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Statistical hypothesis test of factor loading in
principal component analysis and its

application to metabolite set enrichment
analysis

Hiroyuki Yamamoto, Tamaki Fujimori, Hajime Sato, Gen Ishikawa, Kenjiro
Kami, and Yoshiaki Ohashi

Abstract

Principal component analysis (PCA) has been widely used to visualize high-
dimensional metabolomic data in a two- or three-dimensional subspace. In metabolomics,
some metabolites (e.g. top 10 metabolites) have been subjectively selected when
using factor loading in PCA, and biological inferences for these metabolites are
made. However, this approach is possible to lead biased biological inferences be-
cause these metabolites are not objectively selected by statistical criterion. We
proposed a statistical procedure to pick up metabolites by statistical hypothesis
test of factor loading in PCA and make biological inferences by metabolite set
enrichment analysis (MSEA) for these significant metabolites. This procedure
depends on the fact that the eigenvector in PCA for autoscaled data is propor-
tional to the correlation coefficient between PC score and each metabolite levels.
We applied this approach for two metabolomic data of mice liver samples. 136
of 282 metabolites in first case study and 66 of 275 metabolites in second case
study were statistically significant. This result suggests that to set the previously-
determined number of metabolites is not appropriate because the number of sig-
nificant metabolites is different in each study when using factor loading in PCA.
Moreover, MSEA was performed for these significant metabolites and significant
metabolic pathways can be detected. These results are acceptable when compared
with previous biological knowledge. It is essential to select metabolites statisti-
cally for making unbiased biological inferences from metabolome data, when us-
ing factor loading in PCA. We proposed a statistical procedure to pick up metabo-
lites by statistical hypothesis test of factor loading in PCA and make biological



inferences by MSEA for these significant metabolites. We developed an R pack-
age ”mseapca” to perform this approach. The “mseapca” package is publicity
available on CRAN website.



Background 

 Metabolomics is a science based on exhaustive-profiling of metabolites. In 

metabolomics, various analytical technologies such as capillary 

electrophoresis–mass spectrometry (CE–MS), liquid chromatography–mass 

spectrometry (LC–MS), gas chromatography–mass spectrometry (GC–MS) and 

nuclear magnetic resonance (NMR) etc. have been used. Statistical analysis for 

these analytical data has been studied in chemometrics research area [1]. In 

metabolomics, chemometrics approaches commercing with multivariate analysis 

such as principal component analysis (PCA) have been mainly applied. 

  PCA [2] has been routinely used to visualize high-dimensional metabolomic data 

in two- or three-dimensional subspace in metabolomics as well as a heat map in 

transcriptmics. A scatter plot of PC score vectors (a score plot) can be used for 

outlier detection or discovering biologically interpretable patterns. Typically, 

upon finding a specific PC score is related to a phenotype of interest [3, 4], such 

as time course or group information, the corresponding factor loading has been 

evaluated to discover meaningful metabolites for making biological inferences. 

In many metabolomics research articles [5, 6, 7], an eigenvector in PCA (eq. 1) 

has been used as factor loading. For making biological inferences, some 

metabolites (e.g. top 10 metabolites) has been subjectively selected by using the 

eigenvector. However, this approach has some problems. For example, many 

metabolites varies with phenotype in a study and only a few metabolites in 

another study. An existing approach using the eigenvector equals to set the same 

number of metabolites for making biological inferences among these different 

studies. As a result, biological interpretation might be performed by using not 

significant metabolites varied with phenotype irrelevantly. Additionally, the value 

of eigenvector itself does not have statistical sense because it is nothing but 

normalized that the sum of squares is 1 just for computational reason.  

The eigenvectors in PCA for autoscaled data [8] are proportional to correlation 

coefficient between PC scores and variables. This fact is well-known in 

multivariate analysis literature [9] but appears not to be appreciated in 

metabolomics. In the present study, factor loading was defined as correlation 

coefficient between PC scores and variables. This definition can be used to 
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perform statistical hypothesis testing and can select significant metabolites 

objectively by statistical criteria.  

Significant metabolites are selected in some way and afterward biological 

inferences are made for these metabolites by biologists. They often make 

biological inferences with respect to a biological functional unit such as metabolic 

pathway (e.g. “glycolysis is notably activated” or “an amino acid metabolism is 

significantly suppressed”). In gene expression analysis, gene set enrichment 

analysis (GSEA) has been applied to find significant gene sets by using gene 

ontology (GO) terms. In metabolomics, metabolite set enrichment analysis 

(MSEA) [10] can find significant metabolic pathway. MSEA has been computed 

by some approaches such as over representation analysis (ORA) [11], 

Subramanian’s GSEA [12] and global test [13]. MSEA is convenience to make 

biological inferences from metabolomic data, but this approach has not been 

applied for metabolites selected by factor loading in PCA. 

In the present study, we performed statistical hypothesis test of factor loading 

in PCA for two metabolomic data sets of mice liver samples as case studies. This 

approach can select significant metabolites when using factor loading in PCA, and 

MSEA by ORA approach can be applied for these significant metabolites. We 

developed the R package ‘mseapca’ to work sequence from statistical hypothesis 

test of factor loading in PCA to MSEA. 

 

Theory 

Principal Component Analysis (PCA) 

Consider a mean-centered data matrix X that has samples in each row and 

variables in each column. A score vector is related to the data matrix by t = Xw 

where w is a vector of weights. PCA is formulated as the optimization problem of 

maximizing the variance of the score vector t:  

1
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and the weight vector w is often used for factor loading. After a transformation, eq. 

(1-1) can be rewritten as the eigenvalue problem 

http://biostats.bepress.com/cobra/art99



wXwX λ=
−

'
1

1

n . 
(1-2)

 

An eigenvector w and eigenvalue λ of eq. (1-2) can be computed by using 

numerical computation libraries for singular value decomposition. An eigenvalue 

λ corresponds to the variance of the PC score vector formed using the associated 

eigenvector as the weight vector. 

A coefficient of the correlation between the PC score and the p-th variable can 

be defined as  
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where t' is the transpose of t. Introducing c as the column vector in which the p-th 

element is 1 and the others are 0, so that xp = Xc, we have 
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Transposing eq. (1-2) gives 'n wXXw λ=−1/''  which can be substituted in eq. 

(1-4), giving 
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Then the variance of the score vector can be replaced by λ and the standard 

deviation of xp is replaced by σp. Finally, the correlation between PC score and 

variables can be written as 
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With data scaled to unit variance (autoscaling), the weight wp is proportional to 

the correlation coefficient between the PC score and variable xp because σp = 1 in 

eq. (1-6). Thus, the factor loading can be defined as the correlation coefficient in 

eq. (1.6). On the basis of this definition, we can perform a statistical test for factor 

loading in PCA, using the well-known fact that, for a correlation coefficient r, the 
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has a t-distribution with (n-2) degrees of freedom. Then, we can select variables 

that have a statistically significant correlation with the PC score and make 

biological inferences using these variables. 

 

Materials and Methods 

Sample preparation, metabolome analysis and data processing 

BKS.Cg-m+/m+/Jcl (normal mice), 12-h fasting normal mice, 

BKS.C-+Lepr
db

/+Lepr
db

/Jcl (db/db mice) and db/db mice orally administered 

pioglitazone for 10 days were used. The mice were seven-week-old males with 

unlimited access to food and water except for those on the 12-h fasting. The 

concentration of administered pioglitazone was 100 mg/10 mL/kg. The 

pioglitazone was purchased from Takeda Pharmaceutical Co. ltd, and purified by 

NARD Institute Ltd. After sampling, the livers were excised and stored at –80 ℃. 

From purchase and breeding of the mice to collection of liver samples, all 

experiments were performed at the Kitayama Labs Co. Ltd. The sample 

preparation procedure to extract metabolites was that described by Ooga et al 

[14].  

The metabolite extracts were measured by capillary electrophoresis 

time-of-flight mass spectrometry (CE-TOFMS). CE-TOFMS was carried out 

using Agilent Capillary Electrophoresis Systems equipped with an Agilent 6210 

time-of-flight mass spectrometer, an Agilent 1100 isocratic HPLC pump, an 

Agilent G1603A CE-MS adapter kit and an Agilent G1607A CE-ESI-MS sprayer 

kit (Agilent Technologies, Waldbronn, Germany). The system was controlled by 

G2201AA ChemStation Software version B.03.01 for CE (Agilent Technologies, 

Waldbronn, Germany). Modified analytical methods for the measurement of 

cationic [15] and anionic metabolites [16] were used. Measurement data were 

processed by peak processing software [17]. Signal peaks corresponding to 

isotopomers, adduct ions and other product ions of known metabolites were 
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excluded. Then all signal peaks potentially corresponding to authentic compounds 

were extracted, and their migration time (MT) was normalized using those of the 

internal standards (methionine sulfone and CSA for cations and anions, 

respectively). Thereafter, the alignment of peaks was performed according to the 

m/z values and normalized MT values. Finally, peak areas are normalized against 

those of the internal standards. The resultant relative area values were further 

normalized by the sample weight. Annotation tables were produced from 

CE-TOFMS measurements of standard compounds, and were aligned with 

datasets according to similar m/z values and normalized MT values. 

 

Statistical Analysis 

In the present study, all computation were performed by R [18] and “mseapca” 

[19] package. A missing value was imputed to 0 for a computation of PCA. A 

metabolite set list was created by referring to KEGG [20], and partial 

modification was performed by manual curation. The xml file of metabolite set 

list used in this study is included in “mseapca” package.  

 

Software 

An R package “mseapca” [19] consists of three major features. The first 

one is to create a list of metabolic pathway. A “csv2list“ function converts your 

own csv file in which first column is name of metabolic pathway and second 

column is metabolite IDs to list format in R. A “pathway_class” function converts 

KEGG’s tar.gz files (e.g. hsa.tar.gz in Homo sapience) to list format of metabolic 

pathway. The KEGG’s tar.gz files can be downloaded from KEGG FTP according 

to your own license. A “list2xml” function converts list format of metabolic 

pathway to xml format. This xml format can be saved as xml file by 

using ”saveXML” function in “XML” package. A ”read_pathway” function can 

read the created xml file and convert to list of metabolic pathway for a 

computation of MSEA. 

The second one is a “pca_scaled” function to perform PCA. In this 

function, data matrix is automatically scaled to zero mean and unit variance 

(autoscaling) for each metabolites. PC scores, factor loadings and p-value and 
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q-value by Benjamini and Hochberg [21] as the results of statistical hypothesis 

test of factor loading are returned. In this function, factor loading is defined as a 

correlation coefficient between PC score and each metabolite levels. 

The third one is to perform MSEA. A “msea_ora” function can perform 

MSEA by over representation analysis (ORA) [11]. In this function, statistical 

hypothesis test of cross tabulation is performed by one-sided Fisher’s exact test. A 

“msea_sub” function performs MSEA implemented in the same fashion as GSEA 

by Subramanian et al. In this function, a permutation procedure is performed for a 

metabolite set rather than class label. This procedure corresponds to “gene set” of 

permutation type in GSEA-P software [22]. A leading-edge subset analysis is also 

undertaken following the GSEA procedure [21].  

An R package “mseapca” can be freely available from CRAN web site 

[19]. For details, see the reference manual in CRAN web site of "mseapca" [19] 

for more information. 

 

4. Results 

4.1. Case study 1: a comparative study of control and 12-h fasting mice 

We describe the utilization of statistical hypothesis test of factor loading in 

PCA by using metabolome data in two studies. First case study is a comparative 

study of normal and 12 hour fasting mouse. 5 liver samples each for control and 

12 hour fasting mice were used for metabolome analysis. As a result, 282 

metabolites were identified. 

PCA was performed for this metabolome data preprocessed by autoscaling. 

The score plot of PCA (Fig. 1 (A)) showed that the PC1 score of control and 

fasting mice were negative and positive, respectively. This result suggests that the 

PC1 score was positively related to fasting effect. In this case, metabolites which 

have large positive factor loading in PC1 tended to increase and negative factor 

loading tended to decreased with 12 hour fasting. 

Statistical hypothesis test for factor loading in PC1 was performed, and 

136 metabolites were statistically significant under p<0.05 (Supplementary 

Table1). MSEA by ORA for factor loading was performed for positive and 

negatively significant metabolites independently (Table1). The purine metabolism 

http://biostats.bepress.com/cobra/art99



was significantly activated in 12 hour fasting mice under p<0.05. Glycolysis was 

significantly suppressed under q<0.05 and pentose phospate pathway, TCA cycle, 

cystein metabolism and polyamine metabolism were significantly suprressed in 12 

hour fasting under p<0.05. MSEA by Subramanian et al. was also performed as a 

reference (Table1). The histidine metabolism and purine metabolism having 

negative normalized enrichment score (NES) were significantly activated in 12 

hour fasting mice under p<0.05. Glycolysis having positive NES was significantly 

suppressed under q<0.05 and pentose phospate pathway, TCA cycle and 

polyamine metabolism were significantly suppressed in 12 hour fasting under 

p<0.05. These results suggest that the results of these two MSEA approaches are 

largely consistence. 

The results of MSEA for factor loading in PC1 suggested that the process 

of energy metabolism, such as glycolysis and the TCA cycle, were decreased by 

12 hour fasting. The suppression of these metabolic pathway suggests that 

glycogen is drained and glucose supplementation is restricted in mouse liver 

under the condition of fasting 12 hour. And, body weight was 22.20±0.84 

(mean±SD) in normal mouse and 20.0±0.71 in 12 hour fasting mouse, and 

statistically significant decreased (p=0.0021) during 12 hour fasting by Welch’s 

t-test. This result shows that the suppression of energy metabolism might result in 

a decrease of body weight. 

 

4.2. Case study 2: a comparative study between diabetes model mice without and 

with administered pioglitazone 

The db/db mouse is a model of obesity, diabetes and dyslipidemia in which 

leptin receptor activity is deficient because the mice are homozygous for a point 

mutation in the leptin receptor gene [23]. Pioglitazone reduces insulin resistance 

in the liver and decreases glucose level in the blood [24, 25]. Hence, it is used for 

the treatment of diabetes. 

We compared the metabolome data of mouse liver samples from db/db mice 

with and without pioglitazone in order to examine the effect of administering 

pioglitazone to db/db mice. 5 liver samples each for db/db mice and db/db with 
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administering pioglitazone were used for metabolome analysis. As a result, 275 

metabolites were identified. 

We performed PCA on data preprocessed by autoscaling in a comparative 

study of db/db mice with and without administered pioglitazone. The score plot is 

shown in Fig. 5. A perfect separation between groups could be achieved on the 

first PC axis (Fig. 3), and thus we focused on this axis. The PC1 score of the 

db/db mice with and without administered pioglitazone showed positive and 

negative value, respectively, suggesting that PC1 score is positively related to the 

effect of the administration of pioglitazone.  

Statistical hypothesis test for factor loading in PC1 was performed, and 66 

metabolites were statistically significant under p<0.05. MSEA for factor loading 

was performed as well as the previous section (Table2). In both MSEA by ORA 

and Subramanian’s approach, glycolysis was only statistically significant 

activated by administered pioglitazone under p<0.05. Pioglitazone is a 

peroxisome proliferator-activated receptor (PPAR) activating agent. Lee et al. 

[26] suggested that PPARδ ameliorated hyperglycemia by increasing glucose flux 

through the regulation of gene expression. And administering pioglitazone was 

known to reduce the glucose level in blood [24, 25].  

In the present study, glucose blood level was 369.6±64.8 (mean±SD) in db/db 

mouse and 332.8±131.9 in db/db mice with administered pioglitazone. The 

change of glucose blood level was not significantly decreased (p=0.596) by 

administered pioglitazone by Welch’s t-test. This result suggests that metabolome 

analysis could detect the subtle change caused by administering pioglitazone in 

glycolysis pathway. 

 

Discussion 

Metabolite selection by statistical hypothesis test of factor loading in PCA 

has some advantages. This approach was applied for metabolome data in two case 

studies of mouse liver samples. 136 of 282 metabolites were significantly 

correlated with PC1 score associated with groups in first case study and 66 of 275 

metabolites in second study. The number of significant metabolites is twice larger 

in first case study than in second case study. This result suggests that to set the 
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previously-determined number of metabolites (e.g. top 10 metabolites) is not 

appropriate because the number of significant metabolites is different in each 

studies. Additionally, we note the relationship between contribution ratio and the 

number of significant metabolites for factor loading in PCA. The ratio of the 

number of significant metabolites to all detected metabolites is 0.482 (=136/282) 

in first case study and 0.24 (=66/275) in second case study. The contribution ratio 

in PC1 is 40.5% in first case study and 24.2% in second case study. This result 

suggests that an implicit relationship between contribution ratio and the number of 

significant metabolites under same sample size. 

In both two case studies, we focused on PC1 (Fig.1 and Fig.2) which 

shows difference between groups. Then, we compared this approach with 

ordinary statistical hypothesis test such as t-test. 122 metabolites were significant 

in first case study and 56 metabolites were significant in second case study by 

Welch’s t-test. As compared with metabolites picked up by statistical test of factor 

loading, 112 metabolites and 47 metabolites shared in each study. The fact that 

most significant metabolites shared between two approaches suggests that 

statistical test of factor loading in PCA can be readily used to pick up metabolites 

as a special case of two-sample test when a difference between groups appears in 

PC score. On the other hand, in metabolomics, complex studies such as a 

fermentation process by microorganism [27] having various time points or groups 

and drug administration having various concentration in various condition [28]. 

Statistical test for factor loading in PCA can be widely used not only two-sample 

study but also various studies when PC score associated with phenotype can be 

found.  

MSEA was performed for significant metabolites and acceptable 

biological inferences were given in two case studies. In conventional approach, 

previously-determined number of metabolite (e.g. 10 metabolites) has been 

subjectively selected for making biological inferences. According to this approach, 

MSEA was performed for the top 10 metabolites having large negative factor 

loading in first case study. No significant metabolic pathway was detected under 

p<0.05 (data not shown). In this case, only 10 metabolites were too small for 

making acceptable biological inferences. Even if significant metabolic pathways 
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were detected by MSEA for not significant metabolites, it is doubtful whether 

these significant metabolic pathways are meaningful statistically and biologically. 

To make unbiased biological inferences by using statistical analysis, significant 

metabolites should be selected by using statistical test of factor loading when 

using in PCA. 

 In the present study, two MSEA approaches of ORA and Subramanian’s 

approach were performed. As a way of utilizing factor loading for GSEA, Rudolf 

S. N. Fehrmann et al. [29] named the PC score associated with phenotype as 

transcriptional system regulators (TSR) score, and factor loading corresponding to 

TSR score was used for GSEA by Subramanian’s approach. This directly uses the 

factor loading but does not use the result of statistical hypothesis test of factor 

loading. As far as we know, an approach combining GSEA or MSEA with the 

result of statistical hypothesis test of factor loading in PCA has not been reported. 

The result of both MSEA of ORA and Subramanian’s approach has almost 

same results in two case studies. In a comparison of computational time between 

two MSEA approaches, it cost 441.43 seconds by Subramanian’s approach and 

0.83 seconds by ORA in first case study. This result showed that MSEA of ORA 

has an advantage about computational cost. Conventionally, PCA and MSEA can 

be computed in different step or software independently. There has not been 

software which can compute as sequence from PCA and statistical hypothesis test 

of factor loading to MSEA. Therefore, we developed an R package “mseapca” to 

work sequence from statistical hypothesis test of factor loading in PCA to MSEA. 

 

Conclusion 

In metabolomics, targeted metabolites for making biological inferences 

were subjectively selected when using factor loading in PCA. We proposed a 

statistical procedure to pick up metabolites by statistical hypothesis test of factor 

loading in PCA, and these significant metabolites was used to find significant 

metabolic pathway by MSEA. We applied this approach to two metabolomic data 

of mouse liver samples, and acceptable results were given when compared with 

previous biological knowledge. We developed an R package “mseapca” to 

examine our approach readily. There are many users of PCA in metabolomics. 
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Our approach can improve an existing use of PCA and is expected to be widely 

applied. 
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Figures 

 

Fig. 1. Result of PCA in a comparative study of normal and 12-h fasting mice. (A) 

Score plot of PC1 and PC2. Symbols: (○) control mouse; (●) 12-h fasting mouse. 

(B) Factor loading plot in PC1. Metabolites are sorted in ascending order of the 

value of factor loading. The dotted line shows the significant level under p<0.05. 

 

Fig. 2. Result of PCA in a comparative study of diabetes model mice with and 

without administered pioglitazone. (A) Score plot of PC1 and PC2. Symbols: (○) 

diabetes model mouse (db/db mouse) without administered pioglitazone; (●) 

db/db mouse with administered pioglitazone. (B) Factor loading plot in PC1. 

Metabolites are sorted in ascending order of the value of factor loading. The 
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dotted line shows the significant level under p<0.05. The dotted line shows 

significant level under p<0.05. 
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