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Generalized Multilevel Functional Regression

Ciprian M. Crainiceanu Ana-Maria Staicu Chongzhi Di

Abstract

We introduce Generalized Multilevel Functional Linear Models (GMFLM), a novel sta-

tistical framework motivated by and applied to the Sleep Heart Health Study (SHHS), the

largest community cohort study of sleep. The primary goal of SHHS is to study the asso-

ciation between sleep disrupted breathing (SDB) and adverse health effects. An exposure

of primary interest is the sleep electroencephalogram (EEG), which was observed for thou-

sands of individuals at two visits, roughly 5 years apart. This unique study design led to the

development of models where the outcome, e.g. hypertension, is in an exponential family

and the exposure, e.g. sleep EEG, is multilevel functional data. We show that GMFLMs

are, in fact, generalized multilevel mixed effect models. Two consequences of this result are

that: 1) the mixed effects inferential machinery can be used for GMFLM and 2) functional

regression models can be extended naturally to include, for example, additional covariates,

random effects and nonparametric components. We propose and compare two inferential

methods based on the parsimonious decomposition of the functional space.

Some key words: Functional principal components, Smoothing, Sleep EEG.

1 Introduction

The methodology described in this paper was motivated by our ongoing studies of the

association of sleep and adverse health outcomes. For example, in the Sleep Heart

Health Study (SHHS) we are interested in studying models where the health out-

comes, such as Chronic Heart Disease (CHD) or Hypertension (HTN), are regressed

on sleep electroencephalogram (EEG) data and other covariates. Because sleep-EEG

data is recorded at two visits the exposure has a natural multilevel functional struc-
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ture. SHHS contains the largest collection of sleep EEG data on an epidemiologic

cohort, with more than 6000 subjects at the baseline visit and more than 4000 sub-

jects at visit 2. This is just one example of modern research data that have become

increasingly complex, raising non-traditional modeling and inferential challenges. In

particular, advancements in technology and computation have made recording and

processing of functional data possible. In this context, it has become increasingly

necessary to develop models that describe the association between a functional mea-

surement, such as a magnetic resonance image (MRI) or EEG, and outcomes, such

as adverse health effects. Because functional data is now routinely collected at mul-

tiple visits these models have to be extended to incorporate the natural multilevel

structure of the functional data.

An appealing statistical methodology for this type of problems is Functional Re-

gression Analysis, which allows the outcomes or the regressors or both to be functions

instead of scalars. Functional Regression Analysis is currently under intense method-

ological research [3, 9, 17, 23, 24, 27, 33] and is a particular case of Functional Data

Analysis (FDA) [16, 14, 31, 32, 30]. Two comprehensive monographs that provide a

broad overview of FDA with applications to curve and image analysis are [26, 27].

The fundamental notion of FDA methods is to decompose the space of curves into

principal directions of variation. The main method for achieving this employs Princi-

pal Component Analysis (PCA) of the raw data or smoothed curves. PCA provides a

simple recipe for dimensionality reduction by estimating the eigenvectors of the func-

tional covariance operator. Furthermore, PCA estimates the subject-specific features

as the coordinates of subject curves in the basis spanned by the functional principal

components. There has been considerable recent effort to apply FDA to longitudinal

data, e.g., [8, 28, 32, 36]. See [22] for a thorough review. Because longitudinal data

are often multilevel, it might be assumed that this work on longitudinal FDA is mul-
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tilevel. However, this work has assumed that one or more functions are observed only

over a single time course, e.g., height is observed over childhood in growth studies.

Thus, in all current FDA research, the term “longitudinal” represents single-level time

series. FDA was extended to multilevel functional data [7], such as when subject-level

curves are observed at several visits.

In this paper we present several novel methodological developments in the gen-

eral area of functional regression based on functional PCA. First, we introduce the

multilevel functional exposure to incorporate cases when functional data is observed

at multiple time points. Second, we show that all regression models with functional

predictors can be viewed as mixed effects models with two mixed effects sub-models:

an outcome and an exposure model. This has important methodological and com-

putational implications because the mixed effects inferential machinery can be used

and models can be generalized within a well researched statistical framework. Third,

we introduce a Bayesian inferential framework for the joint analysis of the outcome

and exposure mixed effects models to account for the multi-layered variability and

measurement errors. This method is contrasted with a simpler two-stage method

that uses the predicted values of the random effects from the exposure model in the

outcome model. Fourth, we present theoretical and simulation results that provide

insight into when using a two-stage method is a reasonable alternative to the joint

analysis and when it is expected to fail. This has important practical implications for

researchers who would like to decide what method to use in a particular application.

Fifth, we obtain the best linear unbiased predictors and their associated variability for

the random effects in the functional exposure model. These theoretical results provide

an appealing and computationally tractable platform for two-stage analyses. Sixth,

we show how the mixed effects framework allows straightforward generalizations of

functional regression models to incorporate covariates, random effects, smooth func-
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tions of other covariates, etc. Our methods are an evolutionary development in a

growth area of research that build on and borrow strength from multiple method-

ological frameworks. Given the range of applications and methodological flexibility

of our methods, we anticipate that they will become one of the standard tools of

research in the area of functional regression.

The paper is organized as follows. Section 2 introduces our methodology for single-

level functional regression. Section 3 discusses the specific challenges of a Bayesian

analysis of the joint mixed effects model corresponding to functional regression. Sec-

tion 4 generalizes the methods to account for multilevel functional data exposure.

Section 5 provides extensions of functional regression models. Section 6 provides

simulations. Section 7 describes an application to sleep EEG data from the SHHS.

Section 8 summarizes our conclusions.

2 Single-level functional regression models

2.1 Joint mixed effects models

A particularly useful class of models that describe associations between non-gaussian

outcomes and functional data is the class of generalized functional linear models

(GFLM) [23]. The observed data for the ith subject in a GFLM is [Yi,Zi, {Wi(tim), tim ∈

[0, 1]}], where Yi is the continuous or discrete outcome, Zi is a vector of covari-

ates, and Wi(tim) is a random curve in L2[0, 1] observed at time tim, which is the

mth observation, j = 1, . . . ,Mi, for the ith subject, i = 1, . . . , n. We assume that

Wi(t) is a proxy observation of the true underlying functional signal Xi(t) and that

Wi(t) = µ(t) +Xi(t) + εi(t), where µ(t) is the population average and εi(t) is a mean

zero white noise process with variance σ2
ε . We also assume that the distribution of

Yi is in the exponential family with linear predictor ηi and dispersion parameter α,

4

http://biostats.bepress.com/jhubiostat/paper173



denoted here by EF(ηi, α). The linear predictor is assumed to have the following form

ηi =

∫ 1

0

Xi(t)β(t)dt+Zt
iγ, (1)

where β(·) ∈ L2[0, 1] is a functional parameter and the main target of inference. Note

that if {ψk(·), k ≥ 1} is an orthonormal basis in L2[0, 1] then both Xi(·) and β(·) have

unique representations Xi(t) =
∑

k≥1 ξikψk(t), β(t) =
∑

k≥1 βkψk(t) and equation (1)

can be rewritten as

ηi =
∑
k≥1

ξikβk +Zt
iγ. (2)

In model (1) the functional parameter β(t) does not depend on a basis, whereas

the coefficients βk are specific to a particular choice of orthonormal basis in L2[0, 1].

The coordinate version (2) of model (1) is intuitive because it provides a recipe for

regressing an outcome, Yi, on a function, Xi(t), by regressing it on the coordinates,

ξik, of that function in an orthonormal basis, ψk(·). However, this form of the model

is impractical because it involves an infinite number of regressors. Instead we will use

the following truncated version ηK
i =

∑K
k=1 ξikβk+Zt

iγ, whereK is the truncation lag.

Once ψk(·) and K are fixed, the functional regression model becomes a generalized

linear model (GLM)  Yi ∼ EF(ηK
i , α);

ηK
i =

∑K
k=1 ξikβk +Zt

iγ.
(3)

For reference, we will call equations (3) the outcome model. Note that the outcome

model (3) is not an ordinary GLM because the scores, ξik, k = 1, . . . , K, are indirectly

observed through the random curves Xi(t), i = 1, . . . , n, which, in turn, are indirectly

observed through the proxy functions Wi(t).

From a theoretical perspective, the choice of the orthonormal basis, ψk(·), is not

important. There are an infinite number of bases in L2[0, 1], but some, including the

5
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Fourier, wavelet and Hermite polynomials, are more popular. Each basis tends to

work better in particular applications. For example, the Fourier basis works better

when observed data are mixtures of sinusoidal signals, while polynomial bases work

better when underlying signals are smooth. It is our practical experience that some

bases are good for many applications and no basis is best for all.

In this paper we use Functional Principal Component Analysis (FPCA) [27] to

obtain a basis that captures most of the functional variability of the space spanned

by Xi(t) with its first few dimensions. FPCA is based on the covariance operator

KX(t, s) = Cov{Xi(t), Xi(s)}. Mercer’s theorem (see [15], Chapter 4) provides the

following convenient spectral decomposition KX(t, s) =
∑∞

k=1 λkψk(t)ψk(s), where

λ1 ≥ λ2 ≥ . . . are the ordered eigenvalues and ψk(·) are the associated orthonormal

eigenfunctions of KX(·, ·) in the L2 norm. The Karhunen-Loève (KL) decomposi-

tion [18, 21] of the subject level functions is Xi(t) =
∑∞

k=1 ξikψk(t) where ξik =∫ 1

0
Xi(t)ψk(t)dt are the principal component scores with E(ξik) = 0, Var(ξik) = λk

and Cov(ξik, ξik′) = 0 for every i and k 6= k′.

The covariance operator of the observed data, Wi(t), is KW (t, s) = KX(t, s) +

σ2
ε δt,s, where δt,s = 1 if t = s and 0 otherwise. These equations suggest a natural

solution for estimating the eigenvalues, eigenfunctions and the nugget variance, σ2
ε .

The first step of the procedure is to estimate the mean function µ(t) using, for ex-

ample, penalized spline smoothing [29] under the working independence assumption.

For issues on smoothing for dependent data, see discussion in [20]. The second step

is to obtain the method of moment estimates of KW (t, s), denoted by K̂W (t, s). The

third step is to estimate K̂X(t, s) by smoothing K̂W (t, s) for t 6= s, as suggested by

[31, 34]. We propose to use penalized thin plate because bivariate local polynomial

smoothing would be prohibitively slow for the size of our sleep data. The fourth step

is to predict the diagonal elements, K̂X(t, t), and estimate the error variance σ2
ε as
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σ̂ε
2 =

∫
{ K̂W (t, t) − K̂X(t, t) }dt. The fifth step is to estimate the eigenvalues and

eigenfunctions of K̂X(t, s).

Once the eigenfunctions ψk(·) and a truncation lag K are fixed, the model for

observed functional data can be written as a linear mixed model. Indeed, by con-

struction, ξik are mutually uncorrelated with mean 0 and variance λk. By assuming

a normal shrinkage distribution for scores and errors, the model can be rewritten as

 Wi(t) =
∑K

k=1 ξikψk(t) + εi(t);

ξik ∼ N(0, λk); εi(t) ∼ N(0, σ2
ε ).

(4)

For reference, we will call equations (4) the exposure model. A close inspection of

the model will reveal that this is a linear mixed model [19] with the random effects

ξik being the quantities that are used in the outcome model (3). We propose to

jointly estimate the two outcome and exposure mixed effects models (3) and (4). In

Section 2.2 we show that two-stage estimation, that is predicting the random effects

in model (4) and plugging them in the model (3), may lead to misspecified variability

when the outcome, Yi, is normally distributed and biased estimators and misspecified

variability when it is not normally distributed.

2.2 BLUP plug-in versus joint estimation

To better understand the potential problems associated with two-stage estimation we

describe the induced likelihood for the observed data. We introduce the following

notations ξi = (ξi1, . . . , ξiK)t and W i = {Wi(ti1), . . . ,Wi(tiMi
)}t, where Mi is the

total number of functional observations for subject i. With a slight abuse of notation

[Yi|W i,Zi] =
∫

[Yi, ξi|W i,Zi]dξi, where [·|·] denotes the probability density function

of the conditional distribution. The assumptions in models (3) and (4) imply that

7

Hosted by The Berkeley Electronic Press



[Yi, ξi|W i,Zi] = [Yi|ξi,Zi][ξi|W i], which, in turn, implies that

[Yi|W i,Zi] =

∫
[Yi|ξi,Zi][ξi|W i]dξi. (5)

Under normality assumptions it is easy to prove that [ξi|W i] = N{m(W i),Σi}, where

m(W i) and Σi are the mean and covariance matrix of the conditional distribution

of ξ given the observed functional data and model (4). In section 2.3 we provide the

derivation of m(W i) and Σi and more insight into their effect on inference.

For most nonlinear models the induced model for observed data (5) does not have

an explicit form. A procedure to avoid this problem is to use a two-stage approach

with the following components: 1) produce predictors of ξi, say ξ̂i, based on the

exposure model (4); and 2) estimate the parameters of the outcome model (3) by

replacing ξi with ξ̂i. It is reasonable to use the best linear unbiased predictor (BLUP)

of ξi, ξ̂i = m(W i), but other predictors could also be used. For example, Müller and

Stadtmüller [23] used ξ̂ik =
∫ 1

0
Wi(t)ψk(t)dt, which are unbiased predictors of ξik. We

will show that these predictors may lead to biased estimators even in normal linear

models. Moreover, they have higher variance than the BLUPs, m(W i), because they

do not borrow strength across subjects. This problem is especially serious when the

number of observations per subject is small, but may be negligible when it is large.

A two-stage estimation procedure is an appealing alternative to joint model esti-

mation. In particular, it is intuitive, computationally tractable, and provides unbiased

estimators under the normality assumption. A drawback of the two-stage procedure is

that it ignores the effect of variability of predictors, ξ̂. This may lead to misspecified

variability when the distribution of the outcome is normal and estimation bias and

misspecified variability when it is not. To illustrate these ideas we show the effects

of the two-stage procedure in Normal/identity and a Bernoulli/probit models.
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The Normal/identity model. Assume that Yi = ξt
iβ + Zt

iγ + ei, where β =

(β1, . . . , βK)t, ei ∼ N(0, σ2
e) and ξi are mutually independent. It can be shown that

E(Yi|W i,Zi) = mt(W i)β + Zt
iγ and Var(Yi|W i,Zi) = βtΣiβ + σ2

e . In Section 2.3

we show that, in typical applications, Σi does not depend on W i or Zi but depends

on the sampling times, tim, for the function W i. In the case when Mi = M and

tim = tm, for all i and m, Σi = Σ and σ2
η = βtΣβ + σ2

e is still arbitrary because σ2
e

is arbitrary. In this case the induced model for observed data is equivalent to

Yi = mt(W i)β +Zt
iγ + ηi (6)

where ηi ∼ Normal(0, σ2
η) are mutually independent. Thus, in the balanced case

the two-stage procedure leads to unbiased estimators of the model parameters and

correctly specified variability if and only if ξi is replaced by m(W i). However, if the

number of observations per subject, Mi, or the sampling points, tim, vary with the

subject i then Σi is not constant. In this case the maximum likelihood estimators

of β and γ based on model (6) would still be consistent. However, their standard

errors would be incorrect because the homoscedastic model (6) would be used when

the actual variances are heteroscedastic.

The Bernoulli/probit model. Consider the following outcome model Yi|ξi,Zi ∼

Bernoulli(pi), where Φ−1(pi) = ξt
iβ + Zt

iγ, and Φ(·) is the cumulative distribution

function of a standard normal distribution. Under the normality assumption of the

distribution of ξi it follows that the induced model for observed data is

 Yi|W i,Zi ∼ Bernoulli(qi);

Φ−1(qi) = {mt(W i)β +Zt
iγ}/(1 + βtΣiβ)1/2.

(7)

Thus, using the two-stage procedure, where ξi is simply replaced by mt(W i), leads to

9
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biased estimators with misspecified variability for β and γ. The size of these effects

is controlled by βtΣiβ.

2.3 The posterior distribution of scores

In the previous section we showed that a two-stage estimation procedure results in

biased estimators and that the size of the bias is affected, if not determined, by

the covariance matrix, Σi, of the conditional distribution, [ξi|W i]. This type of

problem is also encountered in measurement error models, where the analog of the

two stage-stage procedure is referred to as regression calibration [2]. While, in that

context, regression calibration has been criticized for the same reasons we describe

here for two-stage procedures, it remains a fast and robust first order bias correction

strategy that often outperforms more sophisticated methods. Thus, it is reasonable

to ask whether and how much would be gained in the functional regression context

by switching from a two-stage to a joint model analysis. To answer this questions we

take a closer look at the the conditional distribution [ξi|W i] and provide a simplified,

but revealing, example at the end of this section. In Section 6 we provide further

insight into the size of the bias and bias correction using both methods.

Under the assumptions in models (3) and (4) the joint distribution of (W t
i, ξ

t
i)

t

is multivariate normal with zero mean. Because var{Wi(t)} = σ2
ε +

∑K
k=1 λkψ

2
k(t),

cov{Wi(t),Wi(s)} =
∑K

k=1 λkψk(t)ψk(s), var{ξik} = λk and cov{Wi(t), ξik} = λkψk(t)

it follows that (W t
i, ξ

t
i)

t ∼ N(0,Σi) where

Σi =

 σ2
εIMi

+ ΨiΛΨi
t ΨiΛ

ΛΨt
i Λ

 , (8)

IMi
is the Mi dimensional identity matrix, Ψi is the Mi×K dimensional matrix with

the jth row equal to ψt
im = {ψ1(tim), . . . , ψK(tim)}, and Λ is the K ×K dimensional
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diagonal matrix with the diagonal equal to (λ1, . . . , λK). It follows that [ξi|W i] =

N{m(W i),Σi}, where

 m(W i) = ΛΨt
i(σ

2
εIMi

+ ΨiΛΨt
i)
−1W i;

Σi = Λ−ΛΨt
i(σ

2
εIMi

+ ΨiΛΨt
i)
−1ΨiΛ.

(9)

The first equation in (9) provides the recipe for calculating the BLUPs of the

functional scores based on the exposure model (4). A careful inspection of the sec-

ond equation in (9) reveals important characteristics of Σi. First, Σi ≤ Λ, that is,

Λ−Σi is positive-semidefinite, where Σi and Λ are the conditional and prior covari-

ance matrices of ξi, respectively. This is a quantification of the natural reduction of

variability after conditioning on observed data. Despite this reduction, Σi is not zero.

Second, the amount of variability described by Σi depends essentially on the prior

covariance, Λ, and the variance, σ2
ε , of the error process εi(t). In particular, when

σ2
ε approaches infinity, Σi approaches Λ at the rate O(σ−2

ε ), indicating that large

noise levels will correspond to little or no reduction of variability. In practice, such

extreme cases rarely occur, but a wide spectrum of noise levels might be expected.

Depending on the noise levels, the matrix Σi will be closer to one of the extremes, Λ

or Λ − ΛΨt
i(ΨiΛΨt

i)
−ΨiΛ, corresponding to no or maximum variability reduction,

respectively. Here A− is a generalized inverse of A. Another way to gain insight into

the problem is to write the matrix Σi in terms of the signal-to-noise ratio matrix,

Λ/σ2
ε , as Σi = Λ[IK − Ψt

i{IMi
+ Ψi(Λ/σ

2
ε )Ψ

t
i}−1Ψi(Λ/σ

2
ε )]. Thus, when Λ/σ2

ε is

close to zero Σi is close to Λ.

To better understand the problem consider the simple example when K = 1 and

ψ(t) = 1 for all t. The functional exposure model (4) becomes Wi(t) = ξi + εi(t),

where ξi ∼ N(0, λ) and εi(t) ∼ N(0, σ2
ε ). For simplicity, we denoted by ξi = ξi1 and by

λ = λ1. This is exactly the classical measurement error model where Wi(t) are viewed
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asMi unbiased proxies of the variable measured with error, ξi, σ
2
ε is the variance of the

measurement error, and λ/(λ+ σ2
ε ) is the reliability of the measurement mechanism.

In this case Σi is a scalar and using the results from equation (9) we obtain

Σi =
λ(σ2

ε/Mi)

λ+ σ2
ε/Mi

=
λ

1 + (λ/σ2
ε )Mi

≤ min(λ, σ2
ε/Mi).

These expressions reveal the various factors that affect the size of the conditional

variance, Σi, in this simplified context. First, a large number of observations, Mi,

or a small value of the error variance, σ2
ε , correspond to a small Σi. Second, a large

σ2
ε relative to λ, or a small signal-to-noise ratio, λ/σ2

ε , correspond to Σi ≈ λ. Third,

Σi ≤ σ2
ε/Mi, which implies that in applications with a large number of observations

per subject the bias induced by using a two-stage procedure might be negligible.

However, applications with small to moderate number of observations per subject,

large measurement error, or small signal-to-noise ratios require special attention.

An important particular case is when the functions are perfectly observed, that

is when σ2
ε = 0. In this case, if the functional data are single-level, as assumed in

this section, then the two-stage procedure does not induce bias either for the linear

or nonlinear models. This result cannot be generalized to the case when functional

data are observed at multiple levels, as is the case in the SHHS application. In-

deed, with the exception of exotic examples, functional data exhibits sizeable within-

subject/between-visit variability, even when the functions are perfectly measured. In

Section 4 we discuss the specific problems induced by two-stage procedures when

functional data has a multi-level structure.

Focusing on Σi as a source of bias in a two-stage procedure provides important

insights, but may also be slightly misleading. Indeed, the bias is more directly affected

by the relative size of βtΣiβ and mt(W i)β + Zt
iγ than by the absolute size of Σi.
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However, the relative size is more complicated to explain and interpret.

3 Bayesian inference

Because of the potential problems associated with two-stage procedures we propose

to use joint modeling. Bayesian inference using Markov Chain Monte Carlo (MCMC)

simulations of the posterior distribution provides a reasonable, robust, and well tested

computational approach for this type of problems. Moreover, Bayesian inference can

easily be extended to the more general models described in Sections 4 and 5. Possible

reasons for the current lack of Bayesian methodology in functional regression analysis

could be: 1) the connection between functional regression models and joint mixed

effects models was not known; and 2) the Bayesian inferential tools were perceived as

unnecessarily complex and hard to implement. We clarified the connection to mixed

effects models in Section 2 and we now show that 2) is not true, thanks to intense

methodological and computational research conducted over the last 10-20 years. See,

for example, the monographs [1, 4, 11, 13] and the citations therein for a good overview

of recent developments.

To be specific, we focus on a Bernoulli/logit outcome model with functional re-

gressors. Other outcome models would be treated similarly. Consider the joint model

with the outcome Yi ∼ Bernoulli(pi), linear predictor logit(pi) = ξt
iβ + Zt

iγ and

functional exposure model Wi(tim) = ψt
imξi + εi(tim). We assume that ξik ∼ N(0, λk)

and εi(tim) ∼ N(0, σ2
ε ) are a-priori mutually independent for i = 1, . . . , n and m =

1, . . . ,Mi. The parameters of the model are Ω = {(ξi : i = 1, . . . , n),β,γ,Λ, σ2
ε}.

While εi(tij) are also unknown, we do not incorporate them in the set of parameters

because they are automatically updated by εi(tim) = Wi(tim)−ψt
imξi. The prior for ξi

was already defined and it is standard to assume that the fixed effects parameters, β

and γ, are apriori independent, with β ∼ Normal(0, σ2
βIK) and γ ∼ Normal(0, σ2

γIP )
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where σ2
β and σ2

γ are very large and P is the number of Z covariates. In our ap-

plications we used σ2
β = σ2

γ = 106, which we recommend when there is no reason to

expect that the components of β and γ could be outside of the interval [−1000, 1000].

In some applications this priors might be inconsistent with the true value of the pa-

rameter. In this situations we recommend re-scaling Wi(tim) and normalizing, or

re-scaling, the Z covariates.

While standard choices of priors for fixed effects parameters exist and are typically

non-controversial, the same is not true for priors of variance components. Indeed,

the estimates of the variance components are known to be sensitive to the prior

specification, see, for example, [6, 10]. In particular, the popular inverse-gamma priors

may induce bias when their parameters are not tuned to the scale of the problem.

This is dangerous in the shrinkage context where the variance components control

the amount of smoothing. However, we find that with reasonable care, the conjugate

gamma priors can be used in practice. Alternatives to gamma priors are discussed by,

for example, [10, 25], and have the advantage of requiring less care in the choice of

the hyperparameters. Nonetheless, exploration of other prior families for functional

regression would be well worthwhile, though beyond the scope of this paper.

We propose to use the following independent inverse gamma priors λk ∼ IG(Ak, Bk),

k = 1, . . . , K, and σ2
ε ∼ IG(Aε, Bε), where IG(A,B) is the inverse of a gamma prior

with mean A/B and variance A/B2. We first write the full conditional distributions

for all the parameters and than discuss choices of non-informative inverse gamma

parameters. Here we treat λk as parameters to be estimated, but a simpler Empirical

Bayes (EB) method proved to be a reasonable alternative in practice. More precisely,

the EB method estimates λk by diagonalizing the functional covariance operator as

described in Section 2.1. These estimators are than fixed in the joint model. In the

following we present the inferential procedure for the case when λks are estimated
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with obvious simplifications for the EB procedure where they would be fixed.

We use Gibbs sampling [12] to simulate [Ω|D], where D denotes the observed

data. A particularly convenient partition of the parameter space and the associated

full conditional distributions are described below.

[β,γ|others] ∝ exp[
∑n

i=1 Yi(ξ
t
iβ +Zt

iγ)−
∑n

i=1 log{1 + exp(ξt
iβ +Zt

iγ)}]

× exp(−0.5βtβ/σ2
β − 0.5γtγ/σ2

γ);

[ξi|others] ∝ exp[Yi(ξ
t
iβ +Zt

iγ)− log{1 + exp(ξt
iβ +Zt

iγ)}]

× exp{−0.5||W i −Ψiξi||2/σ2
ε − 0.5ξiΛξi};

[λk|others] ∝ IG {n/2 + Ak,
∑n

i=1 ξ
2
ik/2 +Bk} ;

[σ2
ε |others] ∝ IG{

∑n
i=1 Ti/2 + Aε,

∑n
i=1 ||W i −Ψiξi||2/2 +Bε}.

The first two full-conditionals do not have an explicit form, but can be sampled using

Markov Chain Monte Carlo (MCMC). For Bernoulli outcomes the MCMC method-

ology is routine. We use the Metropolis-Hastings algorithm with a normal proposal

distribution centered at the current value and small variance tuned to provide an ac-

ceptance rate around 30-40%. The last two conditionals are explicit and can be easily

sampled. However, understanding the various components of these distributions will

provide insights into rational choices of inverse gamma prior parameters. Indeed, the

first parameter of the full conditional for λk is n/2+Ak, where n is the number of sub-

jects. Thus, it is safe to choose Ak ≤ 0.01. The second parameter is
∑n

i=1 ξ
2
ik/2 +Bk,

where
∑n

i=1 ξ
2
ik is an estimator of nλk. Thus, it is safe to choose Bk ≤ 0.01λk. This

discussion is especially relevant for those variance components or, equivalently, eigen-

values of the covariance operator, that are small but estimable. A similar discussion

holds for σ2
ε and we recommend to choose Aε ≤ 0.01 and Bε ≤ 0.01σ2

ε . Note that

MOM estimators for λk and σ2
ε are available and reasonable choices of Bk and Bε are

easy to propose. While we find these rules of thumb useful in practice, they should
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be used as any other rule of thumb, cautiously. Moreover, for every application we do

not recommend to rigidly use these prior parameters but rather tune them according

to the general principles described here.

4 Multi-level functional regression models

Multilevel functional data occurs naturally in scientific studies where subject-level

functional data observed at multiple visits are becoming increasingly common. For

example, our research was motivated by the largest collection of sleep EEG data on

an epidemiologic cohort, which contains at each of two visits, quasi-continuous EEG

signals for each subject. We provide two other examples inspired by our current re-

search, but otherwise not covered in this paper. First, magnetic resonance imaging

(MRI) has become commonly used in epidemiological studies and our applications

contain images (e.g., of the brain or heart) at multiple visits. Second, the daily tra-

jectory of blood glucose concentration may provide more information than simple

summaries, such as fasting glucose. These are examples of what we refer to as Multi-

level Functional Data (MFD), where functional data are observed at multiple visits.

MFD should not be mistaken for ”functional longitudinal data”, which typically refers

to data containing one function per subject.

This section expands the methodology described in Section 2 to account for the

natural multilevel structure of functional data. Most results in Section 2 generalize

directly to the multilevel case and require mainly notational and computational effort.

However, there are important differences that we are noting here before providing the

technical details below. The most important difference is that the subject-specific

scores have higher variability due to the additional within-level/between-visit vari-

ability. This, in turn, leads to larger bias in a two-stage procedure when the outcome

model is not linear. We will address this problem below, after introducing the frame-

16

http://biostats.bepress.com/jhubiostat/paper173



work for multilevel functional regression.

4.1 Joint mixed effects models

The observed data for the ith subject in a Generalized Multilevel Functional Model

(GMFM) is [Yi,Zi, {Wij(tijm), tijm ∈ [0, 1]}], where Yi is the continuous or discrete

outcome, Zi is a vector of covariates, and Wij(tijm) is a random curve in L2[0, 1]

observed at time tijm, which is the mth observation, m = 1, . . . ,Mij, for the jth

visit, j = 1, . . . , Ji of the ith subject. We assume that Wij(t) is a proxy observation

of the true underlying subject-specific functional signal Xi(t), and that Wij(t) =

µ(t) + ηj(t) +Xi(t) + Uij(t) + εij(t). Here µ(t) is the overall mean function, ηj(t) is

the visit j specific shift from the overall mean function, Xi(t) is the subject i specific

deviation from the visit specific mean function, and Uij is the residual subject/visit

specific deviation from the subject specific mean. To ensure identifiability we assume

that Xi(t), Uij(t), and εij(t) are uncorrelated and that εij(t) is a white noise process

with variance σ2
ε . Given the large sample size of the SHHS data, we can assume

that µ(t) and ηj(t) are estimated with negligible error by W̄··(t) and W̄·j(t) − W̄··,

respectively. Here W̄··(t) is the average over all subjects, i, and visits, j, of Wij(t)

and W̄·j(t) is the average over all subjects, i, of observation at visit j of Wij(t). We

can assume that these estimates have been subtracted from Wij(t), so that Wij(t) =

Xi(t) + Uij(t) + εij(t).

We also assume that the distribution of Yi is in the exponential family with lin-

ear predictor ηi and dispersion parameter α, denoted here by EF(ηi, α). The linear

predictor is assumed to have the following form ηi =
∫ 1

0
Xi(t)β(t)dt + Zt

iγ, where

β(·) ∈ L2[0, 1] is a functional parameter and the main target of inference. If ψ
(1)
k (t)

and ψ
(2)
l (t) are two orthonormal basis in L2[0, 1] then Xi(·), Uij(·) have unique rep-
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resentations

Xi(t) =
∑
k≥1

ξikψ
(1)
k (t), Uij(t) =

∑
l≥1

ζijlψ
(2)
l (t); β(t) =

∑
k≥1

βkψ
(1)
k (t). (10)

Using the same arguments as in Section 2, we use the truncated versions of these

equalities. If K and L are the truncation lags, the multilevel outcome model can be

written as  Yi ∼ EF(ηK
i , α);

ηK
i =

∑K
k=1 ξikβk +Zt

iγ,
(11)

which is identical to the single-level outcome model (3). Other multilevel outcome

models could be considered by including regression terms for the Uij(t) process or,

implicitly, for ζijl. However, we restrict our discussion to models of the type (11).

In this paper we use Multilevel Functional Principal Component Analysis (MF-

PCA) [7] to obtain the bases that capture most of the functional variability of the

space spanned by Xi(t) and Uij(t), respectively, with the the first few components.

MFPCA is based on the spectral decomposition of the within- and between-visit func-

tional variability covariance operators. We summarize here the main components

of this methodology. Denote by KW
T (s, t) = cov{Wij(s),Wij(t) } and KW

B (s, t) =

cov{Wij(s),Wik(t) } for j 6= k the total and the between covariance operator cor-

responding to the observed process, Wij(·), respectively. Denote by KX(t, s) =

cov{Xi(t), Xi(s)} the covariance operator of the Xi(·) process and by KU
T (t, s) =

cov{Uij(s), Uij(t) } the total covariance covariance operator of the Uij(·) process.

Note that, by definition, KU
B (s, t) = cov{Uij(s), Uik(t) } = 0 for j 6= k. Moreover,

KW
B (s, t) = KX(s, t) and KW

T (s, t) = KX(s, t) + KU
T (s, t) + σ2

ε δts, where δts is equal

to 1 when t = s and 0 otherwise. Thus, KX(s, t) can be estimated using a method

of moments estimator of KW
B (s, t), say K̂W

B (s, t). For t 6= s a method of moment
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estimator of KW
T (s, t)−KW

B (s, t), say K̂U
T (s, t), can be used to estimate KU

T (s, t). To

estimate K̂U
T (t, t) it was proposed [7] to predict KU

T (t, t) using a bivariate thin-plate

spline smoother of K̂U
T (s, t) for s 6= t. This method was suggested by [31, 34] for

single-level FPCA and shown to work well in the MFPCA context [7].

Once consistent estimators of KX(s, t) and KU
T (s, t) are available, the spectral

decomposition and functional regression proceed as in the single-level case. More

precisely, Mercer’s theorem (see [15], Chapter 4) provides the following convenient

spectral decompositions KX(t, s) =
∑∞

k=1 λ
(1)
k ψ

(1)
k (t)ψ

(1)
k (s), where λ

(1)
1 ≥ λ

(1)
2 ≥ . . .

are the ordered eigenvalues and ψ
(1)
k (·) are the associated orthonormal eigenfunc-

tions of KX(·, ·) in the L2 norm. Similarly, KU
T (t, s) =

∑∞
l=1 λ

(2)
l ψ

(2)
l (t)ψ

(2)
l (s), where

λ
(2)
1 ≥ λ

(2)
2 ≥ . . . are the ordered eigenvalues and ψ

(2)
l (·) are the associated orthonor-

mal eigenfunctions of KU
T (·, ·) in the L2 norm. The Karhunen-Loève (KL) decompo-

sition [18, 21] provides the following infinite decompositions Xi(t) =
∑∞

k=1 ξikψ
(1)
k (t)

and Uij(t) =
∑∞

l=1 ζijlψ
(2)
l (t) where ξik =

∫ 1

0
Xi(t)ψ

(1)
k (t)dt, ζijl =

∫ 1

0
Uij(t)ψ

(2)
l (t)dt

are the principal component scores with E(ξik) = E(ζijl) = 0, Var(ξik) = λ
(1)
k ,

Var(ζijl) = λ
(2)
l . The zero-correlation assumption between the Xi(·) and Uij(·) pro-

cesses is ensured by the assumption that cov(ξi, ζijl) = 0. These properties hold for

every i, j, k, and l.

Once the eigenfunctions and the truncation lags K and L are fixed, the model for

observed functional data can be written as a linear mixed model. Indeed, by assuming

a normal shrinkage distribution for scores and errors, the model can be rewritten as

 Wij(t) =
∑K

k=1 ξikψ
(1)
k (t) +

∑L
l=1 ζijlψ

(2)
k (t) + εij(t);

ξik ∼ N(0, λ
(1)
k ); ζijl ∼ N(0, λ

(2)
l ); εij(t) ∼ N(0, σ2

ε ).
(12)

For simplicity we will refer to ψ
(1)
k (·), ψ(2)

l (·) and λ
(1)
k , λ

(2)
l as the level 1 and 2 eigen-
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functions and eigenvalues, respectively.

We propose to jointly fit the outcome model (11) and the exposure model (12).

Because the joint model is a generalized linear mixed effects model the inferential

arsenal for mixed effects models can be used. In particular, we propose to use a

Bayesian analysis via posterior MCMC simulations. An alternative would be to use a

two-stage analysis by first predicting the scores from model (12) using, for example,

BLUP and then plug-in these estimates into model (11).

While the parallels between single-level and multilevel functional regression are

obvious our presentation is far from being unnecessarily repetitive. Indeed, close

inspection of exposure models (4) and (12) will reveal differences with important

consequences. The most important difference is that model (12) contains the term∑L
l=1 ζijlψ

(2)
l (t) which quantifies the visit/subject-specific deviations from the subject

specific mean. This variability is typically large and makes estimation of the subject-

specific scores, ξi, difficult even when the functions are perfectly observed, that is

σ2
ε = 0. Thus, the effects of variability on bias in a two-stage procedure will typically

be more severe in a multilevel context, especially when the within-subject variability

is large compared to the between-subject variability. In the next section we provide

the technical details associated with a two stage procedure and provide a simple

example to build up the intuition.

4.2 Posterior distribution of subject-specific functional scores

We now turn our attention to calculating the posterior distribution of subject-specific

scores for the MFPCA model (12). While this section is more technical and con-

tains some pretty heavy notation, the results are important because they form the

basis of any reasonable inferential procedure in this context, be it two-stage or

joint modeling. We first introduce some notation for a subject i. Let Wij =
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{Wij(tij1), . . . ,Wij(tijMij
)}t be the Mij × 1 vector of observations at visit j, Wi =

(Wt
i1, . . . ,W

t
iJi

)t be the (
∑Ji

j=1Mij) × 1 vector of observations obtained by stacking

W ij, ψ
(1)
ij,k = {ψ(1)

k (tij1), . . . , ψ
(1)
k (tijMij

)}t be the Mij × 1 dimensional vector corre-

sponding to the kth level 1 eigenfunction at visit j, and ψ
(1)
ik = {ψ(1)t

i1,k, . . . ,ψ
(1)t
iJi,k

}t be

the (
∑Ji

j=1Mij)× 1 dimensional vector corresponding to the kth level 1 eigenfunction

at all visits. Also, let Ψ
(1)
ij = {ψ(1)

ij,1, . . . ,ψ
(1)
ij,K} be the Mij × K dimensional matrix

of level 1 eigenvectors obtained by binding the column vectors ψ
(1)
ij,k corresponding to

the jth visit and Ψ
(1)
i = (ψ

(1)
i1 , . . . ,ψ

(1)
iK) be the (

∑Ji

j=1Mij) ×K dimensional matrix

of level 1 eigenfunctions obtained by binding the column vectors ψ
(1)
i1 . Similarly, we

define the vectors ψ
(2)
ijl , ψ

(2)
il , Ψ

(2)
ij and Ψ

(2)
i . Finally, let Λ(1) = diag{λ(1)

1 , . . . , λ
(1)
K }

and Λ(2) = diag{λ(2)
1 , . . . , λ

(2)
L } be the K×K and L×L dimensional diagonal matrices

of level 1 and level 2 eigenvalues, respectively.

As in the single level case, [ξi|W i] = Normal{m(W i),Σi}, where m(W i) and

Σi have a more complex structure. Indeed, if ΣWi
denotes the covariance matrix of

W i then m(W i) = Λ(1) Ψ
(1)t
i Σ−1

Wi
Wi and Σi = Λ(1) − Λ(1) Ψ

(1)t
i Σ−1

Wi
Ψ

(1)
i Λ(1).

It can be shown that ΣWi
is a matrix with the (j, j′)th block matrix equal to Bi,jj′

where Bi,jj′ = Bt
i,j′j = Ψ

(1)
ij Λ(1)Ψ

(1)t
ij′ if j 6= j′ and Bi,jj = σ2

εIMij
+ Ψ

(2)
ij Λ(2)Ψ

(2)t
ij +

Ψ
(1)
ij Λ(1)Ψ

(1)t
ij for 1 ≤ j, j′ ≤ Ji.

Theorem 1 Consider the multilevel functional exposure model (12) with a fixed num-

ber of observations per visit, i.e. Mij = Mi, at the same subject-specific times for

each visit, i.e. tijm = tim for all j = 1, . . . , Ji. Denote by KX = Ψ
(1)
i1 Λ(1)Ψ

(1)t
i1 , by

KU
T = Ψ

(2)
i1 Λ(2)Ψ

(2)t
i1 , by 1Ji×Ji

the Ji × Ji dimensional matrix of ones, and by ⊗ the

Kronecker product of matrices. Then ΣWi
= 1Ji×Ji

⊗KX + IJi
⊗ (σ2

εIMi
+KU

T ) and

Σ−1
Wi

= IJi
⊗(σ2

εIMi
+KU

T )−1−1Ji×Ji
⊗{(σ2

εIMi
+KU

T )−1 KX (JiK
X+σ2

εIMi
+KU

T )−1}.

Theorem 2 Assume the balanced design considered in Theorem 1 and denote by
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W̄ i =
∑Ji

j=1W ij/Ji. Then m(W i) = Λ(1) Ψ
(1)t
i1 {KX + 1

Ji
(σ2

εIMi
+KU

T )}−1 W̄ i and

Σi = Λ(1) −Λ(1) Ψ
(1)t
i1 {KX + 1

Ji
(σ2

εIMi
+KU

T )}−1 Ψ
(1)
i1 Λ(1).

See the Appendix for proofs.

Theorem 2 provides a particularly simple description of the conditional distribu-

tion ξi|W i. Moreover, it shows that, conditional on the smoothing matrices Λ(1) and

Λ(2), the conditional distribution ξi|W i is the same as the conditional distribution

ξi|W̄ i. We now provide a simple example where all calculations can be done explicitly

to illustrate the contribution of each individual source of variability to the variability

of the posterior distribution ξi|W i, Σi. As described in section 2.2, this variability

affects the size of the estimation bias in a two-stage procedure. Thus, it is important

to understand in what applications this might be a problem.

Consider a balanced design model with K = L = 1 and ψ(1)(t) = 1, ψ(2)(t) = 1

for all t. The exposure model becomes a balanced mixed two-way ANOVA model

 Wij(t) = ξi + ζij + εij(t);

ξi ∼ N(0, λ1); ζij ∼ N(0, λ2); εij(t) ∼ N(0, σ2
ε ),

(13)

where, for simplicity, we denoted by ξi = ξi1, ζij = ζij1, λ1 = λ
(1)
1 and by λ2 = λ

(2)
1 . In

this case the conditional variance Σi is a scalar and, using the results from Theorem 2,

we obtain Σi = λ1{λ2/Ji+σ2
ε /(MiJi)}

λ1+{λ2/Ji+σ2
ε /(MiJi)} ≤ min{λ1, λ2/Ji +σ2

ε/(MiJi)}. Several important

characteristics of this formula have direct practical consequences. First, the within-

subject/between-visit variability, λ2, is divided by the number of visits, Ji. In many

applications λ2 is large compared to λ1 and Ji is small, leading to a large variance Σi.

For example, in the SHHS study Ji = 2 and the functional analog of λ2 is roughly 4

times larger than the functional analog of λ1. Second, in contrast to the single-level

case, even when functions are perfectly observed, that is σ2
ε = 0, the variance Σi is not
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zero. Third, in many applications σ2
ε/(MiJi) is negligeable because the total number

of observations for subject i, MiJi, is large. For example, in the SHHS, MiJi ≈ 1600.

5 Generalizing the functional regression model

We have shown that single- and multilevel functional regression models can be viewed

as mixed effects models. Thus, the inferential machinery developed for mixed effects

models can be applied to complex functional regression settings with only minimal

changes. Another important consequence is that the mixed effects framework provides

a natural and modular framework for generalization. Indeed, mixed effects regression

modules developed for other problems can easily be incorporated with the method-

ology described here. For example, consider the case when an additional covariate,

say d, in the linear predictor equation (3) has a smooth effect on the outcome. More

precisely, the linear predictor has the form ηK
i =

∑K
m=1 ξikβk + Zt

iγ + f(di), where

f(·) is unspecified. Using, for example, penalized splines regression [29] the function

f(·) can be parameterized as f(d1i) = α0 + α1di + . . . + αpd
p
i +

∑L
l=1 al(di − κl)

p
+,

where al ∼ N(0, σ2
a), p is the degree of the spline, κl, l = 1, . . . , L are fixed knots, and

xp
+ = xp if x > 0 and 0 otherwise. Thus, the outcome model remains a mixed effects

model by simply viewing α0, . . . , αp as fixed effects and al, l = 1, . . . , L as random

effects parameters. Extensions to multiple uni- or multivariate smooth functions is

similar and will not be described here in detail. Such extensions are neither exotic

nor rare. For example, in the SHHS the outcome, Yi, could be the Chronic Heart

Disease (CHD) indicator, the functional regressors, Wij(·), could be the normalized

sleep EEG δ-power, and d could be age or body mass index (BMI) or both.

A different type of generalization occurs when the outcome observations are clus-

tered. For example, consider the case when one observes the outcome Yij for a sub-

ject i at visit j. A standard approach to account for correlation is to add a visit-
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specific random intercept. More precisely, the linear predictor of the outcome model

is ηK
ij = ri + ηK

ij , where ri ∼ Normal(0, σ2
v) are visit-specific random intercepts and

ηK
ij is the linear predictor with a structure as in (3). Thus, as with adding smooth

functions, adding random intercepts is equivalent to adding a layer of random effects

that control the shrinkage of the cluster means or, equivalently, the correlation among

same-cluster observations. Other, more complex, random effects structures may also

be added using similar constructions.

6 Simulation studies

In this section, we compare the performance of the joint analysis procedure with the

two-stage procedure through simulation studies. We examine the Bernoulli model

with probit link when the functional exposure model is single-level, as in Section 2,

and multilevel, as in Section 4.

The outcome data was simulated from a Bernoulli/probit model with linear pre-

dictor Φ−1(pi) = β0 +
∫ 1

0
Xi(t)β(t) dt + ziγ, for i = 1, . . . , n, where n = 1000 is

the number of subjects. We used the functional predictor Xi(t) = ξiψ1(t), where

ξi ∼ N(0, λ1) and ψ1(t) ≡ 1, evaluated at M = 15 equidistant time points in [0, 1].

We set β0 = 1, γ = 1 and a constant functional parameter β(t) ≡ β. The zis are

taken equally spaced between [−1, 1] with z1 = −1 and zn = 1. Note that the linear

predictor can be re-written as Φ−1(pi) = β0 + βξi + ziγ. In the following subsections

we conduct simulations with different choices of β and type of functional exposure

model. All models are fit using joint Bayesian inference via MCMC posterior simula-

tions and a two-stage approach using either BLUP or numerical integration [23]. We

simulated N = 100 data sets from each model.
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6.1 Single-level functional exposure model

Consider the case when for each subject, i, instead of observing Xi(t), one observes

the noisy predictors Wi(t), where Wi(t) = Xi(t) + εi(t), i = 1, . . . , n and εi(tm) ∼

Normal(0, σ2
ε ) is the measurement error. We set λ1 = 1, consider three values of the

signal β = 0.5, 1.0, 1.5 and three different magnitudes of noise σε = 0 (no noise),

σε = 1 (moderate) and σε = 3 (very large). Figure 8 shows the boxplots of the

parameter estimates β̂ and γ̂. The top and bottom panels provide results for the

joint Bayesian analysis and the two-stage analysis with BLUP, respectively. The left

and middle panels display the parameter estimates for different magnitudes of noise

and the right panel presents the bias of the estimates of β for several true values

of β. For the two-stage procedure when the amount of noise, σε, or the absolute

value of the true parameter, |β|, increases, the bias increases. These results confirm

our theoretical discussion in Section 2 and indicate that bias is a problem both for

the parameters of the functional variables measured with error and of the perfectly

observed covariates. Moreover, bias increases when the true functional effect increases

as well as when measurement error increases.

For the case σε = 3, Table 1 displays the root mean squared error (RMSE) and

coverage probability of confidence intervals for β and γ. The two-stage approach with

scores estimated by numerical integration has a much higher RMSE than the other

two methods, which have a practically equal RMSE. However, it would be misleading

to simply compare the RMSE for the joint Bayesian inference and the two-stage

procedure based on BLUP estimation. Indeed, the coverage probability for the latter

procedure is far from the nominal level and can even drop to zero. This is an example

of good RMSE obtained by a combination of two wrong reasons: the point estimate

is biased and the variance is underestimated.
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Method β β̂ γ̂

RMSE 80%CI cov. 50%CI cov. RMSE 80%CI cov. 50%CI cov.

0.5 0.20 0.00 0.00 0.10 0.79 0.46

Numerical 1.0 0.46 0.00 0.00 0.17 0.41 0.09

integration 1.5 0.81 0.00 0.00 0.27 0.03 0.00

0.5 0.06 0.84 0.56 0.10 0.79 0.46

BLUP 1.0 0.16 0.26 0.11 0.17 0.41 0.09

1.5 0.40 0.01 0.00 0.27 0.03 0.00

0.5 0.07 0.85 0.58 0.11 0.77 0.54

Bayesian 1.0 0.14 0.83 0.48 0.14 0.80 0.52

1.5 0.39 0.85 0.51 0.23 0.86 0.49

Table 1: The comparison between the two-stage estimates (with numerical integration
or BLUP) and Bayesian estimates of β and γ with respect to root mean squared error
(RMSE), and coverage probability of the 80% and 50% confidence intervals (80%CI
cov. and 50%CI cov.) for σε = 3.

6.2 Multilevel functional exposure model

Consider now the situation when the predictors are measured through a hierarchical

functional design, as in SHHS. To mimic the design of the SHHS, we assume J = 2

visits per subject and that the observed noisy predictors Wij(t) are generated from

the model Wij(t) = Xi(t) + Uij(t) + εij(t), for each subject i = 1, . . . , n and visit j =

1, . . . , J , where εij(t) ∼ Normal(0, σ2
ε ) and Uij(t) = ζijψ2(t) with ζij ∼ Normal(0, λ2),

ψ2(t) ≡ 1. We used various choices of λ1, λ2 and σ2
ε , and compared the two-stage

analysis with the scores estimated by BLUP with a joint Bayesian analysis. As in

the single-level case, the bias depends on the factor 1 + β2Σi and the only technical

difference is the calculation of Σi. Thus, we limit our analyses to the case β = 1 and

examine the effects of the other factors that may influence estimation.

Figure 2 presents the boxplots of the estimates of β using the joint Bayesian

analysis (top panels) and the two-stage method with BLUP estimation of scores

(bottom panels). The left panels correspond to λ1 = 1, λ2 = 1 and three values of σε,
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0.5, 1 and 3. The joint Bayesian inference produces unbiased estimates, while the two-

stage procedure produces biased estimates with the bias increasing only slightly with

the measurement error variance. This confirms our theoretical results that indicated

that, typically, in the hierarchical setting the noise magnitude is not the main source

of bias. The middle and right panels display results when the measurement error

variance is fixed, σε = 1. The middle panels show results for the case when the

between-subject variance is small, λ1 = 0.1, and three values of the within-subject

variance, λ2 = 0.1, 0.4 and 0.8. The right panels show results for the case when

the between-subject variance is large, λ1 = 3, and three values of the within-subject

variance, λ2 = 1, 3 and 5. These results confirm our theoretical analyses in Section

4. Indeed, bias is small when the between-subject variability, λ1, even when the

within subject variability, λ2, is much larger relative to λ1. When λ1 is large then

bias is much larger and increases with λ2. In contrast, the joint Bayesian analysis

produces unbiased estimators with variability increasing with λ2. The RMSE and

coverage probability results were similar to the ones for the single-level case. We have

also obtained similar results for γ. While these results are not reported here they are

available upon request and can be reproduced using the attached simulation software.

In spite of the obvious advantages of the joint Bayesian analysis, the message is

more nuanced than simply recommending this method. In practice, the two-stage

method with BLUP estimation of scores is a robust alternative that often produces

similar results to the joint analysis with less computational effort. Our recommenda-

tion is to apply both methods and compare their results. We also provided insight

into why and when inferential differences may be observed, and, especially, how to

address such differences.
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7 The analysis of sleep data from the SHHS

We now apply our proposed methods to the SHHS data. We considered 3, 201 subjects

with complete baseline and visit 2 data with sleep duration that exceeds 4 hours at

both visits and we analyzed data for the first 4 hours of sleep. We focus on the

association between hypertension (HTN) and sleep EEG δ-power spectrum. Complete

descriptions of the SHHS data set and of this functional regression problem can be

found in [5, 7]. We provide here a short summary.

A quasi-continuous EEG signal was recorded during sleep for each subject at two

visits, roughly 5 years apart. This signal was processed using the Discrete Fourier

Transform (DFT). More precisely, if x0, . . . , xN−1 are the N measurements from a

raw EEG signal then the DFT is Fx,k =
∑N−1

n=0 xne
−2πink/N , k = 0, . . . , N − 1, where

i =
√
−1. If W denotes a range of frequencies, then the power of the signal in

that frequency range is defined as PW =
∑

k∈W F 2
x,k. Four frequency bands were of

particular interest: 1) δ [0.8-4.0Hz]; 2) θ [4.1-8.0Hz]; 3) α [8.1-13.0Hz]; 4) β [13.1-

20.0Hz]. These bands are standard representations of low (δ) to high (β) frequency

neuronal activity. The normalized power in the δ band is NPδ = Pδ/(Pδ+Pθ+Pα+Pβ).

Because of the nonstationary nature of the EEG signal the DTF and normalization

are applied in adjacent 30 second intervals resulting in the function of time t →

NPδ(t), where t indicates the time corresponding to a particular 30 second interval.

To illustrate this, the dots in Figure 3 are the pairs {t,NPδ(t)} while the solid lines

represent the estimated mean function using penalized splines. Our goal is to regress

HTN on the subject-specific functional characteristics that do not depend on random

or visit-specific fluctuations.

The first step was to subtract from each observed normalized function the corre-

sponding visit-specific population average. Following notations in Section 4.2, Wij(t)
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denotes these “centered” functional data for subject i at visit j during the tth 30-

second interval. We used model (12) as the exposure model where the subject-level

function,
∑K

k=1 ξikψ
(1)
k (t), is the actual functional predictor used for HTN.

To obtain the subject- and visit-level eigenfunctions and eigenvalues we used the

MFPCA methodology introduced by [7] and summarized in section 4.1. Table 2

provides the estimated eigenvalues at both levels indicating that Level 1 variability,

associated with subject-level variability, is practically explained by the first three

dimensions. For example, the first eigenvalue explains 80.6% of the variation, while

the second and third eigenvalues explain 7.7% and 3.7% of variation, respectively.

Together, they explain more than 91% of the subject level variation. Figure 4 provides

the graphical representation of subject-level variability. The top-left plot displays

the average over all subjects and visits as well as the visit specific averages of the

normalized sleep δ-power. The other three panels display the first three subject-level

eigenfunctions. The first eigenfunction is positive and roughly constant, indicating

that subjects with positive scores on this component will tend to get a consistently

larger proportion of sleep EEG δ-power than the population average.

Table 2 indicates that there are more directions of variation in the Level 2 func-

tional space, associated with visit deviations from the subject-specific means. Indeed,

90% of the variability is explained by the first 14 principal components with 50% of the

variability being explained by the first 4 components. The proportion of variability

explained by subject-level functional clustering was ρ̂W = 0.213 (95% confidence in-

terval: 0.210, 0.236), i.e, 21.3% of variability in the sleep EEG δ-power is attributable

to the subject-level variability.

We considered the following model logit{P (Yi = 1)} = β0 +
∑K

k=1 βk ξik + ZT
i ,

where Yi is the HTN indicator variable, K = 3, ξik is the score of subject i on the kth

subject specific eigenfunction, ψ
(1)
k (t), and Zi is a vector of other covariates. Table 3

29

Hosted by The Berkeley Electronic Press



Level 1 eigenvalues

Component 1 2 3

eigenvalue (×10−3) 13.00 1.24 0.55

% var 80.59 7.68 3.38

cumm. % var 80.59 88.27 91.66

Level 2 eigenvalues

Component 1 2 3 4 5 6 7

eigenvalue (×10−3) 12.98 7.60 7.46 6.45 5.70 4.47 3.07

% var 21.84 12.79 12.55 10.85 9.58 7.52 5.17

cumm. % var 21.84 34.63 47.17 58.02 67.61 75.13 80.30

Table 2: Estimated eigenvalues on both levels for SHHS data. We showed the first 3
components for level 1 (subject level), and 7 components for level 2.

provides results for two models, one without confounding adjustment (labeled Model

1) and one with confounding adjustment (labeled Model 2). The confounders in Model

2 are sex, smoking status (with three categories: never smokers, former smokers, and

current smokers), age, body mass index (BMI) and respiratory disturbance index

(RDI). Each model was fitted using a two-stage analysis with BLUP estimates of

scores from the exposure model and a joint Bayesian analysis.

Using a two-stage analysis, both models indicated that the first principal compo-

nent score is strongly and negatively associated with hypertension. The magnitude of

association varies with the amount of confounding adjustment. For example, Model

1 estimates that a subject with one unit increase in the first principal component has

e−1.58 = 0.204 (p value: < 0.001) times the odds of HTN. Considering the scale of the

principal component scores (the first principal component scores have mean zero and

standard deviation 0.11), standardized coefficients would be easier to interpret. After

standardizing, one standard deviation increase in the first principal component score

is associated with an odds ratio e−0.205 = 0.815 (p value: < 0.001). Model 2, which

adjusts for all the confounders, estimated an odds ratio of e−0.86 = 0.423 per unit in-

crease in the first principal component score, or an odds ratio e−0.11 = 0.895 per one
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standard deviation increase in the first principal component score. The second and

third principal components were not found to be associated with hypertension. The

negative relationship between smoking and hypertension may seem counterintuitive.

However, in this study smokers are younger, have a lower body mass index and many

other smokers with severe disease were not included in the study [35].

The point estimators and scientific findings are similar for the two methods, while

the joint Bayesian analysis produces wider confidence intervals. Given the results

in this paper, these results are easy to explain. As in our simulation example in

Section 6.2, the between-subject variability is relatively small and bias is minimal

in spite of the much larger within-subject variability. However, the joint Bayesian

analysis correctly incorporates the variability that the two-stage procedure ignores

and produces wider confidence intervals.

It is important to note that the joint Bayesian analysis is simple, robust and

requires only minimal tunning. This is possible because of our MFPCA method,

which produces a parsimonious decomposition of the functional variability using or-

thonormal bases. The effect of using orthonormal bases is to reduce the posterior

correlation of corresponding parameters, which leads to excellent mixing properties

and stable inference. For example, Figure 5 displays chains for regression coefficients

of the principal component scores for Model 1 and the corresponding autocorrelation

functions. The lack of correlation and fast convergence to the target distribution is

very encouraging. Thus, we recommend the joint Bayesian analysis as a practical,

not only theoretically appealing, approach to inference in this context.

8 Discussion

The methodology introduced in this paper was motivated by many current studies

where exposure or covariates are functional data collected at multiple time points.
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Two-stage analysis Joint analysis

Model 1 Model 2 Model 1 Model 2

score 1 -1.58 (0.28)* -0.86 (0.30)* -1.56 (0.36)* -0.77 (0.35)*

score 2 0.66 (0.97) -0.26 (1.04) 0.54 (1.74) -2.94 (1.35)*

score 3 1.74 (1.56) -0.26 (1.67) 3.82 (2.03) -0.20 (3.39)

sex 0.10 (0.08) 0.12 (0.08)

smk:former -0.19 (0.08)* -0.19 (0.08)*

smk:current -0.11 (0.13) -0.10 (0.13)

age 0.06 (0.00)* 0.07 (0.00)*

BMI 0.06 (0.01)* 0.06 (0.01)*

RDI 0.01 (0.00)* 0.01 (0.00)*

Table 3: Models for association between hypertension and sleep EEG δ-power.
Smoking status has three categories: never smokers (reference), former smokers
(smk:former) and current smokers (smk.current). For the variable sex, female is
the reference group and an asterisks indicates significance at level 0.05.

The SHHS is just one example of such studies. The GMFLM methodology provides

a self contained set of statistical tools that is robust, fast and reasonable for such

studies. These properties are due to: 1) the connection between GMFLMs and mixed

effects models; 2) the parsimonious decomposition of functional variability in principal

directions of variation; 3) the modular way mixed effects models can incorporate

desirable generalizations; and 4) the good properties of Bayesian posterior simulations

due to the orthogonality of the directions of variation.

The methods described in this paper have a few limitations. First, they require

a large initial investment in developing and understanding the multilevel functional

structure. Second, they require many choices including number and type of basis

functions, distribution of random effects, method of inference, etc. The choices we

made are reasonable, but other choices may be more appropriate in other applications.

Third, the computational problems may seem daunting, especially when we propose

a joint Bayesian analysis of a data set with thousands of subjects, multiple visits and

thousands of random effects. However, we do not think that this is a real problem,
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and to address this issue we posted the software we developed for our simulations in

Section 6 at www.biostat.jhsph.edu/~ccrainic/webpage/software/GFR.zip.

Appendix

Proof of Theorem 1. In a balanced design, the Mi-dimensional vector ψ(1)
ij,k does not depend

on j. Thus, the MiJi-dimensional vector corresponding to the level 1 eigenfunction ψ
(1)
k can be

written as ψ(i)
ik = 1Ji

⊗ ψ(1)
i1,k, where 1Ji

is the Ji-dimensional vector of ones. It follows that the

matrix Ψ(1)
ij = Ψ(1)

i1 for all 1 ≤ j ≤ Ji. Moreover, Bi,jj′ = Ψ(1)
i1 Λ(1)Ψ(1)t

i1 = KX for j 6= j′ and

Bi,jj = σ2
εIMi +Ψ(2)

i1 Λ(2)Ψ(2)t
i1 +Ψ(1)

i1 Λ(1)Ψ(1)t
i1 = σ2

εIMi +KU
T +KX . For simplicity, the dependence

of KU
T and KX on i has been suppressed. Thus, ΣWi

= 1Ji×Ji
⊗KX

T + IJi
⊗ (σ2

εIMi
+KU

T ). It is
enough to show that ΣWi

Σ−1
Wi

= Σ−1
Wi

ΣWi
= IMiJi

, where Σ−1
Wi

is given in Theorem 1. We only
prove that ΣWi

Σ−1
Wi

= IMiJi
since the proof of the second equality is analogous.

For simplicity of presentation, denote by D = σ2
εIMi

+ KU
T and C = KX . Also, ΣWi

=
1Ji×Ji

⊗ C + IJi
⊗D. Thus, ΣWi

Σ−1
Wi

is equal to

IMiJi + 1Ji×Ji ⊗ {CD−1 − JiCD
−1C (D + JiC)−1 − C(D + JiC)−1}.

It is enough to show that CD−1−JiCD
−1C (D+JiC)−1−C(D+JiC)−1 = 0. This equality holds

because JiCD
−1C (D + JiC)−1 = CD−1(D + JiC −D) (D + JiC)−1 = CD−1 − C(D + JiC)−1.

Proof of Theorem 2. We use the same notations as in Theorem 1. For balanced designs
ψ

(1)
ij,k = ψ

(1)
i1,k for 1 ≤ j ≤ Ji. Hence, Ψ(1)

i = 1Ji ⊗ Ψ(1)
i1 as ψ(i)

ik = 1Ji ⊗ ψ
(1)
i1,k and Ψ(1)

i1 =

(ψ(1)
i1,1, . . . ,ψ

(1)
i1,K). Thus, m(W i) is

= Λ(1)
{
1T

Ji
⊗Ψ(1)t

i1

} [
IJi ⊗D−1 − 1Ji×Ji ⊗

{
D−1C(D + JiC)−1

}]
W i

= Λ(1)
[
1T

Ji
⊗ {Ψ(1)t

i1 D−1} − Ji1T
Ji
⊗ {Ψ(1)t

i1 D−1C(D + JiC)−1}
]
W i

= Λ(1)
[
1T

Ji
⊗ {Ψ(1)t

i1 (D + JiC)−1}
]
W i

= Λ(1) ∑Ji

j=1{Ψ
(1)t
i1 (D + JiC)−1}W ij

= Λ(1)Ψ(1)t
i1 (J−1

i D + C)−1W̄ i,

where W̄ i =
∑Ji

j=1W ij/Ji is the mean vector of W ij ’s. We used the fact that Ψ(1)t
i1 (J−1

i D+C)−1

does not vary with j. Using a similar technique, Σi is

= Λ(1) −Λ(1){1T
Ji
⊗Ψ(1)t

i1 } [IJi ⊗D−1 − 1Ji×Ji ⊗ {D−1C(D + JiC)−1}] {1Ji ⊗Ψ(1)
i1 }Λ

(1)

= Λ(1) −Λ(1)
[
1T

Ji
⊗ {Ψ(1)t

i1 (D + JiC)−1}
] {

1Ji
⊗Ψ(1)

i1

}
Λ(1)

= Λ(1) − JiΛ(1)Ψ(1)t
i1 (D + JiC)−1Ψ(1)

i1 Λ(1).
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Figure 1: Joint Bayesian analysis (upper panel) versus two-stage analysis with BLUP
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Figure 3: The EEG signal series for three subjects at both visits. The horizonal axis
is time in hours, and the vertical axis is the percentage of delta power sleep in 30
seconds windows. Each subject was measured at both visit 1 and visit 2. The solid
lines are smooth estimates of the mean functions.
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Figure 4: Characteristics of normalized sleep EEG δ-power. Top-left panel: overall
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three panels: First three eigenvalues of the subject specific deviations from the visit
mean function.
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