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Likelihood Ratio Tests for the Mean

Structure of Correlated Functional Processes
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Abstract

The paper introduces a general framework for testing hypotheses about the struc-

ture of the mean function of complex functional processes. Important particular cases

of the proposed framework are: 1) testing the null hypotheses that the mean of a

functional process is parametric against a nonparametric alternative; and 2) testing

the null hypothesis that the means of two possibly correlated functional processes are

equal or differ by only a simple parametric function. A global pseudo likelihood ratio

test is proposed and its asymptotic distribution is derived. The size and power prop-

erties of the test are confirmed in realistic simulation scenarios. Finite sample power

results indicate that the proposed test is much more powerful than competing alter-

natives. Methods are applied to testing the equality between the means of normalized

δ-power of sleep electroencephalograms of subjects with sleep-disordered breathing and

matched controls.
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1 Introduction

We introduce pseudo likelihood ratio testing (pseudo LRT) for hypotheses about the struc-

ture of the mean of complex functional or longitudinal data. The main theoretical results

are: 1) the asymptotic distribution of the pseudo LRT under general assumptions; and 2)

simple sufficient conditions for these general assumptions to hold in the cases of longitudinal

and functional data. The methods are applied to testing whether there is a difference be-

tween the average normalized δ-power of 51 subjects with sleep-disordered breathing (SDB)

and 51 matched controls.

Tests of a parametric null hypothesis against a nonparametric alternative when the errors

are independent and identically distributed has been under intense methodological develop-

ment. For example, Fan, Zhang, and Zhang (2001) introduced a generalized likelihood ratio

test, while Crainiceanu and Ruppert (2004) and Crainiceanu et al. (2005) introduced a

likelihood ratio test. In contrast, development for non-independent errors has received less

attention, although there are some results. For example, Zhang and Chen (2007) proposed

hypothesis testing about the mean of functional data based on discrepancy measures between

the estimated means under the null and alternative models. Their approach requires a dense

sampling design. We propose a pseudo LRT for various parametric null hypotheses about the

mean function against nonparametric alternatives when errors are correlated. The pseudo

LRT can be applied to dense or sparse functional data, with or without missing observations.

Our simulation results show that in cases where the approach of Zhang and Chen applies,

the pseudo LRT is considerably more powerful.

Here we consider a wider spectrum of null hypotheses, which includes the hypothesis that

the means of two functional processes are the same. There are many recent methodological

developments that address this problem. For example, Fan and Lin (1998) developed an

adjusted Neyman testing procedure for independent stationary linear Gaussian processes;

Cuevas, Febrero, and Fraiman (2004) proposed an F -test for independent processes; Staicu,

Lahiri, and Carroll (2012) considered an L2-norm-based global testing procedure for depen-

dent processes; Crainiceanu et al. (2012) introduced bootstrap-based procedures using joint

confidence intervals. Our global pseudo LRT procedure has the advantage that it is appli-
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cable to independent or dependent samples of curves with both dense and sparse sampling

design.

Our approach is based on modeling the mean function as a penalized spline with a

mixed effect representation (Ruppert et al. 2003). Various hypotheses of interest can then

be formulated as a combination of assumptions that variance components and fixed effects

parameters are zero. Testing for a zero variance component in this context is non-standard

as the parameter is on the boundary of the parameter space (Self and Liang, 1987) and the

vector of observations cannot be partitioned into independent subvectors. Our approach is

inspired by Crainiceanu and Ruppert (2004) who derived the finite sample and asymptotic

null distributions of the LRT in linear mixed models (LMM) when the errors are indepen-

dent. Here we allow the errors to have a general covariance structure, which is treated as a

nuisance parameter. We discuss a pseudo LRT obtained from the LRT by replacing the error

covariance by a consistent estimator. Pseudo LRTs with parameters of interest or nuisance

parameters on the boundary are discussed by Liang and Self (1996) and Chen and Liang

(2010), respectively. Their derivations of the asymptotic null distributions require that the

estimated nuisance parameters are
√
n-consistent—this assumption does not usually hold

when the nuisance parameters have infinite dimension, e.g., for functional data.

We demonstrate that, if an appropriate consistent estimator of the error covariance is

used, then the asymptotic null distribution of the pseudo LRT statistic is the same as the

distribution of the LRT using the true covariance. For longitudinal data, we discuss some

commonly used models and show that under standard assumptions one obtains a suitable

consistent estimator of the covariance. For both densely and sparsely sampled functional

data, we use smoothness assumptions to derive appropriate consistent estimators of the

covariance function. The methodology is extended to testing for differences between group

means of two dependent or independent samples of curves, irrespective of their sampling

design. The main innovations of this paper are the extension of pseudo likelihood to infinite

dimensional nuisance parameters, suitable for modeling correlation functions in longitudinal

data analysis (LDA) and functional data analysis (FDA), and the development of a rigorous

asymptotic theory for testing null hypotheses about the structure of the population mean

for clustered data.

The remainder of the paper is organized as follows. Section 2 presents the general method-

ology and the null asymptotic distribution of the pseudo LRT for dependent data. Section

3 discusses applications of the pseudo LRT for LDA and FDA. The pseudo LRT properties
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are evaluated by a simulation study in Section 4. Testing equality of two mean curves is

presented in Section 5 and illustrated using the Sleep Heart Health Study data in Section 6.

A brief discussion is found in Section 7.

2 Pseudo LRT for dependent data

In this section we describe the models and hypotheses considered, introduce the pseudo

LRT, and derive this test’s finite-sample and asymptotic null distributions. Let Yij be the

jth measurement of the response on the ith subject at time point tij, 1 ≤ j ≤ mi and

1 ≤ i ≤ n, and let µij = µ(tij) where µ is the population mean curve. We are interested in

hypothesis testing about the mean function µ when the within-subject correlation is complex.

We model the population mean function µ(·) nonparametrically as a degree pth truncated

spline µ(t) =
∑p

k=0 βkt
k +

∑K
k=1 bk(t − κk)

p
+, where xp+ = max(0, x)p. Here κ1, . . . , κK are

knots and K is assumed to be large enough to ensure the desired flexibility (see Ruppert,

2002; Ruppert et al., 2003). The coefficients βk are fixed effects and smoothing is induced by

assuming that bk are independent N(0, σ2
b ) random coefficients. We focus here on truncated

polynomial splines because they are easy to explain, but methods can be applied to any type

of penalized spline.

Denote byX i the mi×(p+1) dimensional matrix with the jth row equal to (1, tij, . . . , t
p
ij),

by β the (p + 1) × 1 dimensional vector of βk, by Zi the mi ×K dimensional matrix with

jth row equal to {(tij − κ1)p+, . . . , (tij − κK)p+}, and by b the K-dimensional vector of bk. If

Yi is the mi × 1 dimensional vector of Yij, then the model for Yi can be written as a LMM

Yi = X iβ +Zib + ei, for i = 1, . . . , n, (1)

where b is assumed N(0, σ2
bIK), ei has mean zero and covariance matrix Σi, and b, e1, . . . , en

are mutually independent. Within each vector ei the errors are allowed to be correlated to

capture the within-cluster variability. Note that (1) is not the Laird and Ware model for

longitudinal data (Laird and Ware, 1982), which requires b to depend on the cluster i and

for b1, . . . ,bn to be mutually independent. Thus, unlike standard LMMs the data in model

(1) cannot be partitioned into independent subvectors. Therefore, standard asymptotic

theory of mixed effects models does not directly apply to model (1), and different asymptotic

distributions are obtained than in the Laird and Ware model (Crainiceanu and Ruppert,

2004). Many hypotheses of interest about the structure of the mean function µ are equivalent
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to hypotheses about the fixed effects β0, . . . , βp and the variance component σ2
b . Let Q denote

a subset of {0, 1, . . . , p}; the null hypothesis that µ has a specified polynomial form can be

formulated as

H0 : βq = 0 for q ∈ Q and σ2
b = 0 versus HA : ∃ q0 ∈ Q such that βq0 6= 0 or σ2

b > 0 (2)

When Σi = σ2
eImi

such hypotheses have been tested by Crainiceanu and Ruppert (2004)

and Crainiceanu et al. (2005) using LRTs. Here we extend results to the case when Σi

is not necessary diagonal to capture the complex correlation structures of longitudinal and

functional data; see Sections 3 and 5 for examples of commonly used Σi. In Section 5 we also

extend testing to include null hypotheses of no difference between the means of two groups.

For now we focus on the simpler case, which comes with its own set of subtleties.

Our methodology is based on the assumption that the joint distribution of b and ei’s is

multivariate Gaussian, but the simulation results in Section 4 indicates that our pseudo LRT

is robust to this assumption. Let e be the stacked vector of ei’s, Y the stacked vector of Yi’s,

and X and Z be the stacked matrices of X i’s and Zi’s, respectively. Also let N =
∑n

i=1mi

be the total number of observations and Σ be an N×N block diagonal matrix, where the ith

block is equal to Σi, for i = 1, . . . , n. When Σ is known, twice the log-likelihood of Y is, up to

an additive constant, 2 logLY(β, σ2
b ) = − log(|Σ+σ2

bZZ
T |)−(Y−Xβ)T (Σ+σ2

bZZ
T )−1(Y−

Xβ), and the LRT statistic is LRTN = supH0∪HA
2 logLY(β, σ2

b ) − supH0
2 logLY(β, σ2

b ).

Here | · | is the determinant of a square matrix.

In practice, Σ is typically unknown, so we consider testing the hypothesis using pseudo

LRT obtained by replacing Σ in the LRT by an estimate Σ̂. Denote byA−1/2 a matrix square

root of A−1, where A is a positive definite matrix, and let Ŷ = Σ̂
−1/2

Y, X̂ = Σ̂
−1/2

X,

Ẑ = Σ̂
−1/2

Z. Thus, twice the pseudo log likelihood is, up to a constant,

2 log L̂Ŷ(β, σ2
b ) = − log |Ĥσ2

b
| − (Ŷ − X̂β)T Ĥ−1

σ2
b

(Ŷ − X̂β), (3)

where Ĥσ2
b

= IN + σ2
b ẐẐ

T
, and the pseudo LRT statistic for testing (2) is pLRTN =

supH0∪HA
2 log L̂Ŷ(β, σ2

b ) − supH0
2 log L̂Ŷ(β, σ2

b ). The asymptotic null distribution of the

pseudo LRT is discussed next.

Proposition 2.1. Suppose that Y is obtained from model (1), and assume a Gaussian joint

distribution for b and e, where e = (eT1 , . . . , e
T
n )T . In addition, assume the following:

(C1) The null hypothesis H0 defined in (2) holds.

5

Hosted by The Berkeley Electronic Press



(C2) The minimum eigenvalue of Σ is bounded away from 0 as n → ∞. Let Σ̂ be an

estimator of Σ satisfying aT Σ̂
−1

a − aTΣ−1a = op(1), aT Σ̂
−1

e − aTΣ−1e = op(1),

where a is any N × 1 non random normalized vector.

(C3) There exists positive constants % and %′ such that N−%ZTZ and N−%
′
XTX converge to

nonzero matrices. For every eigenvalue ξ̃k,N and ζ̃k,N of the matrices N−%ZTΣ−1Z and

N−%{ZTΣ−1Z − ZTΣ−1X(XTΣ−1X)−1XTΣ−1Z} respectively, we have ξ̃k,N
P→ ξk

and ζ̃k,N
P→ ζk for some ξ1, . . . , ξK, ζ1, . . . , ζK that are not all 0.

Let #Q be the cardinality of the set Q in the null hypothesis (2). Then

pLRTN
D→ sup

λ≥0
LRT∞(λ) +

#Q∑
j=1

ν2
j , (4)

where LRT∞(λ) =
∑K

k=1
λ

1+λζk
w2
k −

∑K
k=1 log(1 + λξk), wk ∼ N(0, ζk) for k = 1, . . . , K,

νj ∼ N(0, 1) for j = 1, . . . ,#Q, and the wk’s and νj’s are mutually independent.

Here we used
P→ to denote convergence in probability and

D→ to denote convergence in

distribution. The proof of Proposition 2.1, like all proofs, is given in the Web Supplement.

The proposition shows that when using an appropriate covariance estimator, the asymptotic

null distribution of the pseudo LRT is the same as the null distribution of the corresponding

LRT when the covariance is known. Assumption (C2) provides a necessary condition for how

close the estimated Σ̂
−1

and the true Σ−1 precision matrices have to be. This condition (see

also Cai, Liu and Luo, 2011) is related to the rate of convergence between the estimator and

the true precision matrix in the spectral norm. For example, if ‖Σ̂
−1
−Σ−1‖2 = op(1) then

the first part of (C2) holds, where ‖A‖2 denotes the spectral norm of a matrix A defined

by ‖A‖2 = sup|x|2≤1 |Ax|2 and |a|2 =
√∑r

i=1 a
2
i for a ∈ Rr. Such an assumption may seem

difficult to verify, but in Sections 3 and 5 we show that it is satisfied by many estimators of

covariance structures commonly employed in LDA and FDA. Assumption (C3) is standard

in LRT; for example, when Z is the design matrix for truncated power polynomials with

equally spaced knots (see Section 3.2), taking % = 1 is a suitable choice (Crainiceanu, 2003).

Consider the particular case when there are m observations per subject and identical

design points across subjects, i.e., tij = tj, so that X i and Zi do not depend on i and

Σ = In ⊗Σ0 where ⊗ is the Kronecker product. Then (C2) is equivalent to:
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(C2 ′) The minimum eigenvalue of Σ0 is bounded away from 0. Let Σ̂0 be its consistent

estimator satisfying aT Σ̂
−1

0 a − aTΣ−1
0 a = op(1), and aT Σ̂

−1

0 e0 − aTΣ−1
0 e0 = op(1),

where a is any m× 1 non random normalized vector and e0 = n−1/2
∑n

i=1 ei.

The asymptotic null distribution of pLRTN is not standard. However, as Crainiceanu and

Ruppert (2004) point out, the null distribution can easily be simulated, once the eigenvalues

ξk’s and ζk’s are determined. For completeness, we review their proposed algorithm.

Step 1 For a sufficiently large L, define a grid 0 = λ1 < λ2 < · · · < λL of possible values for λ.

Step 2 Simulate independent N(0, ζk) random variables wk, k = 1, . . . , K.

Step 3 Compute LRT∞(λ) in (4) and determine its maximizer λmax on the grid.

Step 4 Compute pLRT = LRT∞(λmax) +
∑#Q

j=1 ν
2
j , where the νj’s are i.i.d. N(0, 1).

Step 5 Repeat Steps 2–4.

The R package RLRsim (Scheipl, Greven, and Küchenhoff, 2008) or a MATLAB function

http://www.biostat.jhsph.edu/~ccrainic/software.html can be used for implementa-

tion of Algorithm 1. It takes roughly 1.8 seconds to simulate 100,000 simulations from

the null distribution using RLRsim on a standard computer (64-bit Windows with 2.8 GHz

Processors and 24 GB random access memory).

3 Applications to longitudinal and functional data

We now turn our attention to global tests of parametric assumptions about the mean function

in LDA and FDA and describe simple sufficient conditions under which assumption (C2) or

(C2′) holds. This will indicate when results in Section 2 can be applied for testing.

3.1 Longitudinal data

Statistical inference for the mean function has been one of the main foci of LDA research

(Diggle et al. 2002). Longitudinal data are characterized by repeated measurements over

time on a set of individuals. Observations on the same subject are likely to remain corre-

lated even after covariates are included to explain observed variability. Accounting for this

7
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correlation in LDA is typically done using several families of covariances. Here we focus first

on the case of commonly used parametric covariance structures. Consider the general model

Yij = µ(tij) + ei(tij), cov{ei(tij), ei(tij′)} = σ2
eϕ(tij, tij′ ;θ), (5)

where tij is the time point at which Yij is observed and µ(t) is a smooth mean function. The

random errors eij = ei(tij) are assumed to have a covariance structure that depends on the

variance parameter, σ2
e , and the function ϕ(·, ·;θ), which is assumed to be a positive definite

function known up to the parameter θ ∈ Θ ⊂ Rd.

Using the penalized spline representation of the mean function, µ(tij) = X ijβ + Zijb,

the model considered here can be written in a LMM framework Yi = X iβ+Zib+ei, where

ei = {ei(ti1), . . . , ei(tim)}T has covariance matrix Σi = σ2
eCi(θ), and Ci(θ) is an mi × mi

dimensional matrix with the (j, j′)th entry equal to ϕ(tij, tij′ ;θ). Hypothesis testing can then

be carried out as in Section 2. Proposition 3.1 below provides simpler sufficient conditions

for the assumption (C2) to hold.

Proposition 3.1. Suppose that for model (5) the number of observation per subject mi

is bounded, for all i = 1, . . . , n, the regularity conditions (A1)-(A3) in the Appendix hold,

σ2
ε > 0,

√
n(θ̂ − θ) = Op(1), and σ̂2

e − σ2
e = op(1). Then condition (C2) holds for Σ̂ =

σ̂2
ediag{C1(θ̂), . . . , Cn(θ̂)}.

One approach that satisfies these assumption is quasi-maximum likelihood estimation, as

considered in Fan and Wu (2008). The authors proved that, under regularity assumptions

that include (A1)-(A3), the quasi-maximum likelihood estimator θ̂, and the nonparametric

estimator σ̂2 are asymptotically normal, with
√
n convergence rates.

3.2 Functional data

In contrast to longitudinal data, where the number of time points is small, and simple

correlation structures are warranted, functional data have a much larger number of sampling

points and require flexible correlations structures; see Rice (2004) for a thorough discussion

of longitudinal and functional data and analytic methods. It is theoretically and practically

useful to think of functional data as realizations of an underlying stochastic process.

Let V1, . . . , Vn denote independent and identically distributed random functions on a

bounded and closed time interval T , satisfying
∫
T Vi(t)

2 dt < ∞. For simplicity take

8
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T = [0, 1]. The mean function µ(t) = EVi(t) is considered unknown and assumed to have

continuous second order derivatives. The covariance function cov{Vi(t), Vi(t′)} = Γ(t, t′),

also unknown, is assumed to be continuous over [0, 1]. Mercer’s lemma (see for example

Section 1.2 of Bosq, 2000) now implies a spectral decomposition of the function Γ, in terms

of a sequence of continuous eigenfunctions, also known as functional principal components,

θk, and decreasing sequence σ2
k of non-negative eigenvalues, Γ(t, t′) =

∑
k σ

2
kθk(t)θk(t

′), where∑
k σ

2
k <∞. Following the usual convention, we assume that σ2

1 > σ2
2 > . . . ≥ 0. The eigen-

functions form an orthonormal sequence in the space of squared integrable functions and

we may represent each curve using the Karhunen-Loève (KL) expansion (Karhunen, 1947;

Loève, 1945) as Vi(t) = µ(t) +
∑

k≥1 ξikθk(t), t ∈ [0, 1], where ξik are uncorrelated random

variables with mean zero and variance E[ξ2
ik] = σ2

k.

We consider the general case, where the random curves are observed with noise that is

independent of the curves. Let ti1, . . . , timi
be the times at which the ith random curve

is observed. Furthermore, let Yi(tij) be the jth observation of the random function Vi(·)
observed at time tij and let εij = εi(tij) be the additional measurement errors that are

assumed independent and identically distributed. Then, the model we consider is

Yi(tij) = µ(tij) +
∑
k≥1

ξikθk(tij) + εij, (6)

where εij are assumed to have mean zero and finite variance E[ε2ij] = σ2
ε . Our objective is to

carry out different hypothesis tests about the population mean function µ(·) by employing

the pseudo LRT. As argued in Proposition 2.1 this testing procedure relies on an accurate

estimator of the model covariance, and, thus, of the covariance function Γ and the noise

variance σ2
ε .

The FDA literature contains several methods for obtaining consistent estimators of both

the eigenfunctions/eigenvalues and the error variance; see for example Ramsay and Sil-

verman (2005), Yao, Müller and Wang (2005). Furthermore, properties of the functional

principal component estimators, including their convergence rates, have been investigated

by a number of researchers (Hall and Hosseini-Nasab, 2006; Hall, Müller and Wang, 2006;

Li and Hsing, 2010, etc.) for a variety of sampling design scenarios. In particular for a

dense sampling design, where mi = m, Hall et al. (2006) argue that one can first construct

de-noised trajectories Ŷi(t) by running a local linear smoother over {tij, Yi(tij)}j, and then

estimate all eigenvalues and eigenfunctions by conventional PCA as if Ŷi(t) were generated

from the true model and without any error. They point out that when m = n1/4+ν for

9
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ν > 0 and the smoothing parameter is appropriately chosen, one can obtain estimators of

eigenfunctions/eigenvalues with
√
n consistency. Of course, for a sparse sampling design, the

estimators enjoy different convergence rates.

For our theoretical developments we assume that in (6), ξik and εij are jointly Gaussian.

This assumption has been commonly employed in functional data analysis; see for example

Yao, et al. (2005). Simulation results, reported in Section 4.1, indicate that the proposed

method is robust in regard to violations of the Gaussian assumption. Moreover, we assume

that the covariance function Γ has M non-zero eigenvalues, where 1 ≤M <∞. The number

of eigenvalues M is considered unknown and it can be estimated using the percentage of

variance explained, AIC, BIC or testing for zero variance components, as discussed Staicu,

Crainiceanu and Carroll (2010). We use the percentage variance explained in the simulation

experiment and the data analysis. Next, we discuss the pseudo LRT procedure separately for

the dense sampling design and for the sparse sampling design. More specifically we discuss

conditions such that the requirement (C2) of Proposition 2.1 holds.

Dense sampling design. This design refers to the situation where the times, at which the

trajectories are observed, are regularly spaced in [0, 1] and increase to∞ with n. We assume

that each curve i is observed at common time points, i.e., tij = tj for all j = 1, . . . ,m. Thus

Σi is the same for all subjects, say Σi = Σ0 for all i.

Proposition 3.2. Consider that the above assumptions for model (6) hold. Assume the

following conditions hold:

(F1) If θ̂k(t), σ̂2
k, and σ̂2

ε denote the estimators of the eigenfunctions, eigenvalues, and noise

variance correspondingly, then

‖|θ̂k − θk‖ = Op(n
−α), σ̂2

k − σ2
k = Op(n

−α), and σ̂2
ε − σ2

ε = Op(n
−α).

(F2) We have m ∼ nδ where 0 < δ < 2α.

Then (C2) of Proposition 2.1 holds for the estimator Σ̂ = In⊗ Σ̂0 of Σ, where Σ̂0 is defined

by

[Σ̂0]jj′ =
M∑
k=1

σ̂2
kθ̂k(tj)θ̂k(tj′) + σ̂2

ε1(tj = tj′), 1 ≤ j, j′ ≤ m. (7)

Assumption (F1) concerns the L2 convergence rate of the estimators; for local linear

smoothing, Hall, et al. (2006) showed that the optimal L2 convergence rate is n−α where
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α = 1/2. Condition (F2) imposes an upper bound on the number of repeated measurements

per curve: this requirement is needed in the derivation of the asymptotic null distribution

of the pseudo LRT. In particular, when linear smoothing is used and α = 1/2 (see Hall et

al., 2006), condition (F2) reduce to m = nδ, for 1/4 < δ < 1. Nevertheless, empirical results

showed that the pseudo LRT performs well, even when applied to settings where the number

of repeated measurements is much larger than the number of curves. In particular, Section

4.1 reports reliable results for the pseudo LRT applied to data settings where m is up to

eight times larger than n.

Remark 1. An alternative approach for situations where m is much larger than n is

to use the following two-step procedure. First estimate the eigenfunctions / eigenvalues

and the noise variance using the whole data, and then apply the pseudo LRT procedure

only to a subset of the data that corresponds to suitably chosen subset of time points

{t̃1, . . . , t̃m̃} where m̃ is such that it satisfies assumption (F2). Our empirical investigation

of this approach shows that the power does not change with m and that there is some loss

of power for smaller sample sizes n. However, the power loss decreases as n increases. The

alternative approach is designed for use with large m and can be used for, say, m > 1000

with only a negligible loss of power. Even for smaller value of m, we find that our test is

more powerful than its competitor, the test due to Zhang and Chen (2007).

Remark 2. The result in Proposition 3.2 can accommodate situations when data are

missing at random. More precisely, let t1, . . . , tm be the grid of points in the entire data

and denote by nj the number of observed responses Yij corresponding to time tj. Under the

assumption that nj/n→ 1 for all j, the conclusion of Proposition 2.1 still holds.

Sparse sampling design. Sparse sampling refers to the case when observation times vary

between subjects and the number of observations per subject, mi, is bounded and small.

Examples of sparse sampling are auction bid prices (Jank and Shmueli, 2006), growth data

(James, Hastie and Sugar, 2001), and many observational studies. The following propo-

sition presents simplified conditions under which the requirement (C2) of Proposition 2.1

is satisfied. The main idea is to view the sparsely observed functional data as incomplete

observations from dense functional data.

Proposition 3.3. Consider that the above assumptions about the model (6) are met. In

addition assume the following conditions:

(F1’) The number of measurements per subject is finite, i.e., supimi <∞. Furthermore it is
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assumed that, for each subject i, the corresponding design points {tij : j = 1, . . . ,mi}

are generated uniformly and without replacement from a set {t1, . . . , tm}, where tk =

(k − 1/2)/m, for k = 1, . . . ,m and m diverges with n.

(F2’) supt∈T |θ̂k(t)− θk(t)| = Op(n
−α), σ̂2

k − σ2
k = Op(n

−α), and σ̂2
ε − σ2

ε = Op(n
−α).

(F3’) We have m ∼ nδ where 0 < δ < 2α.

Then condition (C2) holds for the estimator Σ̂ = diag{Σ̂1, . . . , Σ̂n} of Σ, where the mi×mi

matrix Σ̂i is defined similarly to (7) with (tj, tj′) replaced by (tij, tij′) and m replaced by mi.

Condition (F1’) can be weaken for design points that are generated from a uniform

distribution. In such cases, the design points are rounded to the nearest tk = (k − 1/2)/m,

and can be viewed as being sampled uniformly without replacement from {t1, . . . , tm} for

some m → ∞. Because of the smoothness intrinsic to functional data (observed without

noise), the effect of this rounding is asymptotically negligible when m → ∞ at a rate

faster than n−α. Thus condition (F1’) can be relaxed to assuming that tij’s are uniformly

distributed between 0 and 1. Because 0 < δ < 2α, if m to grows at rate n or faster then the

alternative approach is needed.

Condition (F2’) regards uniform convergence rates of the covariance estimator; see also

Li and Hsing (2010). For local linear estimators Yao et al. (2005) showed that, under various

regularity conditions, the uniform convergence rate is of order n−1/2h−2
Γ , where hΓ is the

bandwidth for the two-dimensional smoother and is selected such that nh2`+4
Γ < ∞, ` > 0.

When the smoothing parameter is chosen appropriately, and ` = 4, the convergence rate is

of order Op(n
−1/3); thus conditions (F1’) and (F3’) reduce to m = nδ, for δ < 2/3.

In summary, tests of the mean function in both densely and sparsely observed functional

data can be carried out in the proposed pseudo LRT framework. Under the assumptions

required by Propositions 3.2 and 3.3 respectively, and under the additional assumptions

(C1) and (C3) of Proposition 2.1, the asymptotic null distribution of the pseudo LRT with

the covariance estimator Σ̂ is the same as if the true covariance were used and is given by

expression (4).

12

http://biostats.bepress.com/jhubiostat/paper242



4 Simulation study

In this section we investigate the finite sample Type I error rates and power of the pseudo

LRT. Each simulated data set has n subjects. The data, Yi(t), for subject i, i = 1, . . . , n, and

timepoint t, t ∈ T = [0, 1], are generated from model (6) with scores ξik that have mean zero

and variance E[ξ2
ik] = σ2

k, where σ2
1 = 1, σ2

2 = 0.5, σ2
3 = 0.25, and σ2

k = 0 for all k ≥ 4. Also

θ2k−1(t) =
√

2 cos(2kπt) and θ2k(t) =
√

2 sin(2kπt) for all k ≥ 1. The interest is in testing

the hypothesis H0: µ(t) = 0,∀t ∈ [0, 1], versus HA: µ(t) 6= 0 for some t. We varied µ in a

family of functions parameterized by a scalar parameter ρ ≥ 0 that controls the departure

from H0, with ρ = 0 corresponding to H0. This family consists of increasing and symmetric

functions µρ(t) = ρ/{1 + e10(0.5−t)} − ρ/2. We used two noise variances: σ2
ε = 0.125 (small)

and σ2
ε = 2 (large). All results are based on 1000 simulations.

4.1 Dense functional data

In this scenario, each subject is observed at m equally spaced time points tj = (j − 1/2)/m,

for j = 1, . . . ,m. We consider two types of generating distributions for the scores, ξik:

in one setting they are generated from a Normal distribution, N(0, σ2
k), while in another

setting they are generated from a mixture distribution of two Normals N(−
√
σ2
k/2, σ

2
k/2)

and N(
√
σ2
k/2, σ

2
k/2) with equal probability. We model the mean function using linear

splines with K knots. The choice of K is not important, as long as it is large enough to

ensure the desired flexibility (Ruppert, 2002). We selected the number of knots, based on

the simple default rule of thumb K = max{20,min(0.25×number of unique tj, 35)} inspired

from Ruppert et al. (2003). The pseudo LRT requires estimation of the covariance function,

Σ, or, equivalently, Σ0; see Section 3.2. This step is crucial as the accuracy of the covariance

estimator has a sizeable impact on the performance of the pseudo LRT.

Let G̃(tj, tj′) be the sample covariance estimator of cov{Yi(tj), Yi(tj′)}, and let Ĝ(·, ·) be

obtained by smoothing {G̃(tj, tj′) : tj 6= tj′} using a bivariate thin-plate spline smoother.

We used the R package mgcv (Wood, 2006), with the smoothing parameter selected by

restricted maximum likelihood (REML). The noise variance is estimated by σ̂2
ε =

∫ 1

0
{G̃(t, t)−

Ĝ(t, t)}+dt; if this estimate is not positive then it is replaced by a small positive number.

Denote by σ̂2
k and θ̂k the kth eigenvalue and eigenfunction of the covariance Ĝ, for k ≥ 1. The

smoothing-based covariance estimator, Σ̂0, is determined using expression (7), where M , the

number of eigenvalues/eigenfunction is selected using the cumulative percentage criterion
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(see for example Di et al., 2009). In our simulation study, we used M corresponding to 99%

explained variance. Once Σ̂0 is obtained, the data are “pre-whitened” by multiplication with

Σ̂
−1/2
0 . Then, the pseudo LRT is applied to the transformed data. The p-value of the test

is automatically obtained from the function exactLRT (based on 105 replications) of the R

package RLRsim (Scheipl, et al., 2008), which implements Algorithm A1, given in Section 2.

Table 1: Type I error rates, based on 1000 simulations, of the pseudo LRT for testing H0 :

µ ≡ 0 in the context of dense functional data generated by model (6) with σ2
ε = 0.125, for

various n and m, and when the scores ξik are generated from a Normal distribution (normal)

or mixture distribution of two Normals (non-normal). In the pseudo LRT, the mean function

is modeled using linear splines.

(n, m) scores distribution α = 0.20 α = 0.10 α = 0.05 α = 0.01

(50, 100) normal 0.216 0.111 0.057 0.021

(50, 100) non-normal 0.209 0.126 0.060 0.012

(50, 400) normal 0.236 0.124 0.068 0.016

(50, 400) non-normal 0.223 0.129 0.076 0.010

(100, 100) normal 0.209 0.115 0.054 0.009

(100, 100) non-normal 0.222 0.112 0.053 0.010

(100, 400) normal 0.220 0.112 0.059 0.013

(100, 400) non-normal 0.215 0.127 0.062 0.016

(200, 80) normal 0.217 0.099 0.054 0.012

(200, 80) non-normal 0.199 0.103 0.052 0.009

Table 1 shows the Type I error rates of the pseudo LRT corresponding to nominal levels

α = 0.20, 0.10, 0.05 and 0.01, and for various sample sizes ranging between n = 50 and

n = 200 and m ranging between 80 and 400. Table 1 shows that the pseudo LRT using

a smooth estimator of the covariance has Type I error rates that are close to the nominal

level, for all significance levels. The results indicate that the performance of the pseudo

LRT is robust in regard to violations of the Gaussian assumption on the scores; see the lines

corresponding to ‘non-normal’ for the distribution of the scores.

Figure 1 shows the power functions for testing the null hypothesis H0 : µ ≡ 0. The results

are only little affected by the magnitude of noise, and for brevity we only present the case of
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low noise level. The solid lines correspond to pseudo LRT with smooth covariance estimator,

the dashed lines correspond to the LRT test with known covariance matrix, and the dotted

lines correspond to the global L2-norm-based test of Zhang and Chen (2007), henceforth

denoted ZC test. The performance of the pseudo LRT with the smooth covariance estimator

is very close to its counterpart based on the true covariance; hence the pronounced overlap

between the solid and dashed lines of the Figure 1. Overall, the results indicate that the

pseudo LRT has excellent power properties, and furthermore that the power slightly improves

as the number of measurements per subject m increases. Intuitively, this should be expected

as a larger number of sampling curves per curve, m, corresponds more available information

about the process, and thus about the mean function. By comparison, the power of the

L2 norm-based test is very low and it barely changes with m. In further simulations not

reported here in the interest of space, the only situation we found where the ZC test becomes

competitive for the pseudo LRT is when the deviation of the mean function from the function

specified by the null hypothesis is confined to the space spanned by the eigenfunctions of

the covariance function of the curves. In fact, the asymptotic theory in Zhang and Chen’s

Theorem 7 suggests that this would be the case where their test is most powerful.

4.2 Sparse functional data

We now consider the case when each subject is observed at mi time points tij ∈ [0, 1], j =

1, . . . ,mi, generated uniformly from the set {tj = (j−1/2)/m : j = 1, . . . ,m}, where m = 75.

There are n = 250 subjects and an equal number mi = 10 time points per subject. The main

difference from the dense sampling case is the calculation of the covariance estimator. For

sparse data we start with a raw undersmooth covariance estimator based on the pooled data.

Specifically, we first center the data {Yi(tij)− µ̃(tij)}, using a pooled undersmooth estimator

of the mean function, µ̃(tj), and then construct the sample covariance of the centered data,

using complete pairs of observations. At the second step, the raw estimator is smoothed

using the R package mgcv (Wood, 2006). The smoothing parameter is selected via a modified

generalized cross validation (GCV) or the un-biased risk estimator (UBRE) using γ > 1 to

increases the amount of smoothing (Wood, 2006). The data {Yi(tij)− µ̃(tij)} are correlated

which causes undersmoothing, but using γ > 1 counteracts this effect. Reported results

are based on γ = 1.5, a choice which was observed to yield good covariance estimators in

simulations for various sample sizes. Further investigation of the choice of γ would be useful

but is beyond the scope of this paper.
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Table 2 illustrates the size performance of the pseudo LRT for sparse data, indicating

results similar to the ones obtained for the dense sampling scenario. Figure 2 (bottom panels)

shows the power functions for testing H0 : µ ≡ 0 when the true mean function is from the

family described earlier. For the large noise scenario, σ2
ε = 2, the results of the pseudo LRT

with the smooth covariance estimator are very close to the counterparts based on the true

covariance. This is expected, as the noise is relatively easier to estimate, and thus when the

noise is a large part of the total random variation, then a better estimate of the covariance

function is obtained. On the other hand, having large noise affects the power negatively.

When the noise has a small magnitude, the power when the covariance estimator is used is

still very good and relatively close to the power when the true covariance function is used.

Results for ZC are not shown because their approach requires densely sampled data.
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Figure 1: The power functions for testing H0 : µ ≡ 0 for dense functional data generated from
model (6) with true mean function parameterized by ρ, for low noise variance σ2

ε = 0.125.
Top panels: power probabilities for different sample sizes n and number of measurements per
curve m. Bottom panels: power probabilities for the same scenarios as the top panels, for
ρ ∈ [0, 0.05] to show detail in the low power region. Results are for the pseudo LRT based
on the true covariance (dashed line), the smooth covariance estimator (solid line), ZC’s L2

norm-based test (dotted line) and for a nominal level α = 0.10.
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Table 2: Type I error rates based on 1000 simulations when testing H0 : µ ≡ 0 with sparse

functional data, n = 250 subjects and mi = 10 observations per subject. Pseudo LRT with

the true covariance (true) and a smoothing-based estimator of the covariance (smooth) are

compared. The mean function is modeled using linear splines with K = 20 knots.

σ2
ε method cov. choice α = 0.2 α = 0.1 α = 0.05 α = 0.01

0.125
LRT true 0.213 0.109 0.055 0.009

pLRT smooth 0.210 0.113 0.062 0.017

2
LRT true 0.207 0.092 0.051 0.011

pLRT smooth 0.196 0.089 0.043 0.012

5 Two samples of functional data

As with scalar or multivariate data, functional data are often collected from two or more

populations, and we are interested in hypotheses about the differences between the popula-

tion means. Here we consider only the case of two samples both for simplicity and because

the example in Section 6 has two samples.

Again as with scalar or multivariate data, the samples can be independent or paired.

The experimental cardiology study discussed in Cuevas et al. (2004), where calcium overload

was measured at a frequency of 10s for one hour in two independent groups (control and
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Figure 2: The power functions for testing H0 : µ ≡ 0 for sparse functional data generated
from model (6) with true mean function parameterized by ρ, for two noise magnitudes
σ2
ε = 0.125 (left panel) and σ2

ε = 2 (right panel). The results are for the pseudo LRT based
on the true covariance (dashed line) and the smooth covariance estimator (solid line) and
for a nominal level α = 0.10.
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treatment), is an example of independent samples of functional data. In the matched case-

control study considered in Section 6, Electroencephalogram (EEG) data collected at a

frequency of 125Hz for over 4 hours for an apneic group and a matched healthy control

group; the matching procedure induces dependence between cases and controls. For other

examples of dependent samples of functional data see, for example, Morris and Carroll (2006),

Di et al. (2009), and Staicu et al. (2010).

We discuss global testing of the null hypothesis of equality of the mean functions in

two samples of curves. Results are presented separately for independent and dependent

functional data. Testing for the structure of the mean difference in two independent samples

of curves can be done by straightforwardly extending the ideas presented in Section 3.2. In

the interest of space, the details are described in the Web Supplement. Here we focus on

the case when the two sets of curves are dependent, and furthermore when in each set, the

curves are sparsely sampled.

5.1 Dependent samples of functional data

We use the functional ANOVA framework introduced by Di et al. (2009) and discuss inference

for the population-level curves. Let Yidj = Yid(tidj) be response for cluster i and group d at

time point tidj. For example, in the application in Section 6, the clusters are the matched

pairs and the groups are subjects with SDB and controls. Let Yidj be modeled as

Yid(tidj) = µ(t) + µd(tidj) + ηi(tidj) + υid(tidj) + εidj, (8)

where µ(t) is the overall mean function, µd(·) is the group-specific mean function, ηi(t) is

the cluster-specific deviation at time point t, υid(t) is the cluster-group deviation at t, εidj

is the measurement error and tidj ∈ T for i = 1, . . . , n, d = 1, 2, and j = 1, . . . ,mid. For

identifiability we assume that µ1 + µ2 ≡ 0. It is assumed that level 1 (subject) random

functions, ηi, and level 2 (subject-group) random functions, υid, are uncorrelated mean zero

stochastic processes with covariance functions Γ1 and Γ2 respectively (Di et al., 2009). Fur-

thermore, it is assumed that the εidj’s are independent and identically distributed with mean

zero and variance E[εidj] = σ2
ε and independent of all ηi’s and υid’s. As in Section 3.2, we

assume that Γ1 and Γ2 admit orthogonal expansions: Γ1(t, t′) =
∑

k≥1 σ
2
1,kθ1,k(t)θ1,k(t

′), and

Γ2(t, t′) =
∑

l≥1 σ
2
2,lθ2,l(t)θ2,l(t

′). Here σ2
1,1 > σ2

1,2 > . . . are the level 1 ordered eigenvalues

and σ2
2,1 > σ2

2,2 > . . . are the level 2 ordered eigenvalues. Then, the functions ηi and υid

can be approximated by the KL expansion: ηi(t) =
∑

k≥1 ξikθ1,k(t), υid(t) =
∑

l≥1 ζidlθ2,l(t),
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where ξik and ζidl are principal component scores withe mean zero and variance equal to σ2
1,k

and σ2
2,l. As before it is assumed that the covariance functions have finite non-zero eigen-

values and in addition that ξik, ζidl and εidj are mutually independent and they are jointly

Gaussian distributed.

The main objective is to test that the group mean functions are equal, or equivalently

that µ1 ≡ 0. Irrespective of the sampling design (dense or sparse), we assume that the set

of pooled time points, {tidj : i, j} is dense in T for each d. Our methodology requires that

the same sampling scheme is maintained for the two samples of curves, e.g., the curves are

not densely observed in one sample and sparsely observed in the other sample. (One could

extend the theory to the case of one sample being densely observed and the other sparse,

but data of this type would be rare so we did not attempt such an extension.) We use quasi-

residuals, Ỹidj = Yid(tidj)−µ̄(tidj), where µ̄ = (µ̃1+µ̃2)/2 is the average of the estimated mean

functions, µ̃d for d = 1, 2, which are obtained using the pooled data in each group. Because

of the identifiability constraint, the estimated µ̄ can be viewed as a smooth estimate of the

overall mean function µ. We assume that the overall mean function is estimated well enough

(Kulasekera, 1995), so that Ỹidj can be modeled similarly to (A.1), but without µ. Thus, we

assume that µ ≡ 0 and that the null hypothesis is µ1 ≡ 0. The pseudo LRT methodology

differs according to the sampling design. Here we focus on the setting of sparse sampled

curves; the Web Supplement details the methods for the dense sampled curves.

Assume that the functions are observed at irregularly spaced time points, {tidj : i, j}, and

that the set of pooled time points is dense in T for each d. As pointed out in Crainiceanu

et al. (2012), taking pairwise differences is no longer realistic. Nevertheless, we assume that

µ1(t) can be approximated by pth degree truncated polynomials: µ1(t) = xtβ + ztb. Let

Xid denote the mid × (p + 1) dimensional matrix with the jth row equal to xtidj , and let

X̃i = [XT
i1 | − XT

i2]T , and analogously define the mid × K matrices Zid’s for d = 1, 2 and

construct Z̃i = [ZT
i1 | − ZT

i2]T respectively.

Denote by Ỹi the mi-dimensional vector obtained by stacking first Ỹi1j’s over j =

1, . . . ,mi1, and then Ỹi2j’s over j = 1, . . . ,mi2, where mi = mi1 + mi2. It follows that,

the mi ×mi-dimensional covariance matrix of Ỹi, denoted by Σi can be partitioned as

Σi =

(
Σi,11 Σi,12

Σi,21 Σi,22

)
, (9)

where Σi,dd is mid ×mid-dimensional matrix with the (j, j′) element equal to Γ1(tidj, tidj′) +

Γ2(tidj, tidj′)+σ2
ε1(j = j′), and Σi,dd′ is mid×mid′-dimensional matrix with the (j, j′) element
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equal to Γ1(ti1j, ti2j′) for d, d′ = 1, 2, d 6= d′. We can rewrite the model Ỹi using a LMM

framework as Ỹi = X̃iβ + Z̃ib + ei, where ei is mi-dimensional vector, independent, with

mean zero, and covariance matrix given by Σi described above. The hypothesis µ1 ≡ 0 can

be tested as in Section 3.2. The required covariance estimators Σ̂i are obtained by replacing

Σi,dd′ with Σ̂i,dd′ respectively for 1 ≤ d, d′ ≤ 2, which in turn are based on estimators of

eigenfunctions, eigenvalues at each of the two levels, and the noise variance. For example, Di,

Crainiceanu and Jank (2011) developed estimation methods for Γ1, Γ2 and σ2
ε , {σ2

1,k, θ1,k(t)}k,
and {σ2

2,l, θ2,l(t)}l. The next proposition presents conditions for these estimators, under

which the assumption (C3), of Proposition 2.1 holds. It follows that, under the additional

assumptions (C1) and (C3) of Proposition 2.1, the asymptotic null distribution of the pseudo

LRT statistic is given by (4).

Proposition 5.1. Assume the following conditions for model (8) hold:

(M1’) The number of measurements per subject per visit is finite, i.e., supimid <∞ for d =

1, 2. Furthermore it is assumed that, for each subject i, the corresponding observation

points {tidj : j = 1, . . . ,mid} are generated uniformly and without replacement from a

set {t1, . . . , tm}, where tk = (k − 1/2)/m, for k = 1, . . . ,m and m diverges with n

(M2’) If θ̂d,k(t), σ̂2
d,k, and σ̂2

ε denote the estimators of the group-specific eigenfunctions, eigen-

values, and of the noise variance correspondingly, then

supt∈T |θ̂1,k(t) − θ1,k(t)| = Op(n
−α), σ̂2

1,k − σ2
1,k = Op(n

−α), supt∈T |θ̂2,l(t) − θ2,l(t)| =

Op(n
−α), σ̂2

2,l − σ2
2,l = Op(n

−α), for all k, l, and σ̂2
ε − σ2

ε = Op(n
−α).

(M3’) We have m ∼ nδ where 0 < δ < 2α.

Then condition (C2) holds for the estimator Σ̂ = diag{Σ̂1, . . . , Σ̂n} of Σ, whose ith block

Σi is defined in (9).

Conditions (M1’)–(M3’) are analogous to (F1’)–(F3’) and are concerned with the sam-

pling design, the regularity of the true covariance functions, and the accuracy of the different

covariance components estimation. We conclude that the sampling design assumptions can

be relaxed at the cost of accurate estimation of the level 1 covariance function, Γ1.
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6 The Sleep Heart Health Study

The Sleep Heart Health Study (SHHS) is a large-scale comprehensive multi-site study of sleep

and its impacts on health outcomes. Detailed descriptions of this study can be found in Quan

et al. (1997), Crainiceanu et al. (2009), and Di et al. (2009). The principal goal of the study is

to evaluate the association between sleep measures and cardiovascular and non-cardiovascular

health outcomes. In this paper, we focus on comparing the brain activity as measured

by sleep electroencephalograms (EEG) between subjects with and without sleep-disordered

breathing (SDB). The SHHS collected in-home polysomnogram (PSG) data on thousands of

subjects at two visits. For each subject and visit, two-channel Electroencephalograph (EEG)

data were recorded at a frequency of 125Hz (125 observations/second). Here we focus on a

particular characteristic of the spectrum of the EEG data, the proportion of δ-power, which

is a summary measure of the spectral representation of the EEG signal. For more details

on its definition and interpretations, see Borbely and Achermann (1999), Crainiceanu et al.

(2009) and Di et al. (2009). In our study we use percent δ-power calculated in 30-second

intervals. Figure 3 shows the sleep EEG percent δ-power in adjacent 30-second intervals for

the first 4 hours after sleep onset, corresponding to 3 matched pairs of subjects; missing

observations indicate wake periods. In each panel the percent δ-power is depicted in black

lines for the SDB subjects and in gray lines for the corresponding matched controls.
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Figure 3: Sleep EEG percent δ power for the first 4 hours after sleep onset, corresponding
to 3 matched pairs of controls (gray) and SDB (black).

Our interest is to compare the proportion of δ-power between the severe SDB subjects and

healthy individuals, i.e., subjects without SDB, while controlling for various demographic

factors. Subjects with severe SDB are identified as those with respiratory disturbance index
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(RDI) greater than 30 events/hour, while subjects without SDB are identified as those with

an RDI smaller than 5 events/hour. Propensity score matching (Swihart, et al. 2012) was

used to balance the groups and minimize confounding. SDB subjects were matched with

no-SDB subjects on age, BMI, race, and sex to obtain a total of 51 matched pairs. In this

study missing data patterns are subject-specific, with the proportion of missingness varying

dramatically across subjects. Thus, simply taking the within-group differences would be

inefficient. We use pseudo LRT for dependent samples of sparse functional data, as described

in Section 5.1, to test for the equality of the proportion of δ-power in the two groups.

To be specific, let {YiA(t), YiC(t)} be the proportion of δ-power measured at the tth 30

seconds interval from sleep onset, where t = t1, . . . , tT = t480, for the ith pair of matched

subjects, where A refers to the SDB and C refers to the control. For each subject some of the

observations might be missing. Following Crainiceanu, et al. (2012), we model each set of

curves Yid(t) by (8) for d = A,C. We are interested in testing the hypothesis H0: µAC ≡ 0,

where µAC(t) = µA(t) − µC(t) is the difference mean function. As a preliminary step we

obtain initial estimators of the group mean functions, for each of the SDB and control

groups, say µ̃A(t) and µ̃C(t). We use penalized spline smoothing of all pairs {t, Yid(t)}.
Pseudo-residuals are calculated as Ỹid(t) = Yid(t) − {µ̃A(t) + µ̃C(t)}/2. It is assumed that

Ỹid(t) can be modeled as (8), where the mean functions are µAC(t), for d = A and is −µAC(t)

for d = C respectively. Linear splines with K = 35 knots are used to model the difference

mean function, µAC . Pseudo LRT is applied to the pseudo-residuals, with an estimated

covariance Σ̂ based on the methods in Di, et al (2011).

The pseudo LRT statistic for the null hypothesis that µAC ≡ 0 is 27.74, which corre-

sponds to a p-value < 10−5. This indicates strong evidence against the null hypothesis of no

differences between the proportion δ-power in the SDB and control group. We also tested

the null hypothesis on a constant difference, that is, µAC ≡ a for some constant a; the

pseudo LRT statistic is 25.63 with a p-value nearly 0. Thus, there is strong evidence that

the two mean functions differ by more than a constant shift. Using a pointwise confidence

intervals approach, Crainiceanu, et al. (2012) found that differences between the apneic and

control group were not significant, indicating that their local test is less powerful than pseudo

LRT when testing for global differences. The global pseudo LRT does find strong evidence

against the null of no difference, but cannot pinpoint where these differences are located.

We suggest using the pseudo LRT introduced in this paper to test for difference and, if dif-

ferences are significant by the pseudo LRT, then locating them with the methods described
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in Crainiceanu, et al. (2012). This combination of methods allows a more nuanced analysis

and either method alone could provide.

7 Discussion

This paper develops a pseudo LRT procedure for testing the structure of the mean function

and derives its asymptotic distribution when data exhibit complex correlation structure. In

simulations pseudo LRT maintained its nominal level very well when a smooth estimator

of the covariance was used and exhibited excellent power performance. Pseudo LRT was

applied to test for the equality of mean curves in the context of two dependent or independent

samples of curves. The close relation between the LRT and restricted LRT (RLRT) seems

to imply that one should expect similar theoretical properties of the pseudo RLTR, obtained

by substituting the true covariance by a consistent estimator, when data exhibit complex

correlation structure.
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