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Network-Aware Flexibility Requests for
Distribution-Level Flexibility Markets

Eléa Prat, Irena Dukovska, Rahul Nellikkath, Malte Thoma, Lars Herre, Spyros Chatzivasileiadis

Abstract—This paper proposes a method to design network-
aware flexibility requests for local flexibility markets. These
markets are becoming increasingly important for distribution
system operators (DSOs) to ensure grid safety while minimizing
costs and public opposition to new network investments. Despite
extended recent literature on local flexibility markets, little atten-
tion has been paid to quantifying the flexibility required at each
location, considering physical network constraints (e.g. line and
voltage limits). The method introduced uses a chance-constrained
optimization model and a LinDistFlow approximation to consider
both physical network constraints and uncertainty caused by
renewable production or demand fluctuations. Unlike other
methods, it avoids sharing sensitive grid data with the market
operator. We compare our approach against a stochastic market-
clearing mechanism which serves as a benchmark, and we derive
analytical conditions for the performance of our method to de-
termine flexibility requests. We show on two case studies that our
method outperforms the stochastic market-clearing benchmark
in terms of computation time while achieving comparable social
welfare and costs for the DSOs. One of the case studies is
conducted on an actual German distribution grid, showing that
the proposed method can scale well to real-sized networks.

Index Terms—flexibility request, local flexibility market,
network-aware reserve procurement

I. INTRODUCTION

Local flexibility markets can help defer or even avoid
significant distribution network investments by tapping into
the available flexibility of local resources (e.g. home batteries,
heating and cooling systems). Considering the often strong
public opposition against new network infrastructure, local
flexibility markets are expected to play a significant role in the
efforts of the distribution system operators (DSOs) to maintain
a safe and reliable grid operation. In that respect, the DSO
is expected to be one of the key flexibility market players,
acting as a flexibility buyer, in order to ensure grid security in
case of contingencies and generation uncertainties, similar to
the role of transmission system operators in the transmission-
level ancillary services market. Here, we define flexibility
as a controlled real-time power variation from a pre-defined
setpoint. Flexibility can be traded in energy markets, which
settle activation, or in capacity markets, with a guarantee on
availability. In this paper, we consider flexibility trading in
capacity markets.

The concept of local flexibility markets at the distribution
level has emerged recently [1], and is investigated in several
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EU projects1, such as INTERRFACE, SmartNet, and FLEX-
GRID, as well as national projects such as EcoGrid 2.0 in Den-
mark. A large body of work has recently focused on local flexi-
bility markets, including bidding strategies for flexibility offers
[2], and efforts to account for network constraints [3], [4],
uncertainty [5], and co-optimization of energy and reserves [6].

Considering the continuously increasing electricity
demand, bidirectional flows, and reduced investments in
network infrastructure, the distribution network can no longer
be considered a copperplate [7]. As a result, local flexibility
markets are expected to implicitly or explicitly consider
the network constraints in the market clearing (e.g. [3]), so
that the procured flexibility helps resolve and not further
aggravate existing network problems. Here, we qualify as
“network-aware” any approach in which the distribution
network is not considered to be a copperplate.

For network-aware local flexibility markets, the DSO has
two options: information sharing or privacy preserving. The
first option is to share all network data with the flexibility
market operator (FMO), as proposed in [2], [4], [8], [9]. In
[10], the authors move even a step further and present an ap-
proach toward understanding distribution locational marginal
prices by decomposing the distribution locational marginal
price (DLMP) for energy into terms relating to power at the
root node, to real power losses, to reactive power losses, to
voltage constraints, and to line limits.

This information-sharing solution has received criticism
for (i) the potentially intractable and impractical size of the
problem for real-life operation, especially when considering
a stochastic framework, and (ii) due to the existing legal
framework on data exchange between DSO and FMO. Another
option would be for the DSO to take over the role of the FMO.
However, the role of the FMO is currently not addressed in
the EU framework [11], namely the Regulation 2019/943 [12]
and the Directive 2019/944 [13] for the internal market for
electricity. Therefore, the implementation of such an approach
is still unclear and may differ per country, while it may not be
practically implementable in some countries. Besides, having
DSO and FMO as separate entities is the most common set-up
in the literature, as shown in the review [1], and it is chosen by
many pilot projects on flexibility markets, which is discussed
in [14]. For these reasons, we make the assumption that DSO
and FMO are different actors.

The second, the privacy-preserving option, entails the cre-
ation of a network-aware FlexRequest by the DSO, which is

1See http://www.interrface.eu/, http://smartnet-project.eu/,
https://flexgrid-project.eu/, and http://www.eu-ecogrid.net/.

http://www.interrface.eu/
http://smartnet-project.eu/
https://flexgrid-project.eu/
http://www.eu-ecogrid.net/
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then used in a deterministic market clearing by the FMO,
similar to the transmission-level ancillary services markets
currently operating in Europe. This privacy-preserving option
is the focus of this paper. It is compatible with real-world
operations and ensures high transparency for electricity traders
since the FMO does not need to consider stochasticity and net-
work constraints in the market clearing. Thus, it is compatible
with the requirements of the EU Directive [13] for transparent
and standard market products for flexibility services. However,
the question is: How to determine such a network constrained
FlexRequest under uncertainty?

Many existing works on flexibility markets disregard the
problem of how DSOs shall estimate how much flexibility they
need. In [2], [3], [5], [8], [15], [16], flexibility requests from
the DSO are treated as purely external input parameters. Their
focus is instead on the optimization problem of the market
operator or the balance responsible party. The framework of
[9] provides a heuristic approach for determining flexibility
requests which, however, assumes a priori knowledge of each
prosumer’s power exchange, and does not consider network
constraints. Within the flexibility mechanism of [4], an ap-
proach for obtaining the time and value of needed flexibility
(similar to FlexRequest) is proposed for transformer over-
loading, based on the cost of transformer lifetime reduction.
However, for line congestions and voltage support across
the network, there exists no generic real-world approach to
determine flexibility requests. In general, capacity markets
for flexibility are considerably less investigated than energy
markets for flexibility. Among the few works on capacity
flexibility markets is [3], which, however, does not address
the problem of FlexRequest creation.

In the studies on energy flexibility markets, deterministic
formulations are implemented. Mechanism design is used to
design a fair market for energy flexibility at the distribution
level in [17]. A deterministic convex Second Order Conic
Program (SOCP) is used to model the AC power flow and
determine the required flexibility. The coordination of energy
flexibility markets in the distribution and transmission system
is studied in [18], where the linearized LinDistFlow model is
used for modeling the distribution network. The uncertainty of
flexibility a DSO provides to the point of common coupling
stemming from PV and battery systems is modeled in [19].
However, the flexibility request is considered as an external
input. A model for coordination of a flexibility market for
energy and flexibility products with a single FMO and several
DSOs is modeled in [20]. Uncertainty is incorporated in the
modeling of the flexibility offers to the market, not the request
for flexibility.

To the best of our knowledge, this is the first paper that
proposes a framework to design network-aware FlexRequests
at the distribution level. The contributions of this paper are:

• We propose a tool for the DSO to determine network-
aware FlexRequests that will be submitted in a
distribution-level capacity flexibility market, run by an
independent FMO. This tool also considers uncertainty
and preserves the privacy of both the DSO and flexibility
providers.

• We study the trade-off between the privacy-preserving
property ensured by our method and ideal flexibility
procurement obtained through stochastic market clearing,
by deriving the analytical conditions under which our
proposed method matches the performance of stochastic
market clearing.

• We demonstrate the use of this new tool coupled with
a deterministic market clearing and we examine the
influence of market liquidity and the definition of bid-
ding zones by the DSO. We compare this setup to
the stochastic market-clearing benchmark. We show how
our approach outperforms the stochastic market clearing
in terms of computation time while achieving similar
social welfare and costs for the DSO. Using a real-world
German distribution network, we show that our method
scales better than the benchmark.

The remainder of this paper is organized as follows. Sec-
tion II provides details on the market framework used in
the rest of the paper. The FlexRequest creation optimization
problem is presented in Section III. Both the deterministic
and stochastic market-clearing mechanisms are outlined in
Section IV. We evaluate the suboptimality of our approach
compared to the stochastic market clearing in Section V.
The case studies and the corresponding results are given in
Section VI. We draw conclusions in Section VII.

II. GENERAL FRAMEWORK

As mentioned in the introduction, there are two options for
flexibility markets, depending on the desire or possibility for
the DSO to share its network data with the FMO. These are
represented in Figure 1. The focus is on flexibility markets in
which the DSO is the single buyer and the procured flexibility
(reserves) are used to solve expected problems in the network.
Our approach explicitly considers the underlying network and
its associated constraints (line congestion, voltage limits), as
well as the uncertainty of fluctuating renewable production or
loads (e.g. electric vehicles).

Fig. 1. Conceptual representation of the proposed market design. Top:
Benchmark option with a stochastic market clearing where the FMO requires
network data. Bottom: Proposed privacy-preserving FlexRequest market de-
sign where the FMO only requires knowledge of the zone (DSO area).

The first setup is a stochastic market clearing or security-
constrained unit commitment as in, e.g., [6]. In this approach,
the FMO finds the optimal solution to the social welfare
maximization problem and explicitly determines the quantity
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and location of reserves. The resulting stochastic problem
is computationally intensive, which may make it impractical
and even intractable for real-sized distribution networks. For
this approach, information on the distribution network, as
well as on expected uncertainty and/or contingency must be
communicated to the FMO by the DSO. This data is usually
private to the DSO. Furthermore, stochastic programming also
requires a complete market design overhaul [21] which is why
the few real-world examples of stochastic electricity markets
are limited to exogenous sizing of probabilistic security mar-
gins (reserves) within otherwise deterministic market-clearing
routines [22].

The second setup, presented in the bottom part of Figure 1
is a privacy-preserving deterministic reserve flexibility market
setup. Compared to the other setup, this approach does not
require that private data be communicated to other parties by
the DSO. The DSO determines network-aware FlexRequests
considering uncertainty, by solving a stochastic optimal power
flow (OPF) problem. The drawback of this method is that it
may not achieve the highest social welfare, though it may
come close to it. The FMO in this case solves a deterministic
market model that is transparent for all participants and com-
putationally less intensive. As such, it can be easily integrated
into the existing market frameworks in Europe. In Section V,
we analytically quantify the tradeoffs in terms of social welfare
in more detail.

In the proposed market framework, the DSO takes into
account the uncertainty in the power injections when creating
FlexRequests. We consider that the DSO’s objective is not to
cover imbalances, which are the responsibility of the balance
responsible parties. The aim of the FlexRequests is rather
to avoid line congestion and violation of voltage limits. In
case of imbalances resulting from uncertainty realization, we
assume that the difference is covered by exchange with the
upper-level grid, through the slack bus. The DSO is expected
to know its network sufficiently well to define zones, i.e.,
DSO areas. Something similar happens in transmission-level
markets, where the zones are defined primarily with the help
of the transmission system operators. Following that, the DSO
submits the corresponding FlexRequest volume and price to
the FMO, along with the zones defined. Defining zones on
a short-term basis and re-evaluating them frequently allows
for more flexibility. As the markets are local, zones have
the capability to change more often than at the transmission
level, depending on the local assets and their consumption and
production patterns. At the same time, the flexibility service
providers (FSP) submit their FlexOffers to the FMO. The FSPs
are distributed resources located in the distribution network,
but no further assumptions are made about their properties,
which can be diverse. The decision-making process to deter-
mine FlexOffers2 [23], [24] is out of the scope of this paper.

The market-clearing mechanism that is used for clearing
the FlexRequests (Section IV-A) is kept very general so that
it can be adapted to different frameworks. In particular, we
do not impose assumptions on the optimization horizon, time

2The decision-making process to determine FlexOffers is investigated in,
e.g., https://flexgrid-project.eu/

resolution, pricing, or payments.
This paper focuses on flexibility markets for active power

only, as these are considered to have the highest value at the
moment. Congestion problems are becoming a pressing issue
for DSOs, and flexibility markets are seen as an alternative
or supporting solution to network reinforcements for solving
these problems. Therefore, there is an extensive body of
literature addressing the design of flexibility markets focusing
predominantly on markets for active power. Nevertheless, in
our work, we also include reactive power, assuming that
it is linked to the active power by a constant factor. This
allows for indirect consideration of reactive power in the active
power flexibility market, without the need to resort to complex
markets for active and reactive power, for the moment. The
extension to a market that explicitly considers reactive power
flexibility is part of future work and is out of the scope of this
study. Finally, we focus on radial distribution networks, which
are the most common topology used in distribution systems.

III. CREATION OF FLEXREQUEST BY THE DSO

As mentioned in the introduction, the need for the DSO to
procure flexibility is motivated by the need to avoid invest-
ments. Normally, the DSO shall guarantee the safe/secure op-
eration of the distribution grid under a wide range of possible
conditions. Considering the increasing uncertainty in supply
and demand at the distribution level, this need for investments
becomes prohibitively high. Instead, the DSO can procure
cheaper flexibility reserves from distributed energy resources
(DER) and loads located in the distribution network through
a market mechanism. The reserves are procured beforehand
and will be (partially) activated in real time depending on the
realization of the uncertainty. The head time between reserves
procurement and real-time activation can vary from several
hours ahead to a day ahead, depending on the design of
the market. The DSO does not own or control the resources
that can provide flexibility. Therefore, it has to estimate the
quantity and direction of the required flexibility in the form of
FlexRequests that will be sent to the FMO for market clearing.

In this section, we present how the DSO models the
uncertainty stemming from renewable generation using
chance-constrained optimization. We explain the motivation
for the chosen framework and introduce the equations of
the model. We further present a deterministic reformulation,
which is required for tractability. Finally, we address the
questions of defining zones in the flexibility market and
adequate pricing of the FlexRequests.

A. Motivations for Modelling Choices

To incorporate uncertainty in the modeling, in this paper,
we chose to apply chance-constrained optimization [25]; we
motivate our choices below.

The chance-constrained modeling framework is appropri-
ate for modeling network-constrained problems in which the
constraints have to be satisfied within some probability level.
Since line limits can, in practice, occasionally be exceeded,
chance-constrained optimization is a well-suited modeling
approach for creating FlexRequests. Moreover, it allows the

https://flexgrid-project.eu/
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DSOs to decide the acceptable violation probability per asset
or per constraint [26]. Allowing for a small probability of
violation provides a risk-aware and cost-effective mechanism
as compared to conservative, and thus expensive solutions ob-
tained with robust optimization [27]. Through the implemen-
tation of linear policies, the relation between the uncertainty
realization and the system reaction can be modeled. In this
way, a response to scenarios that are not represented in the
scenario set is ensured, which is not guaranteed when applying
stochastic optimization with scenarios.

The approach for the creation of FlexRequests is somewhat
similar to the dispatch of controllable generators under un-
certainty, but with the added complexity that the DSO does
not have control over the resources providing the reserves.
For the dispatch problem, a distributionally robust chance-
constrained OPF for distribution systems is presented in [28]
and [29], using the LinDistFlow approximation [30] to model
the network. The only uncertainty considered in [28], [29],
is in the voltage limits, whereas line limits are additionally
considered in [31]. Existing studies that consider chance-
constrained OPF in the distribution network, assume that the
DSO can fully control the resources required to compensate
for the effects of realizations of uncertainty via direct dispatch
and that they provide certain responses.

A case in which the network operators do not own the
resources that provide flexibility and their response is uncer-
tain, such as the case covered in this study, is considered in
[32]. There, uncertain aggregated loads can provide market
balancing reserves, in addition to controllable generators.
However, [32] focuses on transmission networks and develops
its approach with a DC linearized power flow, which is not
appropriate for distribution networks.

To the best of our knowledge, the design of FlexRequests
and the procurement of flexibility reserves by the DSO through
market mechanisms to solve uncertain line congestions and
voltage problems in the distribution network is still an open
topic that needs to be addressed.

B. Chance-Constrained Model

The objective of the DSO is to ensure that the operational
network constraints are maintained with a given probability.
The objective function (1a) is formulated as a minimization of
the total required upward and downward quantity of flexibility
requests which will be sufficient to respond to uncertainty
realizations in real time.

The optimization problem for the DSO is formulated as

min
x

∑
t∈T

∑
n∈N

(PR+
n,t + PR-

n,t) (1a)

s.t.
∑

ij∈L,j=n
Pij,t + P inj

n,t + PR
n,t

+ PU
n,t =

∑
ij∈L,i=n

Pij,t, ∀n ∈ N , ∀t ∈ T , (1b)∑
ij∈L,j=n

Qij,t +Qinj
n,t +QR

n,t

+QU
n,t =

∑
ij∈L,i=n

Qij,t, ∀n ∈ N , ∀t ∈ T , (1c)

uj,t = ui,t

− 2(RijPij,t +XijQij,t), ∀ij ∈ L, ∀t ∈ T , (1d)

P̃R
n,t(ξ) = PR

n,t + αn,tξ
P
tot,t, ∀n ∈ N , ∀t ∈ T , (1e)

−
∑

ij∈L,i=n
Pij,t + P inj

n,t+

+ P̃Rn,t −
∑

k∈N ,k 6=ref

P̃R
k,t = 0, n = ref, ∀t ∈ T , (1f)

−
∑

ij∈L,i=n
Qij,t +Qinj

n,t+

+ Q̃Rn,t −
∑

k∈N ,k 6=ref

Q̃R
k,t = 0, n = ref, ∀t ∈ T , (1g)∑

n∈N ,n6=ref

αn,t = 0, ∀t ∈ T , (1h)

PR-
n,t, P

R+
n,t ≥ 0, ∀n ∈ N , ∀t ∈ T , (1i)

P(P̃ 2
ij,t(ξ) + Q̃2

ij,t(ξ) ≤ S
2

ij)

≥ 1− εS , ∀ij ∈ L, ∀t ∈ T (1j)

P(V 2
n ≤ ũn,t(ξ)) ≥ 1− εV , ∀n ∈ N , ∀t ∈ T , (1k)

P(ũn,t(ξ) ≤ V
2

n) ≥ 1− εV , ∀n ∈ N , ∀t ∈ T , (1l)

P(−PR-
n,t ≤ P̃R

n,t(ξ))

≥ 1− εR, ∀n ∈ N , ∀t ∈ T , (1m)

P(P̃R
n,t(ξ) ≤ PR+

n,t) ≥ 1− εR, ∀n ∈ N , ∀t ∈ T , (1n)

where x = {PR+, PR-, PR, u, P,Q}
To represent the network, with sufficient accuracy, despite

neglecting power losses, the LinDistFlow approximation [30]
is used in (1b)-(1d). This approximation is valid for radial
networks. The active and the reactive power balance per node
are expressed in (1b) and (1c). Here, Pij,t and Qij,t are
the active and reactive power flow in the line between bus
i and j at time t, in case of perfect forecast. Each line
ij has a resistance Rij and reactance Xij . The sets N , L,
and T gather, respectively, the buses of the system, the lines
(expressed with their origin and destination bus), and the time
periods considered. The power injection at node n is separated
between a deterministic component P inj

n,t, a forecast of the
uncertain part PU

n,t and the flexibility activation PR
n,t, which

is a decision variable. The associated reactive components
are Qinj

n,t, Q
U
n,t and QR

n,t. It is assumed that the reactive
power injections are proportional to the active power injections
according to the power factor cosφ and through the parameter
K =

√
1−cosφ2

cosφ2 . The voltage drop is given in (1d). The
variable un,t is an auxiliary variable, which is equal to the
squared voltage magnitude.

The uncertain power injection is defined as:
P̃U
n,t(ξ) = PU

n,t − ξn,t, ∀n ∈ N ,∀t ∈ T , where PU
n,t is

the forecasted value and ξn,t is the deviation from the
forecast at bus n, for time t. The activated flexibility due to
the FlexRequests P̃Rn,t(ξ) is expressed as an affine function
of the total forecast error ξtot,t =

∑
n∈N ξn,t,∀t ∈ T through

the factors αn, ∀n ∈ N , as in (1e).
The realizations of uncertainty and the activation of FlexRe-

quests are causes for imbalance in the nodal active and reactive
balance equations. Since power balancing is the responsibility



5

of the retail company and not the DSO, it is considered that
the DSO is not in charge of resolving imbalances. The DSO is
responsible for relieving congestions, keeping nodal voltages
within limits, and ensuring a safe grid operation. Therefore, the
energy necessary to cover them is assumed to be generated in
other parts of the network and received through the slack bus.
FlexRequests are used to ensure that the distribution network
will be able to handle the associated changes in terms of line
flows and voltages. Since the activation of the FlexRequests
does not modify the balance, the sum of αn,t of the non-
reference buses should be equal to 0, as in (1h). The nodal
balance at the slack bus should also be updated accordingly
as in (1f)-(1g). In the case of a radial network, the balance is
ensured for any realization of the uncertainty when including
these constraints. The main variables of the problem, that are
submitted to the flexibility market, are PR-

n,t and PR+
n,t, the

downward and upward FlexRequest at each bus defined in (1i).
In addition to the flexibility requested, all variables of

the problem depend on the uncertainty realization. Following
this, five chance constraints are formulated (1j)-(1n). Equation
(1j) is related to the rated apparent power of the lines Sij .
Constraints (1k)-(1l) require bus voltages to be within limits,
between the minimum V 2

n and the maximum V
2

n. Finally in
(1m)-(1n), the predicted flexibility activation is bounded by
the flexibility requested. The parameters ε ∈ (0, 1) give the
violation probability for the corresponding constraint.

The main advantage of this approach for the creation of
the FlexRequests is that it avoids making assumptions about
the flexibility providers. In particular, there is no need to
know their position in the network or their flexibility capa-
bilities. In general, the DSO does not have access to such
information. For this reason, we assume in (1m)-(1n) that
all the flexibility needs of the DSO will be covered by the
flexibility providers. However, if the DSO did have some
info on the availability of flexibility, it could be included as
supplementary constraints bounding the flexibility activation
at the corresponding nodes. The resulting FlexRequests would
then be more accurate. Indeed, with the current formulation,
there could be multiple equally good solutions in terms of
location of the FlexRequests, and one of them will randomly
be returned by the solver. On the other hand, instead of using
a random combination for the locations of the FlexRequests,
modeling flexibility sources could help select between those
solutions by reducing the feasibility space and the number of
optimal solutions.

C. Deterministic Reformulation

It is assumed that the forecast error follows a Gaussian
probability distribution function with zero mean µn = 0
and covariance Σn, ξn ∼ N (0,Σn). Given a linear relation
between the error and the variables, the chance constraints
(1j)-(1n) can be reformulated analytically to deterministic
constraints. Chance constraints of the format P(xi+biξ ≤ xi)
can be reformulated as xi+ Φ−1(1− εx)

√
bᵀi Σbi ≤ xi, where

b is the matrix that linearly relates the uncertainty source with
the variables. Hence, an uncertainty margin can be introduced,
defined as: Ωi = Φ−1(1− εx)

√
bᵀi Σbi.

Therefore, the linear chance constraints (1k)-(1n) can be
reformulated using uncertainty margins as in (2a)-(2b):

V 2
n + Ωun,t ≤ un,t ≤ V

2

n − Ωun,t, ∀n ∈ N , ∀t ∈ T , (2a)

− PR-
n,t + ΩFn,t ≤ PR

n,t

≤ PR+
n,t − ΩFn,t, ∀n ∈ N , ∀t ∈ T . (2b)

A matrix A, of size |L|× |N | is introduced, which captures
the linear relation between the uncertainty injections and the
power flows in the lines [33]. Its elements are defined in (3):

aij,n =

{
1, if ij is on the path from slack bus to n.
0, otherwise.

(3)

The power flow in the lines (4a)-(4b) and the nodal voltage
(4c) can be linearly related to the forecast error [28]:

P̃ij,t(ξ) = Pij,t +
∑
n∈N

aij,n(ξPn,t − αn,tξP
tot,t),

∀ij ∈ L, ∀t ∈ T , (4a)

Q̃ij,t(ξ) = Qij,t +
∑
n∈N

aij,n(ξQ
n,t − αn,tξ

Q
tot,t),

∀ij ∈ L, ∀t ∈ T , (4b)

ũn,t(ξ) = un,t − 2
∑
ij∈L

aij,n
∑
m∈N

[Rijaij,m(ξP
m,t − αm,tξP

tot,t)

+Xijaij,m(ξQ
m,t − αm,tξ

Q
tot,t)], ∀n ∈ N , ∀t ∈ T , (4c)

where Γ is an incidence matrix of size |N | × |U|, that
denotes the connection of each source of uncertainty to the
corresponding bus, where U is the set that gathers all sources
of uncertainty.

The quadratic chance constraint (1j) can be reformulated
following the approach of using absolute value chance con-
straints as in [34], [35]. Two auxiliary variables kP and kQ are
introduced and their connection to the rated apparent power of
the lines is introduced in (5a). The resulting constraints with
corresponding uncertainty margins, including the auxiliary
variables are defined in (5b)-(5e) respectively:

(kP
ij,t)

2 + (kQ
ij,t)

2 ≤ S2

ij , ∀ij ∈ L, ∀t ∈ T , (5a)

− kP
ij,t + ΩPij,t ≤ Pij,t
≤ kP

ij,t − ΩPij,t, ∀ij ∈ L, ∀t ∈ T , (5b)

− kQ
ij,t + ΩQij,t ≤ Qij,t
≤ kQ

ij,t − ΩQij,t, ∀ij ∈ L, ∀t ∈ T , (5c)

kP
ij ≥ Ωk

P

ij,t, ∀ij ∈ L, ∀t ∈ T , (5d)

kQ
ij ≥ Ωk

Q

ij,t, ∀ij ∈ L, ∀t ∈ T . (5e)

After reformulating all the chance constraints, we obtain the
following second-order cone (SOC) OPF:

min
x

∑
t∈T

∑
n∈N

PR+
n,t + PR-

n,t (6a)

s.t. Eq.(1b)− (1i), (2), (5) (6b)

with x = {PR+, PR-, PR, u, P,Q, b,Ω, kP, kQ}
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D. Definition of Zones

With this model, the FlexRequests formulated are associated
with a given bus. However, in the absence of congestions,
the flexibility service could be arbitrarily provided from var-
ious buses. The DSO can use the information on potentially
congested lines to define zones for the market clearing, as
this will increase the liquidity in the market. That is, instead
of requesting a flexibility service from a specific bus, the
flexibility can be offered by any bus within the same zone.
The definition of such zones is out of the scope of this
paper, but one idea could be to adapt the approach of [36].
The determination of dynamic reserve zones is also addressed
in [37]. In the case studies of Section VI, we simplify the
definition of the zones by conducting a statistical study on
which lines get congested.

E. FlexRequest Price Discovery

In this work, the focus is on the quantity determination
rather than on the price determination for the FlexRequests.
However, we here sketch out one possible approach for
determining the DSO’s willingness to pay for flexibility.

FlexOffers can result from the time- and temperature-variant
opportunity cost of FSPs. We want to avoid bias from assump-
tions on the FlexOffer prices which are difficult to predict
and vary continuously. Therefore, we focus on determining
the actual power reserves (flexibility) needed and the DSO’s
willingness to pay. We assume that the price of FlexRequests
λr represents an upper bound of the DSO’s willingness to
pay for flexibility rather than grid upgrades. It can thus be
determined ex-ante by the DSO. A straightforward method of
computing the DSO’s willingness to pay λr is to scale the
long-term costs of network reinforcements for the DSO with
the required flexibility

λr =
C Inv − CNoInv

P Flex

[
$

kW

]
(7)

where C Inv are the total costs of network investments for the
DSO if no flexibility was available, and CNoInv are the total
network investment costs if sufficient inexpensive flexibility
P Flex was available. C Inv, CNoInv and P Flex are the results of
two separate investment planning problems that must be solved
for the same investment horizon.

IV. MARKET CLEARING

In this section, we introduce two market-clearing models.
The first clears the FlexRequests created with the method
given in the previous section. The second is a stochastic
market clearing for which no FlexRequest is submitted as they
are implicitly considered in the model. This second market
clearing will be used as a benchmark.

A. Deterministic Market with Explicit FlexRequest

We assume here that the FlexRequests, as determined in
Section III are submitted to the simplest flexibility market
architecture, similar to the ancillary services markets cur-
rently used on the transmission level. Such a market matches

flexibility offers with flexibility requests neglecting all net-
work constraints and not considering uncertainty; the network
constraints and the uncertainty have, instead, been already
accounted for during the FlexRequests creation.

This deterministic market clearing is formulated as

min
p

∑
t∈T

(∑
o∈Ot

λopo −
∑
r∈Rt

λrpr

)
(8a)

s.t.
∑
o∈O+

z,t

po =
∑

r∈R+
z,t

pr, ∀z ∈ Z, ∀t ∈ T , (8b)

∑
o∈O−

z,t

po =
∑

r∈R−
z,t

pr, ∀z ∈ Z, ∀t ∈ T , (8c)

0 ≤ po ≤ P o, ∀o ∈ O, (8d)

0 ≤ pr ≤ P r, ∀r ∈ R. (8e)

Here, p is the quantity accepted from the corresponding offer
or request. The sets Oz,t andRz,t group respectively the offers
and the requests submitted per zone z and time period t. The
set Z groups the zones and T the time periods. The objective
function (8a) is to maximize the social welfare with λ the price
of the corresponding bid. The constraints (8b)–(8c) ensure
that matches are only possible in a given zone, respectively
for upwards and downwards bids. Equations (8d)–(8e) give
the bounds of the quantity accepted, which is limited by the
quantity of the bid P ; sets O and R include all offer and
request bids for all zones and time periods.

Such a market ensures high transparency for all market
participants due to its simplicity, is compatible with the current
market regulations as the flexibility market operator does not
need access to distribution network data, and we expect that
it is the most probable to be implemented in the near future.

B. Stochastic Market with Implicit FlexRequest

We benchmark the performance of the market in Sec-
tion IV-A against a network-aware stochastic market that
internalizes uncertainty directly in the market clearing. From
a theoretical perspective, despite being difficult to exist in
practice at the moment, such a market shall determine the
most cost-efficient flexibility procurement; that is why it is
used as a benchmark. Here again, we use a chance-constrained
approach:

min
x

∑
t∈T

(∑
o∈Ot

λO
o p

O
o + E

[
∆t
∑
n∈N

λA
n,t(p̃

A+
n,t + p̃A-

n,t)

+λNS
n,tp̃

NS
n,t + λC

n,tp̃
C
n,t

])
(9a)

s.t.
∑
jn∈L

Pjn,t −
∑
nk∈L

Pnk,t = P inj
n,t + PU

n,t

+ pA
n,t − pC

n,t + pNS
n,t, ∀n ∈ N , ∀t ∈ T , (9b)∑

jn∈L
Qjn,t −

∑
nk∈L

Qnk,t = K(P inj
n,t + PU

n,t

+ pA
n,t − pC

n,t + pNS
n,t), ∀n ∈ N , ∀t ∈ T , (9c)

uj,t = ui,t

− 2(RijPij,t +XijQij,t), ∀ij ∈ L, ∀t ∈ T , (9d)
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pO-
n,t =

∑
o∈O−

n,t

pO
o , ∀n ∈ N , ∀t ∈ T , (9e)

pO+
n,t =

∑
o∈O+

n,t

pO
o , ∀n ∈ N , ∀t ∈ T , (9f)

0 ≤ pO
o ≤ PO

o , ∀o ∈ O, (9g)

P(P̃ 2
ij,t + Q̃2

ij,t ≤ S
2

ij)

≥ 1− εS, ∀ij ∈ L, ∀t ∈ T , (9h)

P(V 2
n ≤ ũn,t) ≥ 1− εV, ∀n ∈ N , ∀t ∈ T , (9i)

P(ũn,t ≤ V
2

n) ≥ 1− εV, ∀n ∈ N , ∀t ∈ T , (9j)

P(−pO-
n,t ≤ p̃A

n,t) ≥ 1− εA, ∀n ∈ N , ∀t ∈ T , (9k)

P(p̃A
n,t ≤ pO+

n,t) ≥ 1− εA, ∀n ∈ N , ∀t ∈ T , (9l)

P(0 ≤ p̃C
n,t) ≥ 1− εC, ∀n ∈ N , ∀t ∈ T , (9m)

P(0 ≤ p̃NS
n,t) ≥ 1− εNS, ∀n ∈ N , ∀t ∈ T , (9n)

where x = {pO, pA, pC, pNS, u, P,Q}.
This formulation is very similar to the one introduced

in Section III. The main difference is that the offers are
included as variables here, in order to be cleared. The objective
function (9a) is to minimize costs for the DSO, as the sum
of market costs and expected real-time costs. Here, p̃O

o is the
quantity accepted from offer o and λO

o the price of this offer.
The real-time costs are the costs associated with activation p̃A,
load shedding p̃NS and curtailment p̃C. The corresponding costs
are λA, λNS and λC. In the objective function, the activation
is separated between its positive and negative parts such that
p̃A = p̃A+− p̃A-, with p̃A+, p̃A- ≥ 0. This ensures that activation
always corresponds to a cost for the DSO. The multiplication
by the duration of the time period ∆t is needed for coherence
between power and energy units. Equations (9b)–(9d) are
defined similarly as in the problem of Section III. Equa-
tions (9e)–(9f) give the total quantity accepted at each node
and for each time period, pO+

n,t in the up direction, and pO-
n,t in

the down direction. The quantity accepted per offer is bounded
by the quantity offered PO in Equation (9g). Equations (9h)–
(9n) are chance constraints. Equations (9k)–(9l) correspond to
the bounds on the activation of flexibility, which are given
by how much flexibility is procured. Equations (9m)–(9n) are
the lower bounds on curtailment and load shedding. In those
constraints, εS, εV, εA, εC and εNS are used to set the confidence
level.

The reformulation of the chance constraints is very similar
to the one shown in Section III and will not be detailed here. In
the case of the stochastic market clearing, each of the variables
p̃A, p̃NS and p̃C is expressed as a linear function of the total
forecast error, using coefficients αA, αNS and αC, such that
the nodal α is αn,t =

∑
n∈N α

A
n,t+αNS

n,t+αC
n,t = 0, ∀t ∈ T .

Balance responsibility can be ensured by constraints similar
to those in 1h. The reformulation of the expected costs in
the objective function is straightforward with the assumption
that the forecast error follows a Gaussian distribution with
zero mean. In such a market clearing, the FMO must obtain
full knowledge of the underlying network, the setpoints of all
resources, and information about the uncertainty (covariance
matrix).

C. Role of the DSO & Computational Tractability

In the benchmark, the FMO runs a complex stochastic
market clearing with network constraints of the DSO’s
distribution network data. This requires computational efforts
from the FMO, which are commonly covered by market
participation fees.

However, if the DSO insists on distribution network data
privacy, then the only possible way to clear the distribution-
level flexibility market in a network-aware fashion is the
approach we are proposing. This also shifts the computational
burden away from the FMO and onto the DSO, which is also
the entity that has the need for the flexibility service. In that
way, the DSO solves the problem in Section III to create
network-aware FlexRequests that can easily be handled in a
deterministic zonal market by the FMO.

V. SUBOPTIMALITY GAP

A. Suboptimality Gap of Network-Aware FlexRequest Com-
pared to Stochastic Clearing

By intuition, the use of network-aware FlexRequests, which
are requested at specific nodes or zones, pre-assuming the
existence of possible congestions, may introduce suboptimality
compared to the stochastic-clearing benchmark, which makes
no prior assumptions on possible line constraint or voltage
violations. This is a common well-identified issue in the
transmission-level literature on zonal vs. nodal markets, e.g.
[37]. Nodal markets result in higher social welfare because
they include no prior assumption about the designation of the
congestion-free zones. Therefore, in this section, we quantify
and derive an analytical expression to determine this subopti-
mality gap. In the following, we define “sufficient liquidity”
as sufficient offer volume

∑
n p

O
n in the entire network. We

define “sufficient liquidity per node” as sufficient offer volume
pO
n at each node, which is offered at the same or lower prices

than that of other nodes. We can distinguish four levels of
increasing complexity:

1) No active network constraints and sufficient liquidity:
Here, the market-clearing outcome of the network-aware
FlexRequests and of the stochastic-clearing benchmark
are the same.

2) Active network constraints and sufficient liquidity per
node: Here, the market-clearing outcome of both cases
are the same.

3) Active network constraints, sufficient liquidity in the
network, but insufficient liquidity per node: This is the
relevant case; the network-aware FlexRequests may re-
sult in a suboptimal outcome compared to the stochastic-
clearing benchmark.

4) Active network constraints and insufficient liquidity in
the network: The market-clearing outcome results in
load shedding and/or production curtailment in both
cases which is an undesired outcome for local flexibility
markets.

In the following, we will evaluate the market-clearing out-
comes of level 1 and level 3 in terms of social welfare.
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B. Upper Bound on Suboptimality Gap
The market-clearing problem without active network con-

straints and sufficient liquidity (level 1) can be described by
the unconstrained market-clearing outcome LU :

LU =


max
pO
n

λR∑
n p

R
n −

∑
n λ

O
np

O
n

s.t.
∑
n p

O
n =

∑
n p

R
n

λO
n ≤ λ̂R ∀n

. (10)

The theoretical worst-case market-clearing outcome occurs
when there is insufficient liquidity (level 4), and only becomes
feasible through load shedding and/or curtailment. This is
the worst case since market transactions are constrained by
both insufficient FlexOffers and active network constraints.
Additionally, social welfare is reduced by payments to loads
due to load shedding and/or to generators due to curtailment.

The more interesting comparison is with the worst-case fea-
sible market-clearing outcome when there is sufficient liquidity
in the whole network, but insufficient liquidity per node (level
3). Thus, the flexibility may not be provided at the same node,
and the additional loading may result in congestion or voltage
limit violations. These active network constraints may limit
the volume of the accepted offer which can be characterized
by a permitted share of the offer anpO

n and a non-permitted
share (1− an)pO

n where an ∈ (0, 1), ∀n. The market-clearing
outcome with stochastic market clearing is given by (11):

LSC =


max
pO
n

λR∑
n p

R
n −

∑
n anλ

O
np

O
n

s.t.
∑
n anp

O
n =

∑
n p

R
n

λO
n ≤ λ̂R ∀n

. (11)

Ignoring losses, the upper bound on the suboptimality gap
compared to the unconstrained clearing is then given by (12):

ΞSC = 1− LSC
LU

. (12)

Similarly, the location-based market clearing outcome with
FlexRequests is given by (13):

LFR =


max
pO
n

λR∑
n p

R
n −

∑
n anλ

O
np

O
n

s.t. anpO
n = pR

n ∀n
λO
n ≤ λ̂R ∀n

, (13)

and the upper bound on its suboptimality gap is given by (14):

ΞFR = 1− LFR
LU

. (14)

Furthermore, and most relevant, the upper bound on the
suboptimality gap of the use of FlexRequests compared to
stochastic clearing can be expressed by (15).

ΞFS = 1− LFR
LSC

. (15)

In Section VI, we show some results regarding suboptimality
gaps of the different methods.

VI. CASE STUDY

This section presents two case studies, one on a 15-bus
system with publicly available data, and a second on a segment
of a real German distribution network.

A. 15-bus Test Case

We evaluate our method for the creation of FlexRequests
on the radial 15-bus system introduced in [38]. Note that the
true complexity does not stem from the size of the power
system as much as it does from the size of the uncertainty.
We consider uncertainty from renewable production, while
the rest of the power injections are assumed to be certain
for the purpose of this example. Two wind farms are placed
in the system and the covariance matrix is evaluated from
1,000 wind forecast error scenarios with zero mean. These
are taken from real measurements recorded in Denmark [39].
Without loss of generality, we consider that the reserve market
is cleared for one time period of one hour, and a power factor
cosφ = 0.95. Solving for multiple time periods would only
require the solution of the same problem an equal number of
times, under the assumption that uncertainty at time t and t+1
are statistically independent. The exact data used is available
online, along with the implemented models [40].

Regarding the different prices, we make the following
assumptions:
• Curtailment costs are set at 60C/MWh.
• Load shedding costs at 200C/MWh.
• Activation costs are assumed to be equal to 0 since we

consider that the flexibility providers have no operational
costs.

• FlexRequests have a price of 70C/MW for up- and
40C/MW for down-regulation.

• Offers are priced randomly between 25C/MW and
35C/MW.

For all the different chance constraints, a violation of 5%
is permitted.

The following are solved:
• FlexRequest creation with the chance-constrained model.
• Deterministic market clearing to match the created

FlexRequests with FlexOffers submitted in the market.
• Stochastic market clearing as a benchmark to compare

with the deterministic market clearing which considered
the created FlexRequest.

• Out-of-sample Monte Carlo analysis to evaluate the vio-
lation of chance constraints for both models.

• Real-time dispatch (with LinDistFlow) to evaluate the
real-time costs after activation.

The models are implemented in Python, with the Pyomo
Kernel library [41] and solved with Mosek for the chance-
constrained problems and with the Gurobi library [42] for the
deterministic market clearing.

B. Results for the 15-bus System

The performance of the model for the creation of the
FlexRequests is evaluated over two axes. The first is the
definition of clearing zones by the DSO. The most extreme
case is to have a clearing per node, which corresponds to
either not having the possibility to define zones or to the
DSO considering that all lines are likely to get congested
such that any deviation shall be balanced through flexibility
procurement at the same node it is created. This case will be
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identified as “Per-Node”. For the second case, we conducted a
statistical study to identify which lines can get congested and
defined zones accordingly. This will be further referred to as
“4-Zones”. Finally, we define a test case that is between those
two, with more zones, and it will be called “8-Zones”.

The second parameter is the overall liquidity of the market.
The offers are designed following three levels of liquidity:
high, medium, and low. For the high-liquidity scenario, all
buses except the reference bus are offering a high level of
flexibility in both directions. This is then reduced to obtain
the medium and low scenarios.

After running those, we compare the resulting social wel-
fare. It is calculated as

SW = (λR+ − λO+)pf+ + (λR- − λO-)pf- − λNSpNS − λCpC. (16)

The first part of the social welfare is linked to procurement
and is calculated once. It is the difference between the price
of accepted requests and offers multiplied by the procured
quantity. The second part corresponds to the costs resulting
from real-time dispatch, which are due to load shedding
and curtailment. Those are calculated over 2,000 scenarios
of wind realization, which are different from the ones used
to evaluate the covariance matrix. The social welfare for
the different test cases is shown in Figure 2. Note that the
values can be negative, which is due to the fact that there
is some load shedding, for which the costs are considerably
higher than the other prices. The more offers are available,
the higher the social welfare. This is due to both the social
welfare gained from the matches and the reduction of real-
time redispatching costs. The deterministic market with no
zones (i.e. Per-Node) can perform significantly worse than the
others, as we see here in the medium liquidity. It is consistent
with the fact that it restricts the possibility of matches. Since
less flexibility is procured, the real-time costs, linked to load
shedding in particular, are also higher. The performance of
the deterministic market with zones is close to the one of
the stochastic market in terms of social welfare. With fewer,
larger clearing zones (4-Zones), more matches are allowed,
so with similar redispatch costs, this can give an advantage
to the deterministic market in terms of social welfare, but it
means that some flexibility is not used. This happens when
the zones are defined too large, which means that there exists
congestions inside of the zone that prevent the activation of
the procured flexibility. In Figure 3, we can see that with 8-
Zones, some downward flexibility is procured in bus 14, while
the stochastic market does not have matches in this direction
because the location of the offers is not helpful. On this plot,
we can also clearly see that with the zonal market, the procured
flexibility corresponds to the quantity requested in buses 12
and 13, while the stochastic and zonal markets procure more
at these buses.

In Figure 4, the DSO costs in the different situations are
compared. The procurement costs for the DSO depend on the
payment scheme chosen in each market. To keep the market-
clearing models general in this regard, we consider that the
DSO have to pay what they bid, which would be a higher
bound on the price paid. The graph on the right (Liquidity=No
Offers) illustrates what the costs would be without a flexibility
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Fig. 2. Social welfare (C) for three levels of liquidity and comparing
stochastic market clearing to deterministic market clearing with different ways
to define clearing zones, for the 15-bus test case
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Fig. 3. Submitted offers and requests per bus in the case of medium liquidity.
The upper part of the graph corresponds to bids up and the lower part to bids
down. The filling of the offers bar shows the quantity accepted after the
corresponding market clearing.

market. The costs always decrease with the flexibility market,
compared to not having one (in the latest plot). With the
clearing per node, the quantity matched at each node can be
reduced, which gives lower procurement costs for medium and
low liquidity here. In the case of medium liquidity, the quantity
procured at a critical bus is much lower compared with the
zonal market, where flexibility requested at a critical bus can
be reserved at several surrounding nodes. As a consequence,
real-time costs are much higher in that case. It is worth noting
here that since the FlexRequest creation model is based on
an optimization algorithm, the optimization solver by default
returns only a single possible combination for the location of
the requests; there could be, however, more than one solution.
Having zones is one way to deal with this limitation, as we
can see in this example. The level of liquidity plays a role in
the allocation of the costs between procurement and real time.

The performance of the chance-constrained models was also
analyzed and the maximum probability of violation over all the
chance constraints was evaluated in an out-of-sample analysis
over 2,000 scenarios. It was found to be equal to 4% for both
models, which is in line with the limit of 5% that we have
defined for all chance constraints.

In terms of runtime, Table I shows that the deterministic
market clearing is much faster than the stochastic market
clearing, due to the fact that the computational burden is
moved to the FlexRequest creation in the second situation.
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Fig. 4. DSO costs (C) for three levels of liquidity and comparing stochastic market clearing to deterministic market clearing with different ways to define
clearing zones. The last graph illustrates the real-time costs without a flexibility market, for the 15-bus test case
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Fig. 5. DSO costs (C) for three levels of liquidity and comparing stochastic market clearing to deterministic market clearing with different ways to define
clearing zones, for the bnNETZE 81-bus test case

TABLE I
RESULTS IN TERMS OF RUNTIME (IN AVERAGE OVER ALL CASE STUDIES)

15-bus bnNETZE
Stochastic 2.75 s 1.33 h
Deterministic 0.07 s 1.04 s
FlexRequest creation 2.88 s 1.34 h

TABLE II
SUBOPTIMALITY GAP FOR BOTH TEST SYSTEMS

15-bus bnNETZE

Market clearing outcome
LU (10) 5.83 C 103.04 C
LSC (11) 4.66 C 90.83 C
LFR (13) 4.51 C 99.00 C

Suboptimality gap
ΞSC (12) 20.1 % 3.92 %
ΞFR (14) 22.6 % 11.9 %
ΞFS (15) 3.2 % 8.25 %

Table II gives results in terms of suboptimality. Those are
obtained by placing ourselves in the situation described in
Section V. We compare the case with no congestion to
stochastic market clearing and to nodal deterministic market
clearing, for the high-liquidity scenario. The gaps in the
case with no congestion are due to the fact that there are
congestions. More importantly, we see that the gap between
the nodal deterministic market clearing and the stochastic
market clearing is only 3.2% in this case.

C. Analysis on a Real Distribution Grid

In order to show scalability, we apply the same methods
to a radial 81-bus German distribution network, which was
provided by the DSO bnNETZE. It is presented in Figure 6.
The 81 bus 0.4kV distribution system is connected to the
substation through a 20kV line and has a total maximum
loading of 3.5MW, and three wind farms with a total rated

Fig. 6. Representation of the bnNETZE 81-bus network

capacity of 500kW. The other parameters are defined similarly
as in the previous study, and in particular, the same data is
used to represent the uncertainty. Similarly, we define different
types of zones for the deterministic market clearing, identified
as “4-Zones” and “9-Zones”. The results in terms of social
welfare and costs for the DSO are shown in Figure 7 and 5
respectively. The conclusions of the analysis for the 15-bus
system are still valid here. The particularity of this case is
that the system is heavily loaded. The real-time costs are very
high in all the scenarios tested, due to load shedding. The
stochastic market clearing is performing better, as expected,
but the zonal deterministic markets are comparatively close.

As shown in Table I, the running time difference between
deterministic market clearing and stochastic market clearing
is even more pronounced in this case, as the deterministic
market clearing is more than 4,600 times faster. Moreover,
the suboptimality gap between the nodal deterministic market
clearing and the stochastic market clearing is still reasonable,
with 8.25% in this case.
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Fig. 7. Social welfare (C) for three levels of liquidity and comparing
stochastic market clearing to deterministic market clearing with different ways
to define clearing zones, for the bnNETZE 81-bus test case

D. Discussion

This section summarizes the advantages and disadvantages
of the proposed privacy-preserving flexibility market compared
to the stochastic market clearing. It is based on the points
presented in Section I and the results from the two case studies.
In terms of preserving privacy, the proposed model inherently
has this property compared to the stochastic market model.
Privacy preservation comes at the expense of reduced social
welfare. We provide upper bounds on the suboptimality gap of
the deterministic flexibility market compared to the stochastic
one, ranging from 3.2 % for the small network to 8.25 %
for the real-size network. Gaps of this magnitude may still
be acceptable, especially when considering the benefits of
market transparency and computational tractability. Moreover,
the case studies show that this gap can be reduced by a proper
definition of zones for the market clearing. We also observed
that the results for social welfare are greatly influenced by
the market liquidity, i.e., the number of FlexOffers at each
location, which is an external parameter. Similarly, the costs
for the DSO are impacted by the definition of zones and by
market liquidity. We show that social welfare and DSO costs
are actually comparable for the stochastic and the deterministic
network-aware market when zones are defined. Another con-
siderable advantage of the proposed flexibility market model
is that it is cleared in the range of seconds for both cases,
whereas the stochastic market requires at least an hour for the
realistic test case.

VII. CONCLUSION

Although there is a lot of discussion and research literature
on the design of efficient distribution-level flexibility markets,
little attention has been so far paid to the design of the
FlexRequest itself. In this paper, we provided a framework for
DSOs to create a network-aware FlexRequest as a tool that
ensures compatibility with current legislation. We compared
its efficacy against a stochastic benchmark, showing results
for a real-world distribution network. We showed how the
FlexRequests can be generated with a chance-constrained
approach and cleared in a very simple deterministic market,
which includes the possibility to define zones. The results of
flexibility procurement and real-time dispatch were compared
for different levels of liquidity on the offer side. We saw that
the definition of bidding zones by the DSO can become critical
and that by enforcing the procurement of flexibility at the same

node it is requested, the costs for the DSO could increase
significantly. With properly defined zones, the results obtained
in terms of social welfare and costs for the DSO appeared to be
comparable to those obtained with stochastic market clearing.

In future work, we will focus on the determination of
the price of the requests and the definition of the bidding
zones for the DSO. The model could be extended to have
FlexRequests which also consider contingencies. Moreover,
the role of reactive power could be detailed and expanded, in
particular to consider reactive power bids. Finally, we made
the assumption of a radial network, and it could be worth
generalizing to any network architecture.

REFERENCES

[1] X. Jin, Q. Wu, and H. Jia, “Local flexibility markets: Literature review
on concepts, models and clearing methods,” Applied Energy, vol. 261,
p. 114387, 2020.

[2] P. Olivella-Rosell, P. Lloret-Gallego, Í. Munné-Collado, R. Villafafila-
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