d̂(u) = s) and the

cumulative risk differences Γk(s) = pr(ε2 ≤ k|d̂(u) = s)− pr(ε1 ≤ k|d̂(u) = s), k = 1, . . . , K,
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where εi is outcome of a random patient in treatment group i from a future population

identical to the part B data. Rather than using a parametric estimate for these contrast

measures, we use a nonparametric kernel functional estimation procedure conditional on

the treatment selection score. To this end, let the conditional cell probabilities for the

ordinal response εij be denoted by πik(s) and cumulative probabilities by γik(s), i = 1, 2; j =

1, . . . , n∗i ; k = 1, . . . , K. Here n∗i is the sample size in the ith group in the part B data

set. Let π̂ik(s) and γ̂ik(s) be their corresponding nonparametric kernel estimators. Let

Yijk = I(εij = k), k = 1, . . . , K. The kernel estimators for πik(s) and γik(s) are

π̂ik(s) =


n∗i∑
j

wijYijk

Ĝi(Xij ∧ t0)
Khi(Vij − s)

 /


n∗i∑
j

wij

Ĝi(Xij ∧ t0)
Khi(Vij − s)

 , (11)

and γ̂ik(s) =
∑k

l=1 π̂il(s), i = 1, 2; k = 1, . . . , K, where Vij = d̂(Uij), wij = I(Xij ≤

t0)∆ij + I(Xij > t0), Ĝi(·) is the Kaplan-Meier estimator of Gi(·) from the part B data,

Khi(s) = K(s/hi)/hi, K(·) is a smooth symmetric kernel with finite support and hi is a

smoothing parameter. The resulting estimator for E(s) is Ê(s) =
∑K

k=1 π̂1,k(s)γ̂2,k−1(s) −

π̂2,k(s)γ̂1,k−1(s). When hi = O(n∗−vi ), 1/5 < v < 1/2, it follows from a similar argument by

Li et al. (2011) that π̂ik(s) converges to πik(s) uniformly over the interval s ∈ S, where S is

an interval contained properly in the support of d̂(U). Consequently, when hi is of the same

order as above, for a fixed s, the distribution (n∗1h1 + n∗2h2)
1/2{Γ̂k(s)− Γk(s)}, k = 1, . . . , K

converges in distribution to a normal with mean 0 and covariance σk(s) as n∗i →∞, i = 1, 2.

Similarly, the distribution (n∗1h1+n∗2h2)
1/2{Ê(s)−E(s)} converges in distribution to a normal

with mean 0 and variance σ(s) as n∗i → ∞, i = 1, 2. To approximate the distributions

above, we use a perturbation-resampling method, which is similar to ‘wild bootstrapping’

(Wu, 1986; Mammen, 1993) and has been successfully implemented in many estimation

problems (Lin et al., 1993; Park and Wei, 2003; Cai et al., 2010). In addition, (1 − α)

simultaneous confidence bands for E(s) and Γk(s) over the pre-specified interval S can be

obtained accordingly. Details are provided in the Appendix.
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As with any nonparametric estimation problem, it is important that we choose appropri-

ate smoothing parameters in order to make inference about the treatment differences. Here,

we use a L-fold cross-validation procedure to choose the smoothing parameter ĥi which max-

imizes a weighted cross-validated multinomial log-likelihood, as in Li et al. (2011). Specifi-

cally, we may randomly divide the entire data set into L mutually exclusive, approximately

equally sized subsets. For any fixed values of hi and (i, k), we can estimate πik(s) using all

observations except for those contained in the same subset as the jth subject, which yields

the estimator π̂i(−j)k(s). The cross-validated log-likelihood, adjusted for censoring, is

∑
Vij∈S

wij

Ĝi(Xij ∧ t0)
{
K∑
k=1

Yijklog(π̂i(−j)k(Vij))}. (12)

Let ĥi be a maximizer of (12). As in Li et al. (2011), ĥi is of the order n∗−1/5. To ensure

the bias of the estimator is asymptotically negligible and that the above large-sample ap-

proximation is valid, however, we slightly undersmooth the data and let the final smoothing

parameter be h̃i = ĥi × n∗−ξi where ξ is a small positive number less than 0.3.

4.1 Making Inference About Treatment Differences using the BEST Data Set

Next, we apply the final scoring system derived from the part A data set to the patients

in the part B data set mentioned in Section 3.3. In Figure 2 below, we show the empirical

cumulative distribution function of the scores in the part B data set. The vertical line

indicates d̂(u) = 0, and we note that 75% of the scores fall to the right of this line, indicating

an anticipated treatment benefit for a majority of patients. For all kernel estimators, we let

K(·) be the standard Epanechnikov kernel, with the smoothing parameters chosen as the

maximizers of (12), then multiplied by n∗−0.05i .

The resulting estimates of the patient-specific treatment differences Ê(s), with 0.95 point-

wise and simultaneous confidence interval estimates, are displayed in Figure 3. Using the

final score derived from the model in Table 4 over the range s ∈ (−0.26, 0.40), we find

Ê(s) > 0 for s > −0.11 and Ê(s) < 0 for s < −0.11. The point and interval estimates
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Figure 2: Distribution of treatment selection scores d̂(u) for BEST patients in the holdout
sample.

displayed in Figure 3 are quite informative for identifying subgroups of patients who would

benefit from the beta-blocker with various desired levels of treatment differences.
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Figure 3: Estimated BEST treatment effect Ê(s) using treatment selection score presented
in Table 4. Solid curve represents point estimates, with 0.95 pointwise and simultaneous
confidence intervals denoted by dashed lines and shaded region, respectively.

In Figure 4, we show the corresponding treatment differences with respect to the cumu-

lative outcome probabilities γik(·). Note that each value Γk(s) allows for the estimation of
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the treatment contrast with respect to a different composite outcome. For example, Γ1(s)

refers to the effect of treatment on the composite outcome “any hospitalization or death”.

It can be seen that Γ̂1(s) > 0 for s > 0.02 and Γ̂1(s) < 0 for s < 0.02, indicating that our

score is also informative for identifying patients would experience “treatment success” with

respect to this outcome as well. Furthermore, using Γ̂2, patients with scores > 0.05 and

> 0.24 are found to experience significant treatment benefits (via the 95% confidence inter-

vals and bands, respectively) with respect to the desirable outcome (ε ≤ 2) (alive with no

HF hospitalization). Finally, we note that the estimated effect of treatment with respect to

death, Γ̂3(s), is relatively constant with a (non-significant) risk reduction of approximately

2% across the scores.

5. CONCLUSIONS

The proposed procedures can be applied to any study with multiple endpoints which re-

flect a patient’s risk-benefit profile. For example, a longitudinal trial may collect repeated

measurements for an endpoint over time. The standard analysis, for example, via GEE

techniques (Liang and Zeger, 1986) provides a treatment comparison using an average mean

difference of a response variable during the study follow-up. Such a contrast may not provide

a clinically interpretable summary, particularly when the temporal profile of such repeated

measures should be considered for the outcome. One may instead classify the repeated mea-

sure profile for each individual patient into several clinically meaningful categories, such as

those presented in this paper for evaluating the treatments risk(s) and benefit(s) together.

For ordinal categorical outcomes, one may give each stratum a weight and create a single

univariate outcome as the final endpoint. However, the estimates for the treatment difference

for each category are quite informative for treatment selections. To avoid post-hoc subgroup

analysis, we highly recommend pre-specifying a systematic procedure for identifying patients

who would benefit from the new treatment in the study protocol or its statistical analysis

plan.
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Figure 4: BEST target treatment differences (treated minus untreated) using treatment se-
lection score presented in Table 4. Solid curve represents point estimates, with 0.95 pointwise
and simultaneous confidence intervals denoted by dashed lines and shaded region, respec-
tively.

When there are more than two treatments available for selection, one may create a scoring

system such as a “risk score”, for example, based on the data from the control or standard

care arm. Then we may use the holdout sample to estimate the treatment effectiveness

nonparametrically over the selected score. For comparing two treatment groups only, we

recommend using the treatment difference score rather than the risk score from the control

only.

If the disease progression is not reversible, i.e., a patient’s classification cannot improve

over time, one may utilize more information from a censored observation rather than using
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the inverse probability of censoring weighting scheme. For example, to estimate {πik, i =

1, 2; k = 1, . . . , K}, if the ordinal response of the patient is l at the censored time, then the

contribution to the weighted likelihood from this patient is
∑

k≥l πik.

For comparing scoring systems constructed for the treatment difference, we use a con-

cordance measure between the observed and expected treatment differences. More research

is needed to explore if other measures, which may be more intuitively interpretable, can be

used for model evaluation and selection. Moreover, it is important to consider a parsimo-

nious model as the final candidate even if it is not the optimal one based on the selection

criteria. The application of a parsimonious scoring system can have more clinical utility than

an optimal, but complex, system. For ordinal categorical outcomes, we use the general risk

difference D, the net treatment improvement rate, to estimate the treatment contrast. It

would be interesting to consider other measures for quantifying the contrast, reflecting the

size of the treatment difference.

APPENDIX

For all inference using large sample approximations, we employ perturbation-resampling

procedures using 1000 realizations from the standard exponential distribution. Details are

provided below.

Construction of Confidence Intervals for Two-Sample Inference

Let {Bij : i = 1, 2; j = 1, . . . , ni} be independent random samples from a strictly positive

distribution with mean and variance equal to one. Let π∗ik be the perturbed version of π̂ik

with

π∗ik =

{∑
j

BijwijYijk

Ĝ∗j(Xij ∧ t0)

}
/

{∑
j

Bijwij

Ĝ∗i (Xij ∧ t0)

}
, (A.1)

and γ∗ik =
∑k

l=1 π
∗
il. Here, Ĝ∗i (·) is the perturbed estimator for the survival function Gi(·)

Ĝ∗i (t) = exp

[
−

ni∑
j=1

∫ t

0

Bijd{I(Cij ≤ u ∧Xij)}∑ni

l=1BilI(Xil ≥ u)

]
. (A.2)
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Let β∗ be the maximizer of the perturbed version of the weighted log-likelihood function

in (3): ∑
ij

Bijwij

Ĝ∗i (Xij ∧ t0)
[
K∑
k=1

Yijklog{g−1(αk − βτij)− g−1(αk−1 − βτij)}]. (A.3)

The limiting distribution, conditional on the data, of

(n1 + n2)
1/2{β∗ − β̂}, (A.4)

is normal with mean 0 and variance σ̂2
b , which is a consistent estimator of σ2

b , the variance

associated with the distribution (n1 + n2)
1/2{β̂ − β}. Thus, the empirical variance of the

perturbed estimates β∗ can be used to estimate the standard error associated with β̂ (Zheng

et al., 2006; Uno et al., 2007; Li et al., 2011).

Denote Γ∗ = γ∗2 − γ∗1 , where γ∗i = {γ∗i1, · · · , γ∗iK}′. Using the arguments by Cai et al.

(2010), the limiting distribution, conditional on the target data set, of

(n∗1 + n∗2)
1/2{Γ∗ − Γ̂}, (A.5)

is multivariate normal with mean zero and covariance matrix Σ̂ which is a consistent es-

timator of Σ, the covariance matrix associated with the distribution (n∗1 + n∗2)
1/2{Γ̂ − Γ}.

The resulting sample covariance matrix based on those perturbed estimates Γ∗, say, Σ̃, is a

consistent estimator of Σ. A two-sided confidence interval for the two-sample risk difference

Γk is then given by

Γ̂k ± z(1−α/2)(n∗1h1 + n∗2h2)
−1/2σ̃k, (A.6)

where σ̃2
k is the kth diagonal element of Σ̃. Furthermore, one may use a similar approach

for making inference on D̂ by perturbed D∗ =
∑K

k=2 π
∗
1,kγ

∗
2,k−1 − π∗2,kγ∗1,k−1.
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Construction of Confidence Intervals and Bands for Stratified Inference

For personalized medicine, we let π∗ik(s) be the perturbed version of π̂ik(s) with π∗ik(s)

=

{∑
j

Bijwij

Ĝ∗j(Xij ∧ t0)
Khi(Vij − s)Yijk

}
/

{∑
j

Bijwij

Ĝ∗i (Xij ∧ t0)
Khi(Vij − s)

}
. (A.7)

and γ∗ik(s) =
∑k

l=1 π
∗
il(s). Using identical arguments to those above, we denote Γ∗(s) =

γ∗2(s)− γ∗1(s), where γ∗i (s) = {γ∗i1(s), · · · , γ∗iK(s)}′, and can show that the distribution for

(n∗1h1 + n∗2h2)
1/2{Γ∗(s)− Γ̂(s)}, (A.8)

conditional on the observed data is multivariate normal and asymptotically equivalent to

that of (n∗1h1 + n∗2h2)
1/2(Γ̂(s)−Γ(s)). Therefore, the point-wise confidence interval for Γ(s)

can be constructed using generated Γ∗(s) as in (A.4).

To construct a (1 − α) simultaneous confidence band for Γk(s) over the pre-specified

interval S, we cannot use the conventional method based on the sup-statistic,

sup
s∈S

σ̃−1k (s)|(n∗1h1 + n∗2h2)
1/2{Γ̂k(s)− Γk(s)}| (A.9)

due to the fact that as a process in s, (n∗1h1 + n∗2h2)
1/2{Γ̂k(s) − Γk(s)} does not converge

weakly to a tight process. On the other hand, one may utilize the strong approximation

argument given in Bickel and Rosenblatt (1973) to show that an appropriately transformed

sup of Γ̂k(s) − Γk(s) converges to a proper random variable. In practice, to construct a

confidence band, we can first find a critical value bα such that

pr(sup
s∈S
|Γ∗k(s)− Γ̂k(s)|/{(n∗1h1 + n∗2h2)

−1/2σ̃k(s)} > bα) ≈ α. (A.10)
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Then the confidence band for Γk(s) : s ∈ S is given by

Γ̂k(s)± bα(n∗1h1 + n∗2h2)
−1/2σ̃k(s). (A.11)

Similar arguments are used for the construction of the confidence band for E(s) : s ∈ S.
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