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Summary: Collection of functional data is becoming increasingly common including longitudinal observations in

many studies. For example, we use magnetic resonance (MR) spectra collected over a period of time from late stage

HIV patients. MR spectroscopy (MRS) produces a spectrum which is a mixture of metabolite spectra, instrument

noise and baseline profile. Analysis of such data typically proceeds in two separate steps: feature extraction and

regression modeling. In contrast, a recently-proposed approach, called partially empirical eigenvectors for regression

(PEER) (Randolph, Harezlak and Feng, 2012), for functional linear models incorporates a priori knowledge via a

scientifically-informed penalty operator in the regression function estimation process. We extend the scope of PEER to

the longitudinal setting with continuous outcomes and longitudinal functional covariates. The method presented in this

paper: 1) takes into account external information; and 2) allows for a time-varying regression function. In the proposed

approach, we express the time-varying regression function as linear combination of several time-invariant component

functions; the time dependence enters into the regression function through their coefficients. The estimation procedure

is easy to implement due to its mixed model equivalence. We derive the precision and accuracy of the estimates and

discuss their connection with the generalized singular value decomposition. Real MRS data and simulations are used

to illustrate the concepts.

Key words: Functional data analysis, longitudinal data, mixed model, structured penalty, generalized singular value

decomposition.
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1. Introduction

Technological advancements and increased availability of storage of large datasets have allowed

for the collection of functional data as part of time-course or longitudinal studies. In the

cross-sectional setting, there have been many proposed methods for estimating a regression

function in a so-called functional linear model (fLM). This function is a functional (continuous)

analogue of a vector of (discrete) regression coefficients; it connects the scalar response, y to

a functional covariate, w ≡ w(s). Although these models have recently been well studied,

extensions to longitudinally-collected functions have not received much attention. A recently-

proposed approach called longitudinal penalized functional regression (LPFR) approach ex-

tends cross-sectional fLM to a longitudinal setting by incorporating subject-specific random

intercepts (Goldsmith et al., 2012). One of the key assumption in LPFR is that the regression

function remains constant over time. Due to this restrictive assumption, LPFR is not suited

for situations in which the association between the functional predictors and scalar response

may evolve over time. In this manuscript, we propose a technique that extends the analysis of

functional linear models by relating scalar outcomes to functional predictors, both observed

longitudinally, and allows the estimation of a time-varying regression function.

The method fits into a generalized ridge regression framework by imposing a scientifically-

informed quadratic penalty term into the estimation process. The resulting estimate is a

function that is represented by a set of “partially empirical” eigenvectors that arise from a

joint eigen-basis decomposition of the predictor functions and the penalty term; see (Randolph,

Harezlak and Feng, 2012). The extension of this framework to the longitudinal setting has two

major advantages: 1) the regression function is allowed to vary over time; and 2) external or a

priori information about the structure of the regression function can be incorporated directly
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into the estimation process. We formulate the estimation procedure within a mixed-model

framework making the method computationally efficient and easy to implement.

Ramsay and Dalzell (1991) introduced the term functional data analysis (FDA) in the sta-

tistical literature. The cross-sectional fLM with scalar response can be stated as follows (see

e.g., Yao and Müller, 2010)

E(y|W ) = µy +

∫
Ω

W (s)γ(s)ds

where µy is the mean of y, Ω denotes the domain of the predictor functions W (s), s ∈ Ω, and

γ(s) is a square integrable function that models the linear relationship between the functional

predictors and scalar response. We will assume that W (·) denotes a mean-centered function

(E[W (s)] = 0 for almost all s ∈ Ω). As there is no unique γ(·) that solves this equation,

additional regularization or constraint is required. Typically, some form of smoothness is

imposed on γ(·), one approach being to expand both regression function γ(·) and predictor

function W (·) in terms of a set of spline basis functions such as B-splines and then obtain the

regularized estimate of γ(·) (Ramsay and Silverman, 1997). Another approach is to express

the regression function γ(·) in terms of the orthonormal eigenfunctions of covariance of W (·)

using Karhunen-Loève (K-L) basis expansion (see e.g., Müller , 2005). A third approach is to

combine the above two approaches, known as penalized functional regression (PFR) approach

(Goldsmith et al., 2011). In PFR approach, a spline basis is used to represent the regression

function and a basis of eigenfunctions from the set of predictors is used to represent each W (·).

Another approach is to use wavelet basis, instead of eigenfunctions, to represent the predictor

functions (Morris and Carroll, 2006).

Here we adopt an approach by Randolph, Harezlak and Feng (2012) which does not begin by

explicitly projecting onto a pre-specified basis of functions. Instead, prior information about

functional structure is incorporated into the estimation process by way of a penalty operator.

Hosted by The Berkeley Electronic Press
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“Partially empirical eigenvectors for regression” (PEER) approach exploits the fact that, in

the familiar framework of penalized least-squares regression, the estimate arises from a set

of basis functions that is determined jointly by the covariance (empirical spatial structure)

and the penalty (imposed structure). This naturally extends ridge regression (noninformative

structure) and smoothing penalties such as a second-derivative penalty (smooth regression

function assumption). In this paper, we extend the scope of the PEER approach to the

longitudinal setting in a manner that allows the estimated regression function γ ≡ γ(t, ·)

to vary with time.

The problem we address involves repeated observations from each of N subjects. At each

observation time, t, we collect data on a scalar response variable, y, and a (idealized) predictor

function, W (·). We are interested in longitudinal regression models of the following form:

yt = x>t β +

∫
Ω

Wt(s)γ(t, s)ds+ εt (1)

Here γ(t, ·) denotes the regression function at time t, xt is a vector of scalar-valued (non-

functional) predictors. In a similar spirit to that of a linear mixed model with time-related slope

for longitudinal data, we assume that γ(t, ·) can be decomposed into several time-invariant

component functions; e.g., γ(t, ·) = γ0(·) + t γ1(·).

The recently proposed LPFR approach assumes the regression function in (1) is independent of

time and proceeds in three steps: uses a truncated set of K-L vectors to represent the predictor

functions; expresses the regression function using a spline basis; and fits the longitudinal

model using an equivalent mixed-model framework that incorporates subject-specific random

effects. In contrast, we model the coefficient function γ(t, ·) as a time-dependent combination

of several time-invariant component functions, {γd(·)}Dd=0, each of which is estimated via a

penalty operator that is informed by the structure of the data or a scientific question.

Our work is motivated by a study in which magnetic resonance (MR) spectra have been
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collected longitudinally from late stage HIV patients (Harezlak et al., 2011). The observed

spectra from MR spectroscopy (MRS) are a mixture of pure metabolite spectra, baseline

profile and instrument noise.

Pure metabolite spectra provide information about the spatial structure of the observed

spectra and consequently can be used to inform the regression function. Figure 1 shows the

baseline MR spectra, W (·), from a brain region called basal ganglia for 114 subjects and also

plots nine pure metabolite spectra. We are interested in studying the association of y with the

metabolite concentrations. It is natural that the spatial structure (shape) of these metabolite

spectra should inform the process of estimating the relationship between y and W (·); i.e., the

subspace spanned by the functional structure of the pure metabolite spectra may be more

informative than structures such as B-spline or cosine functions that are “external” to the

problem. Therefore, the statistical methodology applied in this paper estimates γ focusing on

a subspace that is spanned by a basis of generalized singular vectors that arise jointly from

the predictors, W (·), and the metabolite spectra.

[Figure 1 about here.]

The cross-sectional fLM with scalar response has been a focus of various investigations (Ram-

say and Silverman, 1997; Faraway, 1997; Fan and Zhang, 2000; Cardot, Ferraty and Sarda,

1999, 2003; Cai and Hall, 2006; Cardot et al., 2007; Reiss and Ogden, 2009). Some of these

methods estimate regression functions in two steps. For example, principal components re-

gression (PCR) estimates of the regression function are obtained first and then these PCR

estimates are projected onto a B-spline basis (Cardot, Ferraty and Sarda, 2003) or vice-versa;

i.e., PCR fitting is performed only after projection onto B-splines (Reiss and Ogden, 2009).

Extensions of fLM have been made towards generalized linear model with functional predictors

(James, 2002; Müller and Stadtmüller, 2005) and quadratic functional regression (Yao and
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Müller, 2010). Another class of models, known as Functional Analysis of Variance (FANOVA),

decompose repetitively-observed functional predictors into several (fixed and random) groups

and subject-specific component functions (Brumback and Rice, 1998; Guo, 2002; Di et al.,

2009; Greven et al., 2011). However, it is important to distinguish our work from FANOVA

methods which do not relate functional predictor(s) to the scalar response in longitudinal

set up, the way we did it in this paper. To our knowledge, LPFR (Goldsmith et al., 2012)

is the only published method addressing regression estimation in the longitudinal functional

predictor framework.

Section 2 establishes notation and specifics on the longitudinal functional model considered in

this paper. In the applications, we employ a decomposition-based penalty and this is review

in Section 3.3. First, in Section 3.1, the concept of a generalized ridge estimate (or Tikhonov-

Phillips estimate, Tikhonov (1963), Phillips (1962)) is discussed while Section 3.2 shows that

under weak assumptions, our longitudinal generalized ridge estimate, along with its bias and

precision, can be obtained in terms of generalized singular (GS) vectors. These estimates can

be obtained as best linear unbiased predictors (BLUP) through mixed model equivalence and

this is discussed in Section 4.1. Expressions for precision are derived in Section 4.2.

Numerical illustrations are provided in Section 5. In particular, the simulation in Section 5.1

compares LPFR with the method proposed in this paper. The simulation in subsection 5.2

evaluates the influence of sample size and relative contribution of prior spatial information on

the proposed method using a decomposition-based penalty. An application based on experi-

mental data is also illustrated in section 6. The methods discussed in this paper have been

implemented in the refund package (Crainiceanu et al., 2012) in R through the peer() and

lpeer(). Throughout the presentation we consider a single functional predictor. However, the

http://biostats.bepress.com/jhubiostat/paper248
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proposed method has a natural extension to settings with more than one functional predictor

and this is discussed in the last section.

2. Statistical Model

We consider Ω = [0, 1], a closed interval in R and let W (·) denotes a random function in

L2(Ω). Let Wit(·) denotes a functional predictor from the ith subject (i = 1, . . . , N) at the tth

timepoint (t = t1, . . . , tni). Technically, an observed predictor arises as a discretized sampling

from an idealized function, and we will assume that each observed predictor is sampled equally

at p locations, s1, . . . , sp ∈ [0, 1], with sampling that is appropriately regular and dense enough

to capture informative spatial structure, as seen, for instance, in the MRS data in Section 6.

Let wit := [wit(s1), · · · , wit(sp)]> be the p × 1 vector of values sampled from the realized

function Wit(·). Then, the observed data are of the form {yit;xit;wit}, where yit is a scalar

outcome, xit is a K × 1 column vector of measurements on K scalar predictors, and wit is the

sampled predictor from the ith subject at time t. Denoting the true regression function at time

t by γ(t, ·), the longitudinal functional regression outcome model of interest is

yit = x>itβ +

∫ 1

0

Wit(s)γ(t, s)ds+ z>it bi + εit (2)

where, εit ∼ N(0, σ2
ε ) and bi is the vector of r random effects pertaining to subject i and dis-

tributed as N(0,Σbi). As usual we assume that zit is a subset of xit, εit and bi are independent,

εit and εi′t′ are independent whenever i 6= i′ or t 6= t′ or both, and bi and bi′ are independent if

i 6= i′. Here x>itβ is the standard fixed effect from K univariate predictors, z>it bi is the standard

random effect and
∫ 1

0
Wit(s)γ(t, s)ds is the subject/time specific functional effect. We assume

that γ(t, ·) ∈ L2(Ω), for all t.

When the association between functional predictor and response changes over time, the regres-

sion function γ(t, s) varies over both spatial and time domain. For example, γ(t, s) may vary
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linearly with time, γ(t, s) = γ0(s) + tγ1(s), or quadratically, γ(t, s) = γ0(s) + tγ1(s) + t2γ2(s).

This is in a spirit similar to a linear mixed effects model with linear or quadratic time slope

(see e.g., Fitzmaurice, Laird and Ware, 2004). In general, we assume that γ(t, s) can be

decomposed into several time-invariant component functions γ0(s), · · · , γD(s) as

γ(t, s) = γ0(s) + f1(t)γ1(s) + · · ·+ fD(t)γD(s)

where, f1, . . . , fD are D prescribed linearly independent functions of t and fd(0) = 0 for all d;

the time component t enters into γ(t, s) through these terms.

At t = 0, γ(t, s) reduces to γ0(s) and has the obvious interpretation of a baseline regression

function pertaining to the sampling points s. When D = 0, γ(t, s) ≡ γ0(s) is independent of

t, a situation considered by Goldsmith et al. (2012). In general, each f may be any function

of t with f(0) = 0, e.g., f(t) = t or t exp(t). We can rewrite the equation (2) as

yit = x>itβ +

∫ 1

0

Wit(s){γ0(s) + f1(t)γ1(s) + · · ·+ fD(t)γD(s)}ds+ z>it bi + εit

In a PEER approach, the dependence of yit on Wit is seen as a linear dependence on ob-

servations at p sampling points, wit; spatial (functional) structure is imposed directly into

the estimation of γd = [γd(s1), . . . , γd(sp)]
>, for d = 0, . . . , D. Combining all n• =

∑N
i=1 ni

observations from the N subjects obtained across all time points, we express the model as

y = Xβ +Wγ + Zb+ ε. (3)

Here, y = [y1t1 , · · · , y1tn1
, . . . , y1tN , . . . , yNtnN ]> is an n• × 1 vector of all responses, X =

[x>1t1 , · · · , x
>
1tn1

, · · · , x>1tN , · · · , x
>
NtnN

]> is an n• ×K design matrix pertaining to K univariate

predictors, β be the associated coefficient vector, γ = [γ>0 , γ
>
1 , · · · , γ>D]> is a (D+1)p×1 vector

of functional coefficients, W is the corresponding n· × (D + 1)p design matrix. Further, b is

the rN × 1 vector of random effects and Z is the corresponding n• × rN design matrix. The

http://biostats.bepress.com/jhubiostat/paper248
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matrix W has the structure

W =


W1

...

WN

 Wi =


w>it1 f1(t1)w>it1 · · · fD(t1)w>it1

...
...

. . .
...

w>itni f1(tni)w
>
itni

· · · fD(tni)w
>
itni



3. Estimation of Parameters with a Penalty

The formal model in (2) is ill-posed and has no unique solution for γ. Common approaches

to estimate a regression function in a fLM involve reducing dimension by projecting onto a

subspace defined by a few K-L (empirical) eigenvectors or onto the span of a set of spline basis

functions. Alternatively, our use of a generalized ridge penalty constrains the estimation of γ

in the spatial (or s) dimension without preliminary smoothing or explicit dimension reduction.

The process encourages structure of a particular type via the choice of penalty operator. In

the longitudinal (or t) dimension, γ is more explicitly and severely constrained by the choice

of f1, . . . , fD.

3.1 Generalized Ridge Estimate

The model of interest described in the previous section can be written as follows:

y = Xβ +Wγ + ε∗ (4)

where ε∗ = Zb + ε ∼ N(0, V ) and V = ZΣbZ
> + σ2

ε I. Further, assume Ld be the penalty

operator for γd and λ2
d be the associated tuning parameter, ∀ d = 0, . . . , D. Then the penalized

estimates of β and γ can be obtained by minimizing

||y −Xβ −Wγ||2V −1 + λ2
0||γ0||2L>0 L0

+ · · ·+ λ2
D||γD||2L>DLD (5)

here we have used the notation ||a||2B = a>Ba, where B is a symmetric, positive definite

matrix. A generalized ridge estimate of β and γ based on minimizing the above expression is

Hosted by The Berkeley Electronic Press



Longitudinal Functional Models with Structured Penalties 9

obtained as (see e.g., Ruppert, Wand and Carroll, 2003, p. 66)β̂
γ̂

 = (C>V −1C +D)−1C>V −1y (6)

where, C = [X W ], D = blockdiag{0, L>L} and L = blockdiag{λ0L0, · · · , λDLD}.

3.2 Connection with the GSVD

A PEER estimate and its mean squared error (MSE) can be expressed in terms of generalized

singular (GS) vectors obtained through generalized singular value decomposition (GSVD)

for the cross-sectional fLM with single functional predictor and no random effect Randolph,

Harezlak and Feng (2012). For background on the GSVD and its computation, see Van-Loan

(1976); Paige and Saunders (1981); Bjorck (1996); Golub and Van-Loan (1996). Here, we derive

a similar expression for the generalized ridge estimate γ̂ of the regression function in (6).

After some algebra, the generalized ridge estimate in (6) for γ can be expressed as

γ̂ = −A1X
>V −1y + A2W

>V −1y

where

A>1 = (X>V −1X)−1X>V −1W [W>V −1W + L>L−W>V −1X(X>V −1X)−1X>V −1W ]−1

A2 = W>V −1W + L>L−W>V −1X(X>V −1X)−1X>V −1W

When X = 0 (a situation without any scalar predictors) or X>V −1W = 0 the generalized

ridge estimation of γ can be put into a PEER estimation framework in terms of GS vectors,

as discussed below.

With X = 0 or X>V −1W = 0, the γ̂ reduces to [W>V −1W + L>L]−1W>V −1y. Moreover, in

this case generalized ridge estimate of β becomes [X>V −1X]−1X>V −1y. Now, if we transform

W̃ := V −1/2W and ỹ := V −1/2y, we can rewrite L as

L = λ0 blockdiag

{
L0,

λ1

λ0

L1, · · · ,
λD
λ0

LD

}
= λ0L

s

http://biostats.bepress.com/jhubiostat/paper248
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Here, Ls can be interpreted as a scaled L where scaling is done for all the tuning parameters

associated with the ‘longitudinal’ part of the regression function with respect to the ‘baseline’

tuning parameter.

Set p̃ = (D + 1)p, let m denote the number of rows in L and set c = dim[Null(L)]. Further,

assume that n• 6 m 6 p̃ 6 m + n• and the rank of the (n• + m) × p̃ matrix [W̃> (Ls)>]>

is p̃. The following describes the GSVD of the pair (W̃ , Ls): there exist orthogonal matrices

U and V , a nonsingular G and diagonal matrices S and M such that Randolph, Harezlak and

Feng (2012)

W̃ = USG−1 S = [0 S] S = blockdiag{S1, Ip̃−m}

Ls = VMG−1 M = [M 0] M = blockdiag{Ip̃−n• , M1}

Submatrices S1 and M1 have ` = n• +m− p̃ diagonal entries ordered as

0 < σ1 6 σ2 6 · · · 6 σ` < 1

0 > µ1 > µ2 > · · · > µ` > 1

where, σ2
k + µ2

k = 1, k = 1, . . . , `

Here, the columns {gk} of G are the GS vectors determined by the GSVD of the pair (W̃ , Ls).

Denote the columns of U and V by uk and vk, respectively. Now, it can be shown that

[W>V −1W+L>L]−1W>V −1 = [W>V −1W+λ2
0(Ls)>Ls]−1W>V −1 = G(S>S+λ2

0M>M)−1G>

W̃>V −1/2 and consequently, γ̂ can be expressed as

γ̂ = G(S>S + λ2
0M>M)−1S>U>ỹ =

p̃−c∑
k=p̃−n•+1

σ2
k

σ2
k + λ2

0µ
2
k

1

σk
u>k ỹgk +

p̃∑
k=p̃−c+1

u>k ỹgk

Further, the bias and variance can be expressed as

Bias[γ̂] = (I −W#W )γ = G(S>S + λ2
0M>M)−1(λ2

0M>M)G−1

=
∑p̃−n•

k=1 gkg̃
>
k γ +

∑p̃−c
k=p̃−n•+1

λ20µ
2
k

σ2
k+λ20µ

2
k
gkg̃
>
k γ

V ar[γ̂] = W#V (W#)> = G(S>S + λ2
0M>M)−1S>S(S>S + λ2

0M>M)−1G>

=
∑p̃−c

k=p̃−n•+1

σ2
k

(σ2
k+λ20µ

2
k)2
gkg
>
k +

∑p̃
k=p̃−c+1 gkg

>
k
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Longitudinal Functional Models with Structured Penalties 11

where, W# = [W>V −1W +L>L]−1W>V −1 and g̃k denotes the kth column of G−T = (G−1)> =

(G>)−1. Further, we can express bias as [W>V −1W + L>L]−1L>Lγ which means γ̂ will be

unbiased only when γ ∈ Null(L).

For estimates obtained using this technique, the bias and variance can be expressed in terms

of generalized singular vectors, provided the assumption of X>V −1W = 0 applies. In this

case, one can show that β̂ is simply the generalized least squares estimate from the linear

model y = Xβ + ε∗, and γ̂ is the generalized ridge estimate from y = Wγ + ε∗ with penalty

L. That is, β is estimated as if Wγ were not present, and γ is estimated as if Xβ were not

present. The PEER estimate discussed in this section can be thought of as an extension of

the estimation discussed in Randolph, Harezlak and Feng (2012) in two ways: we allow for a

general covariance matrix V (for y) and we also extend the penalty operator to apply across

multiply-defined domains, L0, . . . , LD.

3.3 Decomposition based penalty

Our goal is to estimate γ imposing some presumed functional structure. In other words, the

aim is to supplement (not to smooth or otherwise alter) the predictor function with knowledge

about spatial structure in a mathematically tractable way. A common approach to incorporate

spatial structure into the functional regression model is to use the strongest structure from the

predictors by considering only first few K-L vectors (Hall, Poskitt and Presnell, 2001; Cardot,

Ferraty and Sarda, 2003). However, we will incorporate spatial structure through an informed

choice of penalty operator as proposed by Randolph, Harezlak and Feng (2012).

Let γd ≡ γLd,λd be the estimate obtained from the penalty operator Ld and tuning parameter

λ2
d, for each d = 0, . . . , D. For example, Ld may denote Ip (a ridge penalty) or a second-

order derivative penalty (giving an estimate having continuous second derivative). Alterna-

http://biostats.bepress.com/jhubiostat/paper248



12 Biometrics, October 2012

tively, with prior knowledge about potentially-relevant structure in a regression function, a

decomposition-based targeted penalty can be defined in terms of a subspace defined by such

structure (Randolph, Harezlak and Feng, 2012). To be precise, if it is appropriate to impose

scientifically-informed constraints on the “signal” being estimated by γ, this prior may be

implemented by encouraging the estimate to be in or near a subspace, Q ⊂ L2(Ω).

Returning to our notation that reflects functional predictors observed at p sampling points,

we represent Q by the range of a p× J matrix Q whose columns are q1, . . . , qJ . Consider the

orthogonal projection PQ = QQ+ onto the Range(Q), where Q+ is Moore-Penrose inverse of

Q. Then a decomposition-based penalty is defined as

LQ = α0PQ + α1(I − PQ) (7)

for scalars α0 and α1. To see how LQ works, let γ̃d be any estimate of γd. When γ̃d ∈ Sp(Q),

we have LQγ̃d = α0γ̃d, but when γ̃d /∈ Sp(Q), we have LQγ̃d = α1γ̃d. The condition α1 > α0

imposes more penalty for γ̃d /∈ PQ compared to when γ̃d ∈ PQ. The weights α1 and α0 determine

the relative strength of emphasizing Q in the estimation process. Note, in particular, that

taking α1 = α0 results in a ridge estimate and that LQ is invertible, provided α1 and α0 are

nonzero. Analytical properties of estimates from this family of penalties have been discussed

in Randolph, Harezlak and Feng (2012).

4. Mixed model representation

Estimates of β and γ obtained by minimizing the expression in equation (5) correspond to a

generalized ridge estimate. In this section we aim to construct an appropriate mixed model

that minimizes the expression in equation (5). In general, the penalty, L, is not required to be

invertible but for simplicity this will be assumed here. The mixed model approach provides an

automatic selection of tuning parameters. REML-based estimation of the tuning parameters
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Longitudinal Functional Models with Structured Penalties 13

has been shown to perform as well as the other criteria and under certain conditions it is less

variable than GCV-based estimation (Reiss and Ogden, 2009).

4.1 Estimation of parameters

Using Henderson’s (1950) justification [21], one can show that the model y = Xβ + Wγ +

ε∗ where, ε∗ ∼ N(0, V ) and γd ∼ N(0, 1
λ2d

(L>d Ld)
−1), for each d = 0, . . . , D, minimizes the

expression in equation (5) to obtain the BLUP. Thus the generalized ridge estimate of β and

γ correspond to the BLUP from the following model:

y = Xβ +W ∗γ∗ + ε

where, W ∗ = [W Z], γ∗ = [γ> b>]> ∼ N [0,Σγ∗ ] and ε ∼ N(0, σ2
ε I) with

Σγ∗ = blockdiag{(L>L)−1, Σb} Σb = blockdiag{Σb1 , · · · ,ΣbN}

This representation allows us to estimate fixed and functional predictors simply by fitting a

linear mixed model (e.g., using the lme() of the nlme package in R or PROC MIXED in SAS).

4.2 Precision of Estimates

Our ridge estimate is the BLUP from equivalent mixed model, hence the variance of the

estimate depends on whether the parameters are random or fixed. Randomness of γ is a

device used to obtain the ridge estimate while ε and b in our case are truly random. With this

argumentation, it can be advocated that variance of estimates to be conditional on γ, but not

on b (Ruppert, Wand and Carroll, 2003). BLUP of β, γ and b can be expressed as (see e.g.,

Robinson, 1991; Ruppert, Wand and Carroll, 2003):

β̃ =
(
X>V −1

1 X
)−1

X>V −1
1 y γ̃ = (L>L)−1W>V −1

1 (y −Xβ̃) b̃ = ΣbZ
>V −1

1 (y −Xβ̃)
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where, V1 = V +W (L>L)−1W>. β̃ is an unbiased estimator of β, but γ̃ is not unbiased. It is

trivial to see that Cov(y|γ) = V . Thus, the variances of β̃ and γ̃, conditional on γ, are:

Cov(β̃|γ) =
(
X>V −1

1 X
)−1

X>V −1
1 V V −1

1 X
(
X>V −1

1 X
)−1

Cov(γ̃|γ) = AγV A
>
γ Aγ = (L>L)−1W>V −1

1 {V1 −X(X>V −1
1 X)>}V −1

1

To obtain the unconditional variance, we need to replace V by V1 in the above expressions

but this is will overestimate the variance of the estimates. The expressions for predicted value

of y and its variance are:

ỹ = Xβ̃ +Wγ̃ + Zb̃ Cov(ỹ|γ) = AyV A
>
y

where,

Ay = [{V1 −WL>LW − ZΣbZ
>}−1X

(
X>V −1X

)−1
X>V −1 +WL>LW> + ZΣbZ

>]V −1
1

Let, T = [1 f1(t) · · · fd(t)]⊗ IK . Then the discretized version of regression function at time

t is γ(t) = [γ(t, s1), · · · , γ(t, sK)] = Tγ. Therefore, the estimate of γ(t) is γ̃(t) = T γ̃ and the

estimate of its variance is TCov(γ̃|γ)T>.

5. Simulation

We present two simulation studies to evaluate the properties of the proposed method which we

refer to as “LongPEER”. The first simulation study (Section 5.1) compares the performance

of the LongPEER method with the LPFR approach. In the second simulation study, only the

LongPEER method is considered. The purpose of the second simulation study is to evaluate

the influence of sample size and the contribution of prior information about spatial structure

(as determined by two different tuning parameters α0 and α1 in equation 7) on the LongPEER

estimate. In both the simulation studies, the simulated predictor functions resemble the MRS

data. All results summarized in this section are based on 100 simulated samples.
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For each subject and visit, predictor functions were simulated independently. Predictor func-

tions are“bumpy” curves with bumps at some prespecified locations. White noise was added to

the predictor functions to account for the instrumental measurement noise. Bumpy regression

functions were generated with bumps at some (but, not all) of the bump locations of the

predictor function. For the simulation in Section 5.1, the regression function is assumed to be

independent of time, whereas it varies with time in simulation in Section 5.2. For both the

predictor and regression functions, 100 equispaced sampling points in [0,1] are used.

For the decomposition based penalty, the matrix Ld matrix is defined as follows: 1) select the

discretized functions qj, j = 1, . . . , J spanning the “non-penalized-subspace” and 2) compute

Ld = QQ+, where Q = col[q1, . . . , qJ ]. Vectors qj are discretized functions defined to be

zero except at one bump corresponding to a region in the simulated predictor functions. For

ridge and second-order penalties, the matrices Ld are defined as I and D2, respectively, where

D2 = [di,j] is a square matrix with entries di,i = di,i+2 = 1, di,i+1 = −2 and di,j = 0 otherwise.

Estimation error was summarized in terms of the mean squared error (MSE) of the estimated

regression function defined as ||γ− γ̃||2, where γ̃ denotes the estimate of γ. Further, MSE was

decomposed into the trace of the variance and squared norm of bias. We also calculated sum

of squares of prediction error (SSPE) as ||y − ỹ||2, where ỹ denotes the estimate of y. The

estimates based on the proposed methods, including the LongPEER estimate, were obtained

as BLUPs from the mixed model formulation described in Section 4.1.

5.1 Comparison with LPFR

As previously stated, LPFR estimates a regression function that does not vary with time.

Therefore, in the first set of simulations, we generated the outcomes using a time-invariant

regression function (i.e., γ(t, s) = γ0(s), for all t). The following model was used to generate
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the outcome data:

yit = β0 +

∫ 1

0

Wit(s)γ0(s)ds+ bi + εit, i = 1, · · · , 100, (8)

where γ0(s) =
∑
h∈Hγ0

a0h exp

[
−2500 ∗

(h− s
100

)2
]

The bumpy predictor functions were generated from the following equation

wit(s) =
∑
h∈H1

(ξ1h + c1h)exp

[
−2500 ∗

(
s− h
100

)2
]

+
∑
h∈H2

(ξ2h + c2h)exp

[
−1000 ∗

(
s− h
100

)2
]

+(ξ31 + 0.9)exp

[
−1000 ∗ ξ32

(
s− 50

100

)2
]
,

[Table 1 about here.]

where c1h, c2h and a0h are defined in Table 1. {ξ1h, h ∈ H1}, {ξ2h, h ∈ H2}, and ξ31 were drawn

independently from Uniform(0, 0.1). Also, β0 = 0.06, εit ∼ N [0, (0.02)2] and bi ∼ N [0, (0.05)2].

[Figure 2 about here.]

We applied both LPFR (using lpfr() available in the refund package in R (Crainiceanu et

al., 2012)) and the LongPEER method with different forms of structured penalties to the

simulated data. To obtain LPFR estimate, the dimension of both principal components for

predictor function and truncated power series spline basis for the regression function were set

to default values of 30.

Table 2 displays the MSE and prediction error obtained for different estimates. The range of

SSPE for the considered methods is very narrow (1.116 and 1.168) indicating that all methods

perform well when the prediction metric is applied.

The LongPEER estimate has much smaller MSE when compared to the other three estimates.

Ridge estimate has less bias compared to the estimate obtained using second-order difference

penalty. However, due to the larger variance, in overall, the ridge estimate has larger MSE
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compared to the estimate obtained using second-order difference penalty. Both the bias and

variance are largest for the LPFR estimate and consequently it has the largest MSE of the

four estimates.

Figure 2 displays the four estimates of the regression function. The LongPEER estimate is

almost identical to the true regression function. Bump locations and magnitudes are very

close to the true function and nearly as smooth as the true function. The estimated regression

function obtained using ridge penalty is also quite close to the true function including the

location and the magnitude of the bumps. However, the ridge estimate is more wiggly than

the LongPEER estimate. The LPFR estimate and the estimate obtained using second-order

difference penalty are oversmoothed in that the magnitude of the bumps is underestimated or

missed altogether. The increased performance of the LongPEER estimate is due to its ability

to exploit presumed structural information which is ignored by the other estimates.

[Table 2 about here.]

5.2 Simulation with time varying regression function

[Figure 3 about here.]

In this simulation, the regression function varies as a parametric function of time. We are

not aware of other longitudinal functional regression methods for estimating a time-varying

regression function so we display on the performance of LongPEER. The primary goal is

to assess the effects of sample size and the relative contribution of external information as

determined by α0 and α1 in equation 7, on the regression function estimate.

Without loss of generality, we set α0 = 1 and vary α1 on an exponential scale. Larger values

of α1 indicate greater emphasis of prior information on the estimation process. The model

considered here is similar to that described in Section 5.1 with the exception that γ(t, s) =
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γ0(s) + t γ1(s). The function γ0(s) is defined in equation (9) and γ1(s) is of the form

γ1(s) =
∑
h∈Hγ1

a1h exp

[
−2500 ∗

(
h− s
100

)2
]

where the value of h and a1h are listed in Table 1 and β0 = 0.06. Realizations of functional

predictors were generated as described in section 5.1.

For each simulation, an appropriate σ2
ε was chosen to ensure that the squared multiple corre-

lation coefficient R2 = s2
y/[s

2
y + σ2

ε ] is 0.9. Here, s2
y = 1

4

∑4
t=1

1
N−1

∑N
i=1 (yit − ȳ.t)2 denotes the

average sample variance in the set {yit− εit : i = 1, · · · , N ; t = 1, · · · , 4} with ȳ.t = 1
N

∑N
i=1 yit.

Results in terms of SSPE and MSE are displayed graphically in Figure 3. As the sample size

increases, both SSPE and MSE of γ̃0 and γ̃1 decrease, providing empirical evidence that the

estimates obtained using decomposition based penalty are consistent. For a given sample size,

we observe a decrease in MSE as the value of α1 increases up to 100. However, no further

improvement is seen beyond α1 = 100, suggesting that choice of α1 has little or no influence

the estimate provided it is sufficiently large.

The estimated γ0 and γ1 are displayed in Figure 4. The estimated γ0(·) and γ1(·) are nearly

identical to the simulated true functions, even for sample size N = 100. Further inspection

reveals a small estimation bias at the points where both γ0 and γ1 have peaks, but this bias

gradually disappeared as the sample size increased to N = 400.

[Figure 4 about here.]

6. MRS study application

[Figure 5 about here.]

We applied LongPEER to study the association of metabolite spectra obtained from basal

ganglia on the global deficit score (GDS) in a longitudinal study of late stage HIV patients
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(Harezlak et al., 2011). GDS is often used as a continuous measure of neurocognitive im-

pairment (e.g., Carey et al., 2004) and a large GDS score is an indicator of high degree of

impairment. The collected MRS spectra are composed of the combination of pure metabolite

spectra, instrument noise and baseline profile. The spectra were sampled at n = 399 distinct

sampling points each. We collected a total of n• = 306 observations from N = 114 subjects.

The longitudinal observations for each subject were within 3 years from baseline. The number

of observations per subject ranged from 1 to 5 with median 3.

Information on spectra obtained from nine pure metabolites was available and hence we

were able to use this to define a decomposition penalty LQ as in equation (7) (with α1 =

1000). Spectra of basal ganglia at baseline and pure metabolite spectra are displayed in

Figure 1. The pure metabolite spectra include spectra of Creatine (Cr), Glutamate (Glu),

Glucose (Glc), Glycerophosphocholine (GPC), myo-Inositol (Ins), N-Acetylaspartate (NAA),

N-Acetylaspartylglutamate (NAAG), scyllo-Inositol (Scyllo) and Taurine (Tau). It can be

verified that at each locations of major bumps in basal ganglia spectra (left panel), there are

bumps in at least one of pure metabolite profiles (right panel). We fitted the following model

to data

yit = β0 + β1 t+

∫
Ω

Wit(s)γ(t, s)ds+ bi + εit, (9)

where, γ(t, s) = γ0(s) + t γ1(s) and yit and Wit(·) are the GDS and basal ganglia spectrum for

subject i at time t, respectively. We assume that εit ∼ N(0, σ2
ε ) and bi is the subject-specific

random intercept distributed as N(0, σ2
b ). The estimates are obtained as the BLUP from the

mixed model formulation described in Section 4.1.

Estimates of σ2
ε and σ2

b were 0.08037 and 0.33115, respectively. Figure 5 displays the estimates

of γ0(·) and γ1(·) with pointwise 95% confidence bands. To make the interpretation easier, we

also include the selected pure metabolite spectra. These figures reveal that γ̂0(·) (the ‘baseline’
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part of the regression function) is different from zero at the locations where at least one of

the pure metabolites Cr, Glu, NAA, NAAG and Scyllo has a bump. Similarly, each non-zero

part of γ̂1(·) (the ‘longitudinal’ part of the regression function) coincides with bump locations

of one or more pure metabolite profiles of Cr, Glu, NAA, GPC and Ins.

Pointwise confidence interval for γ0(·) and γ1(·) contain the“zero” line over most of the intervals

of interest. The estimated γ0 is significant in the region s ∈ (0.4, 0.5) and estimated γ1 is

significant in a wider region of s ∈ (0.4, 0.6). To be precise, the peaks of the both γ̂0(·) and

γ̂1(·) are significant at the locations where the at least one of the pure metabolite profiles of

NAA and Glu have bumps.

The finding of the significant negative ‘longitudinal’ effect of NAA is worth noticing. This

suggests that GDS increases as the NAA concentration decreases in basal ganglia. This finding

is consistent with the studies where reduced concentration of NAA has been found to be

associated with decrease in neuronal mass (Christiansen et al., 1993; Lim and Spielman, 1997;

Soares and Law, 2009).

7. Discussion

We have proposed a novel estimation method for longitudinal functional regression and derived

some properties of the coefficient function estimate. Within this framework, the LongPEER

method is the first to allow a coefficient function to vary with time. It extends the scope of

generalized ridge regression to the realm of longitudinal data. The approach may be viewed

as an extension of longitudinal mixed effects models, replacing scalar predictors by functional

predictors. Advantages of this method include: 1) a framework that allows the regression

function to vary over time; 2) the ability to incorporate structural information into the

estimation process; and 3) easy implementation through the linear mixed model equivalence.
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The emphasis here is on a general statistical framework for incorporating scientific knowl-

edge into the estimation process when both the scalar response and predictor functions

are observed longitudinally. In absence of prior information, one may impose more vaguely-

defined constraints—such as smoothness or re-weighted empirical subspaces—to estimate the

coefficient function. An advantageous use of specific prior information is illustrated in the

first simulation where smoothness constraints or a spline basis representations perform poorly.

The second simulation shows a reduction in estimation error as sample size increases; this

empirically suggests the consistency for such an estimate, provided the information about the

regression function structure is correct.

Solutions to the generalized ridge regression problem can be expressed in many forms. The

linear mixed model equivalence provides an easy computational implementation as well as

an automatic choice of the tuning parameters using REML criterion. The GSVD provides

algebraic insight and a convenient way to derive the bias and variance expressions of the

estimates. Another natural way to obtain the regression function estimates is by using Bayesian

equivalence (see e.g., Robinson, 1991) with the informative priors quantifying the available

scientific knowledge.

One of the natural extensions of our work can incorporate multiple functional predictors.

For example, we can observe two functional predictors W
(1)
t (·) and W

(2)
t (·) with γ(1)(t, ·)

and γ(2)(t, ·) their associated coefficient functions, respectively. Furthermore, we can express

γ(1)(t, s) = γ
(1)
0 (s)+f

(1)
1 (t)γ

(1)
1 (s)+· · ·+f (1)

d (t)γ
(1)
d (s) and γ(2)(t, s) = γ

(2)
0 (s)+f

(2)
1 (t)+γ

(2)
1 (s)+

· · ·+f (2)
d (t)γ

(2)
d (s). If W (1) and W (2) represent design matrices for the two functional predictors,

then we can estimate γ(1)(t, ·) and γ(2)(t, ·) by finding the BLUP estimate of γ(1) and γ(2) from

the mixed model, y = Xβ +W (1)γ(1) +W (2)γ(2) +Zb+ ε. The simplified formula for bias and

variance derived in Section 3.2 still holds with an additional assumption (W (1))>V −1W (2) = 0.
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As presented here, the method addresses models having a continuous scalar outcome, but

allowing for either binary and count responses is of interest. Indeed, an important problem

that arises in MRS data is that of understanding the neurocognitive impairment status of

HIV patients, defined as a binary variable, based on functional predictors collected over time.

Extending our approach to these general settings is possible and currently being pursued.
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Figure 1. Observed MR spectra from basal ganglia for 114 subjects collected at baseline
(t = 0) are shown in the left panel and the 9 pure metabolite profiles in the right panel.
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Figure 2. True and estimated regression for simulation study in Section 5.1.
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Figure 3. SSPE and MSE for simulation study in Section 5.2.
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Figure 4. Regression function estimates for the simulation study described in Section 5.2.
Left panel shows the estimate of γ0(·) and right panel the estimate of γ1(·)
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Figure 5. Estimates of the regression function (with 95 % point-wise confidence band) for
the analysis described in Section 6. The top panel shows the estimated γ0(·) and bottom panel
the estimate of γ1(·) . Scaled pure metabolite profiles are also shown on both plots.
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Table 1
Values of c1h, c2h, a0h and a1h for genereation of predictor and regression function in simulation studies in Sections

5.1 and 5.2.

h ∈ H1 h ∈ H2 h ∈ Hγ0 h ∈ Hγ1

h c1h h c2h h a0h h a1h

20 0.05 70 0.6 30 0.15 20 0.06
30 0.10 80 0.5 50 -0.11 70 0.06
60 0.08 88 0.3 60 0.14 80 0.06
68 0.05 95 0.4 68 0.05

70 0.15
80 0.03
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Table 2
Estimation and prediction errors obtained using Ridge penalty, second-derivative penalty (D2), LPFR and LongPEER

based on 100 simulated datasets. The sample size is set at N=100 and number of observations at ni = 4.

Ridge D2 Decomposition
LPFR penalty penalty penalty

MSE(γ0) 0.2227 0.0980 0.0820 0.0095
||Bias||2(γ0) 0.1065 0.0099 0.0551 0.0006
Trace of Variance(γ0) 0.1162 0.0881 0.0269 0.0089

SSPE of Y 1.1685 1.1157 1.1579 1.1535
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