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Abstract

Successful automated diagnoses of attention deficit hyperactive disorder (ADHD)

using imaging and functional biomarkers would have fundamental consequences

on the public health impact of the disease. In this work, we show results on the

predictability of ADHD using imaging biomarkers and discuss the scientific and

diagnostic impacts of the research. We created a prediction model using the land-

mark ADHD 200 data set focusing on resting state functional connectivity (rs-fc)

and structural brain imaging. We predicted ADHD status and subtype, obtained by

behavioral examination, using imaging data, intelligence quotients and other co-

variates. The novel contributions of this manuscript include a thorough exploration

of prediction and image feature extraction methodology on this form of data, in-

cluding the use of singular value decompositions, CUR decompositions, random

forest, gradient boosting, bagging, voxel-based morphometry and support vector

machines as well as important insights into the value, and potentially lack thereof,

of imaging biomarkers of disease. The key results include the CUR-based decom-

position of the rs-fc-fMRI along with gradient boosting and the prediction algorithm

based on a motor network parcellation and random forest algorithm. We conjecture

that the CUR decomposition is largely diagnosing common population directions of

head motion. Of note, a byproduct of this research is a potential automated method

for detecting subtle in-scanner motion. The final prediction algorithm, a weighted

combination of several algorithms, had an external test set specificity of 94% with

sensitivity of 21%. The most promising imaging biomarker was a correlation graph

from a motor network parcellation. In summary, we have undertaken a large-scale

statistical exploratory prediction exercise on the unique ADHD 200 data set. The

exercise produced several potential leads for future scientific exploration of the neu-

rological basis of ADHD.
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1 Introduction

Attention deficit hyperactive disorder (ADHD) is a highly prevalent psychiatric disorder

affecting millions of people. The core symptoms of excessive impulsive, hyperactive

and distractible behavior can have a pervasive impact on functioning across multiple

settings with documented long term consequences including high rates of academic

underachievement, unemployment, substance abuse and criminal activity. ADHD di-

agnosis currently depends on ratings of behavioral symptoms, which can be unreliable.

Better understanding of the physiological, and especially neurological, underpinnings

of the behavioral sequelae would be of great use from medical, basic science and pol-

icy perspectives. Moreover, further understanding of the biological basis of the disease

would greatly demystify the substantial public uncertainty surrounding the disorder.

The ADHD 200 data set is a landmark study compiling over 1,000 functional and

structural scans including subjects with and without ADHD. As stated on the ADHD 200

website “Despite advances in understanding aspects of the etiology of some develop-

mental neuropsychiatric disorders, translating these insights into clinical practice has

remained daunting. Significant obstacles include the lack of reliable and valid biomark-

ers and an insufficient understanding of the underlying pathophysiology. We believe

that a community-wide effort focused on advancing functional and structural imaging

examinations of the developing brain will accelerate the rate at which neuroscience can

inform clinical practice.” Hence, we engaged in the creation of prediction algorithms us-

ing ADHD 200 data. Herein we present the insights obtained from the creation of the

3

Hosted by The Berkeley Electronic Press



final ensemble algorithm.

Caution in interpreting the results presented is warranted, as the work was per-

formed while competing in the ADHD 200 prediction competition with the aim of maxi-

mizing the competition points earned. The authors of the manuscript include the com-

petitors of the Johns Hopkins team and our collaborators who could not participate in

the competition by being members of a data contributing site (Mostofsky, Pekar, Joel

and Barber).

The final prediction algorithm presented in this paper had the best official score for

predicting the ADHD status of children in the withheld test data. Though we report

and discuss the competition results for the full algorithm, we focus on two specific

submodels of the final prediction model and evaluate these submodels via diagnostic

accuracy using training sample performance rather than external test set performance.

The two primary models of investigation employ feature extraction then ensemble

machine learning on the extracted features. The first feature is a voxel selection tech-

nique using the so-called CUR decomposition and rs-fMRI. The second evaluates rs-fc

regionally in a data-derived motor network mask.

2 Materials and Methods

2.1 Data

The ADHD consortium collected, compiled and released data from 776 subjects: 491

controls and 285 children diagnosed with ADHD (via standard behavioral symptoms)

with subdiagnosis classification of combined, hyperactive/impulsive and inattentive (Amer-

ican Psychiatric Association, 2000). Each had structural MPRAGE and blood oxygen
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level dependent (BOLD) functional MRI scans. For numerous subjects, the data were

collected over the course of several visits or a few scanning sessions during a single

visit. In such cases, features were extracted from each scan separately and averaged

within subjects across visits and scanning sessions before inputing into machine learn-

ing algorithms. In addition, data from 194 subjects were provided as the testing set to

validate competition entries externally. Diagnosis data for many of these subjects has

since been released. However, since the selection process of the 194 test set subjects

is not known, all measures of algorithmic performance are interpreted with respect to

the training sample using data splitting to account for over-fitting.

All models included demographic variables as predictors. These included age, IQ

(described further below), gender and handedness. In addition, data quality control

metrics and missing data processes were also investigated. However, these were not

used in final algorithms. Available IQ measurement depended on data contributing site

and included the WISC IV (Wechsler and Corporation, 2004), WASI (Weschler, 1999),

WISCC-R, two subset WASI, two subset WISC or WAIS Block Design and Vocabulary.

The data then included verbal, performance and two variations of full scale IQ. Our IQ

measurement took the median of all available IQ measurements ignoring missingness;

we generically label this measurement IQ. All models also included data contributing

site, which is a proxy for many processes including technical (scanner, acquisition) and

site demographics.

The primary image processing pipeline used the 1,000 Functional Connectomes

(Biswal et al., 2010) processing scripts available on the NITRC website and briefly de-

scribed here (www.nitrc.org/projects/fcon_1000/). Anatomical images were de-obliqued,

reoriented and skull stripped. Functional scans were de-obliqued, reoriented, motion

corrected, skull stripped, smoothed (6 mm FWHM Gaussian filter), grand mean scaled,
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temporal band pass filtered, de-trended (linear and quadratic) and masked to exclude

the background voxels (i.e. voxels outside the brain). Functional scans were registered

to anatomical scans using FLIRT in FSL (Smith et al., 2004); the structural scans were

registered to the MNI 152 (Brett et al., 2004) 3mm T1 template brain using FLIRT and

the transformation was subsequently applied to the functional scans. A subset (roughly

50) of functional scans were manually checked for registration performance. Structural

scans were then segmented to obtain white matter and CSF masks. Nuisance re-

gression was performed on functional scans using motion, white matter grand mean

and CSF grand mean. In addition, data from the NeuroBureau’s Athena and Dartel

pipelines were used. All regional and seed summaries from the Athena pipeline were

investigated.

A five region parcellation of the motor cortex was used to create connectivity ma-

trices from the NITRC-processed rs-fMRI data. This segmentation was generated us-

ing scan-rescan resting state reliability data collected from 20 neurotypical adults and

reflects the general dorsomedial to ventrolateral organization of the motor homuncu-

lus (see Figure 1). This parcellation reflects the general organization of the motor

homunculus, where the dorsomedial parcel (DM, yellow) represents M1 resources in-

volved in control of the trunk/lower limbs, the dorsolateral parcel (DL, red) represent

M1 resources dedicated to upper limb control, while the ventrolateral region (VL, dark

blue) is involved in oro-motor function.

In addition, 264 reference seeds in MNI space (Power et al., 2011b) were used for

constructing connectivity matrices that broadly cover major functional regions of the

cerebral cortex and cerebellum (see Figure 2), as well as all of the Athena pipeline

seed and regional time courses.
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2.2 Methods

We used several methods - as many as 200 between four subteams - for prediction of

ADHD. The methods varied from those using only the covariate data to complex sta-

tistical algorithms utilizing the imaging data along with the covariates. We obtained

feature sets to be input into classification and prediction algorithms using data re-

duction methods such as singular value decomposition (SVD), CUR decomposition,

hypothesis testing and the 264 seed voxels chosen to represent functional regions.

Multiple imputation methods were used for the covariate data. Boosting methods (Fre-

und and Schapire, 1995; Ridgeway, 1999, 2006), bagging (Breiman, 1996), support

vector machines (SVM Cortes and Vapnik, 1995) and k-means clustering (MacQueen

et al., 1967) were used for prediction. We evaluated prediction methods using data

splitting where 184 randomly selected subjects were reserved as an internal test set.

Algorithms were evaluated by the variant of diagnostic accuracy used in the ADHD 200

competition. A correct classification of a typically developing subject or ADHD subtype

yielded one point; classifying a subject as ADHD, but incorrectly classifying subtype

yielded .5 points. We express total points as a percent of total possible points (which

is the sample size, one point per subject). We refer to this measure as “accuracy”,

however note the distinction from the standard definition of the overall percentage of

correct classifications.

The final algorithm was a majority vote of the top algorithm from four subteams.

Table 1 shows a brief description of the four methods used in the final prediction algo-

rithm. Briefly, Subteam 1 used random forests for prediction with the 10 (five choose

two) correlations of the mean rs-fMRI time courses extracted from the motor network

parcellation. Subteam 2 used a two step process. In the first step, the image features

were extracted by using online clustering and latent Dirichlet allocation (LDA) based
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topic models. Here each sample was considered to be one document (collection of

words) and the label of each measurement as a word in the vocabulary. K-means was

initially applied to the first ten samples to obtain pilot cluster centers; the clustering

structure over the whole dataset was then incrementally learned in a stochastic fash-

ion. The extracted image features were combined with the annotation covariates to

build predictors using a multi-class support vector machine (SVM). Subteam 3 used

a CUR decomposition on the functional scans along with GBM for prediction. Sub-

team 4 used pairwise connectivity among the 264 seed voxels, motion parameters

from the Athena pipeline along with PCA and machine learning algorithms in a two-

stage fashion, first predicting primary diagnosis (control or ADHD) and then predicting

the subtype among those classified as ADHD. Predictions from the four subteams were

combined by majority vote to generate the final ensemble prediction, with Subteam 3’s

prediction used as a tie breaker. The algorithm from Subteam 3 was chosen as the tie

breaker since Subteam 3’s algorithm had the highest internal test set accuracy.

As it performed well on our internal test data set, we elaborate on the CUR decom-

position. We identified the 20 voxels with the highest temporal variability for each sub-

ject. The axial and sagittal views of the voxels combined for all subjects are presented

in Figure 5. We computed a covariance map for these 20 voxels and, by vectorizing

the upper triangle of the covariance matrix, we extracted the covariance vector of the

voxels that demonstrated the highest subject-specific variability. Because the number

of voxel pairs is still large, we applied SVD decomposition to the full covariance ma-

trix to obtain 10 principal components used in the final model. We then fit generalized

boosting by combining these 10 principal components obtained from the imaging data

with the demographic variables (gender, age, handedness and combined IQ).

Resting state correlations between the motor network parcels provided the primary
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avenue of scientific exploration in the data. Therefore, we pursued a more standard

analysis of these correlations using multinomial logistic regression with disease status

(control, ADHD combined, ADHD inattentive) as the outcome. In addition, we fit a lo-

gistic regression model relating ADHD status (regardless of subtype) to rs correlations.

Both analyses investigated potential confounding relationships due to demographic fac-

tors such as age, data contributing site, etc.

2.3 Results

Table 2 shows basic demographic information for the sample including both withheld

and training data. The distribution of the diagnosis varied substantially by site. The

sample from Brown University was completely withheld. Training samples from two

sites, Pittsburgh and Washington University, were entirely comprised of controls. Sites

with more ADHD subjects tended to have a larger majority of males. Failure on any of

the quality control metrics varied substantially across sites, presumably due to different

data-release policies. Age distributions were similar across sites and ranged between

7 and 26 (years).

Figure 4 shows composite IQ measurements by data contributing site. A lower aver-

age composite IQ is present for ADHD subjects. The distribution of IQs was consistent

across sites, with the exception of Neuroimage, which only had the two subtest WASI

measurement for IQ for withheld patients.

With regard to the performance of the final submitted predictions, the internal data-

splitting measure of accuracy for each of the subteams was 75%, 75%, 78% and 72%

respectively. The competition test results can be found at the ADHD 200 web site. The

final algorithm test set performance is reported as 119 points (61%). The specificity

(control versus ADHD of any type) was reported as 94% with an associated sensitivity
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of 21%. Youden’s J statistic (sensitivity + specificity - 1) was then 15%. The conditional

subtype classification accuracy given a correct classification of ADHD was 80%.

We further elaborate on the performance of the model of subteams 1 and 3. The

internal test set accuracy for the random forest algorithm using only demographic in-

formation (age, IQ, gender, handedness, site) was 71%. Including the resting state

correlations from the motor cortex parcellation resulted in an estimated 75% accuracy.

For subteam 3, the two-stage generalized boosting method achieved 73% accuracy

when only demographic variables were used as input, but if the CUR imaging decom-

position results were included in the model, accuracy improved to 78%.

Table 3 summarizes the results of the mean correlations of pairwise M1 regions by

disease subtype and the results of significance tests. Strong inter-subject averages of

correlations were found between the posterior lateral and anterior lateral parcels (.450)

as well as the ventrolateral and posterior lateral parcels (.344). These correlations

showed little evidence of differing by subtype. In contrast, the correlations between

dorsomedial and dorsolateral parcels appeared to differ by subtype (P-values of <.01,

.01 and .06 for the three models investigated respectively), with the lowest correlation

among the ADHD combined group.

Given that multiple motor abnormalities have been observed in children with ADHD,

further exploration of the relationship of intra-motor correlations with disease status is

of interest. We used logistic regression where we ignore the subtype of ADHD, consid-

ering only 0 (typically developing) and 1 (ADHD). Each of our 10 models included the

four demographic variables along with one pair of motor cortex clusters as predictors

in the logistic regression. First, we found that for most cases, data collection site did

not change the direction of the relationship. We found that increased correlation be-

tween some pairs of clusters implied significantly lower odds of ADHD, while increased
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correlation between a few other pairs of motor clusters implied higher (not statistically

significant) odds of ADHD.

3 Discussion

The ADHD 200 consortium and competition was a remarkable achievement, encour-

aging scientists from different backgrounds to work collaboratively and competitively

on one of the largest collections of (f)MRI data with the goal of advancing our under-

standing of an important disorder. Our team used hundreds of statistical approaches to

predict disease status, and our final ensemble prediction algorithm demonstrated low

sensitivity and high specificity. Admittedly, these measures were tuned by the competi-

tion rules, which favored methods that identified typically developing children correctly.

Nonetheless, analysis of the results suggest that the imaging data does not provide a

great deal of diagnostic benefit, despite several interesting directions of scientific in-

quiry relating imaging data to disease status being apparent. We elaborate on these

points below.

The amount of data provided by the imaging components was very large in the

context of statistical prediction. In such cases, if the data has strongly apparent features

that are good predictors of outcomes, effective learning procedures can be developed

for classification. However, in this case, the amount of data was large enough and the

signal weak enough that models were prone to so-called overfitting. In other words, if

the imaging predictors are used fully in the model, then predictions may be distorted

by the sheer amount of non-informative data.

Gold standard diagnoses were governed by behavioral measures, which them-

selves are measured with error and are subject to other idiosyncratic biases and vari-
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ance. Thus, the ultimate goal of the imaging data is to uncover a more accurate pheno-

type. Perfect agreement with behavioral diagnosis in this data set or others was neither

possible nor desirable.

In addition, this data set contained several important sources of variation, some ad-

dressable and others not, that influence our ability to develop meaningful generalizable

scientific associations between biomarkers and disease status. A partial list would in-

clude: site-specific differences in behavioral measurement, imaging data acquisition,

basic processing, scanner quality, technicians and protocols, subject populations from

data contributing site including protocols for subject recruitment, policies for contribut-

ing data to the consortium, potentially informative missing data processes, as well as

other unmeasured confounding and mediating variables. Because of these sources

of variation and bias, even weak, non-prognostic associations from this data set may

prove invaluable, and conversely, the possibility of identifying spurious associations

is quite high. Including site in the regression models improved model performance,

suggesting that biologically valueless predictors were, in fact, important.

From our investigations, two approaches used for prediction were especially inter-

esting. One approach appeared to automatically detect residual motion effects that

was common across subjects and appeared to differ across diagnostic groups. This

raises questions about the residual effect of motion on the statistical analysis and inter-

pretation of fMRI images even after compensatory spatial realignment and regression

of motion estimates from the data have been performed. We also observed that a

motor network parcellation was a good predictor of disease status.

We pursued the use of the motor parcellation to predict ADHD status based on

extensive evidence suggesting that, in parallel to their age-inappropriate impulse con-

trol, children with ADHD also demonstrate age inappropriate motor control. Denckla
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and Rudel (1978) observed that children with ADHD having no learning disabilities

show robust patterns of motor overflow consistent with their younger, typically devel-

oping counterparts. Motor overflow is defined as unintentional movements that ac-

company voluntary activity. In a cross-sectional study, Cole et al. (2008) also showed

that, unlike typically developing boys, older boys with ADHD did not show a reduction

in motor overflow compared with younger boys with ADHD. Using more quantitative

methods involving analysis of video and electrogoniometer data, MacNeil et al. (2011)

showed that children with ADHD exhibit more overflow during a finger tapping task

compared to age-matched controls. This sustained motor overflow demonstrated by

children with ADHD is thought to reflect immaturity in neural systems involved in un-

consciously inhibiting extraneous movement, neural systems that may also be critical

for development of behavioral control. Gilbert et al. (2011) demonstrated that transcra-

nial magnetic stimulation (TMS)-evoked short interval cortical inhibition (SICI), of the

motor cortex was inversely correlated with severity of ADHD; SICI, which may play a

role in refining cortical signals involved in selecting motor responses, was reduced by

40% in children with ADHD. In addition, motor skills were evaluated using the Physical

and Neurological Examination for Subtle Signs (PANESS, Denckla (1985)) , and mean

PANESS score was significantly lower for children with ADHD. The combined results

from these studies suggests that ADHD may be associated with abnormalities in the

connectivity of the motor network.

Given the extensive discussion in literature on the motor control impairment in chil-

dren with ADHD, we used the motor cortex parcellation as a predictor of ADHD status.

Figure 6 shows the correlations between the dorsomedial and dorsolateral M1 parcels

by disease subtype. We observe that the correlation structure is significantly different

for the three disease groups; with combined type ADHD showing the lowest correlation
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between the DL and DM parcels. However, for all of the reasons outlined above, these

connectivity differences may not be very useful for prediction of the ADHD status for an

individual subject.

Finally, Table 2 shows the percentage of subjects by site that failed quality assess-

ment tests as given by the organizers of the competition. There is clear variation in

quality via either acquisition or choices in what data were shared with the consor-

tium. As argued by Power et al. (2011a) motion artifacts can have significant effects

on correlation-based analyses of resting state fMRI data - even if registration and re-

gression of the motion parameters are performed as a part of preprocessing. This

lends credence to the idea that current motion reduction techniques, while removing

most of the visible motion, do not capture subtle residual effects of in-scanner motion.

Figure 5 shows the voxels identified by the CUR decomposition. (These voxels are a

combination map across all subjects.) We observed that the voxels are mostly located

in peripheral and CSF regions, suggesting that the CUR decomposition is identifying

residual effects of motion. A more thorough discussion of the subject may show the

significance of the findings in terms of further reduction of motion-induced artifacts.

In summary, our final prediction models do not provide immediately translatable

clinical prediction tools. However, with the collective work of the teams from the com-

petition, numerous interesting directions of scientific inquiry have been uncovered for

obtaining a better understanding of the biological basis for this important disorder.
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A Tables

Subteam Covariates Processing Methods

1 All IQ, age, gender, NITRC motor network parcellation,

handedness, random forest

site random forest for prediction.

2 All IQ, age, NITRC feature extraction,

gender, handedness, clustering, LDA,

site multi-class SVM.

3 Composite IQ, age, NITRC CUR decomposition

gender, handedness, feature extraction,

site gradient boosting.

4 Composite IQ, age, gender, NITRC 264 seed voxels,

handedness, Site NB Athena motion parameters, PCA,

machine learning algorithms.

Table 1: Overview of final prediction methods used by each subteam. Composite

IQ uses the average of all available IQs. All IQ suggests the use of all available IQ

measurements. NITRC for image processing implies the use of the 1,000 Functional

Connectome processing scripts. NB refers to the NeuroBureau pipelines.
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Overall Peking Brown KKI NI NYU Oregon Pitt WashU

N 973 245 26 94 73 263 113 98 61

Percentage by subtype

Control 50 47 0 65 32 38 37 91 100

Comb. 17 12 0 17 25 29 20 0 0

Hyper./Imp. 1 0 0 1 8 1 2 0 0

Inatt. 11 20 0 5 1 17 11 0 0

Withheld 20 21 100 12 34 16 30 9 0

Percentage by gender

Female 38 29 65 40 41 35 46 46 46

Male 62 71 35 60 59 65 54 54 54

Percentage by quality control

% QC Fail 22 1 4 6 12 34 28 32 72

Age

Min 7.09 8.08 8.50 8.02 11.05 7.17 7.17 10.11 7.09

Median 11.42 11.75 14.83 10.10 17.78 11.11 8.75 14.87 10.35

Mean 12.43 11.70 14.54 10.22 17.64 11.45 9.10 15.08 11.47

Max 26.31 17.33 17.87 12.99 26.31 17.96 12.50 20.45 21.83

Sd 3.33 1.96 2.54 1.34 3.05 2.91 1.25 2.78 3.88

Table 2: Basic demographics by site. Acronyms are: Comb. = ADHD combined type,

Hyper./Imp. = ADHD hyperactive impulsive, Inatt. = ADHD inattentive, % QC fail =

percentage where any imaging quality control flag is listed as failing.
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VL,DM VL,PL VL,AL VL,DL DM,PL DM,AL DM,DL PL,AL PL,DL AL,DL

Overall

Mean 0.115 0.344 0.183 0.277 -0.002 0.272 0.146 0.450 0.229 0.187

SD 0.206 0.184 0.204 0.191 0.189 0.207 0.201 0.182 0.205 0.187

Controls

Mean 0.134 0.349 0.192 0.284 -0.007 0.279 0.168 0.456 0.241 0.179

SD 0.207 0.182 0.203 0.188 0.183 0.205 0.200 0.174 0.201 0.189

ADHD Combined

Mean 0.084 0.349 0.192 0.281 0.008 0.289 0.084 0.469 0.210 0.171

SD 0.209 0.173 0.198 0.185 0.196 0.201 0.194 0.174 0.201 0.198

ADHD Inattentive

Mean 0.103 0.317 0.185 0.249 -0.015 0.266 0.120 0.449 0.239 0.175

SD 0.210 0.183 0.191 0.203 0.187 0.213 0.199 0.187 0.201 0.148

P-Values testing ADHD status by disease subtype

Model 1 0.023 0.237 0.942 0.212 0.555 0.655 0.000 0.613 0.235 0.884

Model 2 0.440 0.276 0.801 0.241 0.526 0.621 0.012 0.625 0.705 0.925

Model 3 0.418 0.110 0.883 0.657 0.472 0.921 0.057 0.485 0.280 0.701

Table 3: Average fMRI resting state correlations between motor network M1 parcels

across subjects classified by disease status subtypes. AL = anterior lateral, DL =

dorsolateral, DM = dorsomedial, PL = posterior lateral, VL = ventrolateral. P-values

correspond to likelihood ratio tests of multinomial models of the resting state correla-

tion. Model 1 included no covariates, model 2 included gender, age, handedness and

IQ, model 3 included model 2 variables plus an indicator for data collecting site.
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B Figures

Figure 1: Motor cortex parcellation.
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Figure 2: 264 seed voxels.
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Figure 3: Demographic Information.
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Figure 4: Dot plot of composite intelligence quotients (average of all available IQ mea-

surements per subject) by data contributing site color coded by disease subtype.
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Figure 5: Voxels chosen by CUR decomposition
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Figure 6: Plot of correlations between the dorsomedial and dorsolateral M1 parcels by

disease subtype. A reference line is drawn at zero while the inter-subject means (small

horizontal line) and confidence intervals (small vertical lines) are given to the left of

each group.
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