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Targeted Learning of The Probability of
Success of An In Vitro Fertilization Program
Controlling for Time-dependent Confounders

Antoine Chambaz, Sherri Rose, Jean Bouyer, and Mark J. van der Laan

Abstract

<blockquote>Infertility is a global public health issue and various treatments
are available. In vitro fertilization (IVF) is an increasingly common treatment
method, but accurately assessing the success of IVF programs has proven chal-
lenging since they consist of multiple cycles. We present a double robust semi-
parametric method that incorporates machine learning to estimate the probability
of success (i.e., delivery resulting from embryo transfer) of a program of at most
four IVF cycles in the French Devenir Apr‘es Interruption de la FIV (DAIFI)
study and several simulation studies, controlling for time-dependent confounders.
We find that the probability of success in the DAIFI study is 50% (95% confi-
dence interval [0.48, 0.53]), therefore approximately half of future participants in
a program of at most four IVF cycles can expect a delivery resulting from embryo
transfer.</blockquote>
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Summary

Infertility is a global public health issue and various treatments are available. In vitro fertilization

(IVF) is an increasingly common treatment method, but accurately assessing the success of IVF

programs has proven challenging since they consist of multiple cycles. We present a double robust

semiparametric method that incorporates machine learning to estimate the probability of success

(i.e., delivery resulting from embryo transfer) of a program of at most four IVF cycles in the French

Devenir Après Interruption de la FIV (DAIFI) study and several simulation studies, controlling

for time-dependent confounders. We find that the probability of success in the DAIFI study is

50% (95% confidence interval [0.48, 0.53]), therefore approximately half of future participants in
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2 A. Chambaz and others

a program of at most four IVF cycles can expect a delivery resulting from embryo transfer.

Key words: Confounding; Double robust estimation; In vitro fertilization; Longitudinal data.

1. Introduction

Infertility is a global concern among adults of childbearing age, one that has been labeled a public

health issue by the World Health Organization. The current prevalence estimate of worldwide

infertility is 9%, where infertility is defined as a couple failing to conceive within 12 months of

attempting to become pregnant (Boivin and others, 2007). Infertility can be caused by various

medical conditions, including endometriosis, damage to the fallopian tubes, polycystic ovary

syndrome, abnormal sperm production, and epididymal obstruction, among others. Treatments

for infertility vary based on age, gender, causes, access, and whether one or both members of the

couple are affected.

In vitro fertilization (IVF) is an assisted reproductive technology that involves obtaining sperm

and mature eggs from the couple (or donors), fertilizing the egg with the sperm in a laboratory

environment, and then implanting the embryo(s) in the woman’s uterus. The first IVF procedure

resulting in a live birth occurred in 1978. IVF has become increasingly common in recent years,

with over 63,000 procedures performed each year in the United States and 40,000 performed

yearly in France (Adamson and others, 2006). Researchers have struggled to effectively quantify

the success of IVF programs, and considerable debate remains. Simply calculating the number of

pregnancies, deliveries, or live births per IVF procedure is not necessarily a complete summary

of success, as many IVF programs consist of multiple consecutive cycles of implantation (a cycle

of implantation, or simply a cycle, is a series of transfers of fresh or frozen embryos that were

collected during a single oocyte pick-up). Thus, an alternative is to evaluate the entire program.

The French Devenir Après Interruption de la FIV (DAIFI) study (Soullier and others, 2008;

http://biostats.bepress.com/ucbbiostat/paper299



Success of an in vitro fertilization program 3

de la Rochebrochard and others, 2008, 2009) is a convenient choice to examine complete IVF

programs, as the first four IVF cycles are entirely reimbursable under France’s national health

insurance system, leading to fewer dropouts due to financial reasons. In a previous article, the

authors Soullier and others (2008) estimated the probability of success in the DAIFI study with

three methods. First, they used a naive ratio of the number of deliveries following the initial

IVF cycle over the total number of women enrolled (point estimate 37%, 95% confidence interval

[0.35, 0.38]), but this method ignores dropouts. The second method was a nonparametric Kaplan–

Meier survival analysis (point estimate 52%, 95% confidence interval [0.49, 0.55]) based on the

assumption that women who abandoned the program mid-course had the same characteristics as

women who did not. In particular, this second method ignored the potentially informative baseline

covariates. Their final approach was multiple imputation methodology (Schafer, 1997; Little and

Rubin, 2002), which is based on iteratively estimating missing data using the past (point estimate

46%, 95% confidence interval [0.44, 0.48]), and relies on parametric models potentially leading to

bias. As one can clearly see, none of the confidence intervals overlap, and the three estimation

methods in this single data set yield differing results.

A later analysis of the same DAIFI study data (Chambaz, 2011) followed the semiparametric

targeted minimum loss-based estimator (TMLE) framework to develop an estimator for this

problem, although it ignored the time-dependent confounding of the number of embryos (frozen or

transferred) at each cycle (point estimate 51%, 95% confidence interval [0.48, 0.53]). This estimate

was closest to the Kaplan–Meier survival analysis from the Soullier and others (2008) article, and

the methods used by Chambaz (2011) can also be formulated in terms of a survival analysis,

details of which are described in the article. TMLE is a general framework for approaching

estimation problems in semiparametric models, and following this template provides estimators

that have desirable statistical properties, including double robustness and efficiency (van der Laan

and Rubin, 2006; van der Laan and Rose, 2011). It also allows for the incorporation of machine

Hosted by The Berkeley Electronic Press



4 A. Chambaz and others

learning methods. Previous articles developing TMLEs in longitudinal data structures include

(van der Laan, 2010; Rosenblum and van der Laan, 2010; Stitelman and others, 2011; Gruber

and van der Laan, 2012; Schnitzer and others, 2012). Estimator comparisons have been presented

by van der Laan and Rose (2011), among other works. Estimating-equation-based methods that

are double robust (van der Laan and Robins, 2003) could also be implemented, although TMLE

is generally more computationally feasible in longitudinal data while also being a substitution

estimator.

Evaluating the entire IVF program therefore presents difficult statistical problems, including

handling time-dependent confounding. We will address these statistical issues in this article, and

estimate the probability of success (i.e., delivery resulting from embryo transfer) of a program

of at most four IVF cycles in the DAIFI study using a double robust semiparametric TMLE.

Unlike previous analyses, we will control for the time-dependent confounding of the number of

embryos frozen or transferred at each cycle. Considering the financial, emotional, and physical

burden of undergoing IVF treatment and the overall global prevalence of infertility, providing

accurate measures of the success of IVF programs is an important public health question.

This article is presented with the following structure. The DAIFI study data is described in

Section 2. In Section 3, we define the statistical parameter of interest and introduce important

notation and assumptions. Section 4 describes our estimation strategy using TMLE. Simulation

results demonstrating the utility of the TMLE procedure can be found in Section 5. The DAIFI

study is analyzed in Section 6. A discussion closes the article in Section 7. Proofs and additional

details of the estimation procedure, simulation protocol, and super learner implementation are

presented in the Supplementary Material available at Biostatistics online.

http://biostats.bepress.com/ucbbiostat/paper299
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2. Data description

The data consist of all women under age 42 who completed at least one IVF cycle at one of two

French IVF units in Paris and Clermont-Ferrand between 1998 and 2002. Women aged 42 and

over were included only if they had a normal ovarian reserve and IVF was indicated given their

cause of infertility. Covariates collected include date of birth and IVF unit, as well as start date,

number of oocytes harvested, number of embryos transferred or frozen, indicators of pregnancy,

and successful delivery at each IVF cycle (for a detailed description, see de la Rochebrochard and

others, 2009). Women are censored after the fourth IVF cycle.

3. Defining the statistical parameter of interest

We use throughout this article the notation ui:j = (ui, . . . , uj) ∈ Rj−i+1, with convention ui:j = ∅

whenever i > j. In particular, 10:j = (1, . . . , 1) ∈ Rj+1 for all j > 0.

3.1 Data, model, and parameter

The observed data O has a longitudinal structure:

O = (W1, W2, C0, L0, A0, C1, L1, A1, C2, L2, A2, C3, L3) ∼ P0,

where W1 ∈ {0, 1} indicates the IVF unit, the integer W2 is age at first IVF cycle, W3 ≡

C0 ∈ C = {0, . . . ,K} is the number of embryos (frozen or transferred) at the first IVF cycle,

W4 ≡ L0 ∈ {0, 1} indicates whether the first IVF cycle was successful (L0 = 1) or not (L0 = 0).

For all 1 6 j 6 3, Aj−1 ∈ {0, 1} indicates whether a (j+1)th IVF cycle was attempted (Aj−1 = 1)

or not (Aj−1 = 0, which also encodes dropout), Cj ∈ C is the number of embryos (frozen or

transferred) at (j + 1)th IVF cycle, and Lj ∈ {0, 1} indicates whether the (j + 1)th IVF cycle

was successful (Lj = 1) or not (Lj = 0). The component L3 ≡ Y is the final outcome of interest.

By convention, if Aj−1 = 0 for some 1 6 j 6 3, then Aj′−1 = Cj′ = Lj′ = 0 for all j 6 j′ 6 3,

Hosted by The Berkeley Electronic Press
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and if Lj = 1 for some 0 6 j < 3, then Aj′ = Cj′ = Lj′ = 1 for all j 6 j′ 6 3. Thus, the IVF

program was successful overall if and only if L3 = 1. Finally, we denote W = W1:4: this notation

conveys the notion that since C0 and L0 are always observed, they can be considered as baseline

covariates.

The statistical parameter of interest is

Ψ(P0) = EP0

( ∑
`1:2∈{0,1}2,c1:3∈C3

P0(Y = 1|C1:3 = c1:3, A0:2 = 10:2, L1:2 = `1:2, W )

× P0(C3 = c3|C1:2 = c1:2, A0:2 = 10:2, L1:2 = `1:2, W )

× P0(L2 = `2|C1:2 = c1:2, A0:1 = 10:1, L1 = `1, W )

× P0(C2 = c2|C1 = c1, A0:1 = 10:1, L1 = `1, W )

× P0(L1 = `1|C1 = c1, A0 = 1, W )

× P0(C1 = c1|A0 = 1, W )
)

.

(3.1)

This actually defines, by substituting P for P0 in (3.1), a mapping Ψ of the setM of all candidate

data-generating distributions P compatible with the definition of O (including the truth, P0) onto

R. The characterization of M includes the following positivity assumption: for all P ∈ M and

each 0 6 j 6 2, 0 < P (Aj = 1|L1:j , C1:j , A0:j−1 = 10:j−1, W ). This assumption states that for

each 0 6 j 6 2, conditional on observing a woman who already went through (j +1) unsuccessful

IVF cycles, it cannot be certain, based on past information (L1:j , C1:j , W ), that a (j + 2)th IVF

cycle will not be attempted. We emphasize that this assumption can be tested from the data.

Interestingly, some factors involved in the definition of Ψ can be slightly simplified. Indeed, it

holds almost surely that for every P ∈M and 1 6 j 6 3,

P (Lj = 1|C1:j , A0:j−1, L1:j−1, W ) = P (Lj = 1|C1:j , L1:j−1, W ), (3.2)

or, in other words, that the dependency of P (Lj = 1|C1:j , A0:j−1, L1:j−1, W ) upon A0:j−1 is

http://biostats.bepress.com/ucbbiostat/paper299



Success of an in vitro fertilization program 7

entirely conveyed through (C1:j , L1:j−1, W ). We refer the interested reader to Appendix D in the

Supplementary Material for the simple proof of (3.2). Consequently, the parameter of interest is

also defined by: for all P ∈M,

Ψ(P ) = EP

( ∑
`1:2∈{0,1}2,c1:3∈C3

P (Y = 1|C1:3 = c1:3, L1:2 = `1:2, W )

× P (C3 = c3|C1:2 = c1:2, A0:2 = 10:2, L1:2 = `1:2, W )

× P (L2 = `2|C1:2 = c1:2, L1 = `1, W )

× P (C2 = c2|C1 = c1, A0:1 = 10:1, L1 = `1, W )

× P (L1 = `1|C1 = c1, W )

× P (C1 = c1|A0 = 1, W )
)

.

(3.3)

3.2 Causal interpretation of the parameter of interest

It is possible, at the cost of making untestable assumptions, to provide a causal interpretation

of Ψ(P ). For this purpose, let us assume, for example, that the random phenomenon of interest

obeys the following system of structural equations. There exist 13 independent random variables:

(U1
W , U2

W , UC0 , UL0 , UA0 , UC1 , UL1 , . . . , UA2 , UC3 , UL3)

and 13 deterministic functions:

(f1
W , f2

W , fC0 , fL0 , fA0 , fC1 , fL1 , . . . , fA2 , fC3 , fL3)

Hosted by The Berkeley Electronic Press
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such that 

W1 = f1
W (U1

W )
W2 = f2

W (W1, U
2
W )

C0 = fC0(W2, W1, UC0)
L0 = fL0(C0, W2, W1, UL0)

and for every 1 6 j 6 3,

Aj−1 = fAj−1(L1:j−1, C1:j−1, A0:j−2, W, UAj−1)
Cj = fCj

(A0:j−1, L1:j−1, C1,j−1, W, UCj
)

Lj = fLj
(C1:j , A0:j−1, L1:j−1, W, ULj

).

The assumption of mutual independence of the sources of randomness is equivalent to assuming

that there are no unmeasured confounders (the mutual independence could be slightly relaxed).

It is also equivalent to assuming a causal graph whose nodes are the components of the observed

data structure O, each node being the target of arrows pointing from every component of O

preceding that node (chronologically).

One can intervene upon that system of structural equations by substituting the equality

Aj−1 = 1 to Aj−1 = fAj−1(L1:j−1, C1:j−1, A0:j−2, W, UAj−1) for each 1 6 j 6 3. The intervened

system describes how L3 is randomly generated when a woman is set to undergo the whole IVF

program. This last (chronologically speaking) random variable is denoted by Y(1,1,1) rather than

Y in order to emphasize that it differs (in distribution) from Y . The outcome Y(1,1,1) is called

the conterfactual outcome under the intervention A0:2 = 10:2. It is known that if O ∼ P0 then

PrP0(Y(1,1,1) = 1) = Ψ(P0).

This is an example of the G-computation formula (Robins, 1986, 1987; Pearl, 2000). In this

situation, Ψ(P0) evaluates the causal effect of undergoing the whole IVF program in terms of

pregnancy.

Other causal interpretations could be developed, based on the Neyman-Rubin causal model

and potential outcomes thus involving the consistency and randomization assumptions (Rubin,

1974; Holland, 1986; Sekhon and others, 2011), or the explicit construction of counterfactuals (Gill

and Robins, 2001; Yu and van der Laan, 2002) (note that the resulting causal interpretation would

http://biostats.bepress.com/ucbbiostat/paper299
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not hold in the real world). Finally, we emphasize that even if one is not willing to rely on the

causal assumptions discussed, then the target parameter Ψ(P0) still represents an effect of interest

(not necessarily a causal one, but at least one that is produced by intervening on the distribution

of the data), which aims at getting as close as possible to a causal effect as the data allow.

4. Targeted minimum loss-based estimation

Suppose that we observe n independent copies O(1), . . . , O(n) of the observed data structure

O ∼ P0. We denote Pn as the empirical measure.

4.1 Pathwise differentiability and the efficient influence curve

We can say that Ψ is pathwise differentiable (i.e., identifiable and smooth enough to allow central-

limit-theorem-based inference) at any P ∈M with respect to the maximal tangent space L2
0(P ).

This means that there exists a unique D?(P ) ∈ L2
0(P ), called the efficient influence curve of

Ψ at P , such that if {P (ε) : ε ∈ R} ⊂ M is a fluctuation of P in direction s ∈ L2
0(P ), then

∂
∂εΨ(P (ε))|ε=0 = EP [D?(P )(O)s(O)].

The efficient influence curve D? tells us a lot about the nature of Ψ from a statistical viewpoint,

which is why we devote effort to elaborating it in some detail in this section. In particular, the

efficient influence curve serves as a benchmark for the estimation of Ψ(P0) expressed in terms of

statistical efficiency. Indeed, it is known that the asymptotic variance of all (regular) estimators

of Ψ(P0) has a lower bound given by the variance VarP0D
?(P0)(O) of the efficient influence curve

at P0. This is a consequence of the convolution theorem (van der Vaart, 1998, Theorem 25.20).

The efficient influence curve also proves useful as a tool due to a robustness property discussed

at the end of this subsection.

Recall that {P (ε) : ε ∈ R} ⊂ M is a fluctuation of P in direction s ∈ L2
0(P ). For instance,

if {P (ε) : ε ∈ R} is a one-dimensional parametric model such that P (ε) = P at ε = 0 and

Hosted by The Berkeley Electronic Press
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∂
∂ε log P (ε)(O)|ε=0 = s(O). Here it is implicitly understood that this statement is relative to the

(minus log-likelihood) loss function L characterized by L(P ) : O 7→ L(P )(O) = − log P (O) for

all P ∈M.

For the purpose of describing D?(P ), let us introduce the binary description (Cj,1, . . . , Cj,K)

of Cj for 1 6 j 6 3 (formally characterized by Cj,k = 1{Cj = k} for every 1 6 k < K and

Cj,K = 1{Cj > K}), and the following sets of parents: for all 1 6 j 6 3 and 1 6 k 6 K,

Pa(Cj,k) = {Cj,1:k−1, A0:j−1, L1:j−1, C1:j−1, W},

Pa(Lj) = {C1:j , A0:j−1, L1:j−1, W},

Pa(Aj−1) = {L1:j−1, C1:j−1, A0:j−2, W}.

Note that it is possible to exclude A0:j−1 from Pa(Lj), a side consequence of the proof of (3.2).

Similarly, it is possible to exclude A0:j−2 from Pa(Aj−1). Our description of D?(P ) consists of

expressing it as a linear projection of a function D(P ) characterized by

D(P )(O) = (Y −Ψ(P ))
1{A0:2 = 10:2}

G2(P )(O)
,

where, for every 0 6 J 6 2,

GJ(P )(O) =
J∏

j=0

gj(P )(O), with

gj(P )(O) = P (Aj = 1|Pa(Aj)), for each 0 6 j 6 2.

We denote g(P ) = (gj(P ) : 0 6 j 6 2). This interpretation of D?(P ) as a projection (justified,

for example in Appendix A, Section 7 of van der Laan and Rose, 2011) is summarized by the

following relation:

D?(P ) = Π(D(P )|T (QW )) +
3∑

j=1

K∑
k=1

Π(D(P )|T (QCj,k
)) +

3∑
j=1

Π(D(P )|T (QLj
)), (4.4)

where Π(D(P )|T (QW ))(O) = EP [D(P )(O)|W ], and for all 1 6 j 6 3 and 1 6 k 6 K,

Π(D(P )|T (QCj,k
))(O) = EP [D(P )(O)|Cj,k, Pa(Cj,k)]− EP [D(P )(O)|Pa(Cj,k)],

Π(D(P )|T (QLj
))(O) = EP [D(P )(O)|Lj , Pa(Lj)]− EP [D(P )(O)|Pa(Lj)].

http://biostats.bepress.com/ucbbiostat/paper299
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In the above equations, Π(h|T ) denotes the projection of h ∈ L2
0(P ) onto T , T being one

of T (QW ) = {h ∈ L2
0(P ) : h(O) = h(W ), EP [h(W )] = 0}, T (QCj,k

) = {h ∈ L2
0(P ) : h(O) =

h(Cj,k, Pa(Cj,k)), EP [h(Cj,k, Pa(Cj,k))|Pa(Cj,k)] = 0} and T (QLj
) = {h ∈ L2

0(P ) : h(O) =

h(Lj , Pa(Lj)), EP [h(Lj , Pa(Lj))|Pa(Lj)] = 0}. Here QW , QCj,k
, and QLj

respectively stand for

the marginal distribution of W , conditional distribution of Cj,k given Pa(Cj,k), and conditional

distribution of Lj given Pa(Lj). We find it convenient to set Q(P ) = (QW (P ), QCj,k
(P ), QLj

(P ) :

1 6 j 6 3, 1 6 k 6 K), the collection of these distributions associated to P ∈ M. In particular,

the last term in (4.4) is characterized by

Π(D(P )|T (QL3))(O) =
(
L3 − P (L3 = 1|Pa(L3))

)1{A0:2 = 10:2}
G2(P )(O)

. (4.5)

We now discuss in more detail the robustness property provided by the efficient influence

curve. Let us first note that obviously, Ψ(P ) = Ψ(P0) holds when Q(P ) = Q(P0). Furthermore,

(4.4) makes clear that D? is robust in the sense of the following lemma:

Lemma 4.1 Set P ∈ M. If EP0 [D?(P )(O)] = 0, in which case we say that P solves the efficient

influence curve equation, then Ψ(P ) = Ψ(P0) when g(P ) = g(P0) (implicitly: even if Q(P ) 6=

Q(P0)).

Thus, we take advantage of the pathwise differentiability of Ψ and robustness of D? in order

to estimate Ψ(P0). More specifically, we build a substitution estimator Ψ(P ∗n) of Ψ(P0) where the

estimator P ∗n of P0 is targeted toward Ψ(P0), i.e., constructed in such a way that we can exploit

the robustness of D?.

4.2 TMLE procedure

The TMLE methodology is a two-step estimation procedure. First, we derive an initial estimator

P 0
n ≡ (Q(P 0

n), g(P 0
n)) of the entire data-generating distribution P0. This yields an initial substi-

Hosted by The Berkeley Electronic Press



12 A. Chambaz and others

tution estimator Ψ(P 0
n) of Ψ(P0). Second, we fluctuate P 0

n in the direction of D?(P 0
n), bending

P 0
n into P ∗n and Ψ(P 0

n) into the final substitution estimator Ψ(P ∗n), the TMLE of Ψ(P0).

4.2.1 First step. Regarding the construction of the estimator Q(P 0
n) of Q(P0), we estimate

the true marginal distribution of W , QW (P0), by its empirical counterpart. In other words, we

set QW (P 0
n) = Pn,W ≡ 1

n

∑n
i=1 Dirac(W (i)). Note that the remaining components of Q(P0) are

conditional distributions of binary random variables. Similarly, estimating g(P0) is equivalent to

estimating three conditional distributions of binary random variables. Thus, for the purpose of

completing the construction of P 0
n , one can simply carry out a series of logistic regressions. Or,

one can alternatively rely on super learning, an estimation methodology based on the aggregation

of several estimators into a single algorithm with the smallest cross-validated risk (van der Laan

and others, 2007; van der Laan and Rose, 2011). Of course, P 0
n is built in such a way that

the encoding conventions of Section 3.1 are fully exploited. We also make sure that, for each

0 6 j 6 2, gj(P 0
n)(O) > c > 0 has a lower bound given by a (possibly small) positive constant,

except when it equals 0 exactly due to the latter encoding convention. As discussed above, Ψ(P 0
n)

is a natural estimator of Ψ(P0) to consider once Q(P 0
n) is derived. Moreover, it is a consistent

estimator if Q(P 0
n) consistently estimates Q(P0), but not necessarily otherwise. The second step

of the procedure involves taking into account the information provided by g(P 0
n) which, in light

of Lemma 4.1, is overlooked by Ψ(P 0
n).

4.2.2 Second step. This second step decomposes into a finite series of successive updates of P k
n

into P k+1
n (starting from k = 0). Each update amounts to (a) building a fluctuation {P k

n (ε) : ε ∈

R} of the current P k
n in the direction of a certain component of the efficient influence curve D?(P k

n )

then determining the optimal stretch εk
n along that fluctuation and setting P k+1

n = P k
n (εk

n), and

(b) preparing the next update. Note that targeting the direction of interest and determining the

optimal stretch is understood relative to a loss function that we carefully choose at each update.

http://biostats.bepress.com/ucbbiostat/paper299
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(We refer the interested reader to Appendix A in the Supplementary Material for the detailed

presentation of this updating procedure. The exhaustive description presented therein makes it

very easy to write down the corresponding algorithm and code.)

Eventually, this second step bends the initial estimator P 0
n of P0 into P ∗n . Its differences relative

to P 0
n stem from the fact that P ∗n targets Ψ(P0) whereas P 0

n does not. This is notably reflected

in the following lemma, whose proof is naturally encapsulated in the detailed presentation of the

updating procedure that we provide in Appendix A of the Supplementary Material:

Lemma 4.2 It holds that PnD?(P ∗n) = 0.

Because PnD?(P ∗n) estimates EP0 [D?(P ∗n)(O)], we say that P ∗n solves the empirical efficient

influence curve equation in view of Lemma 4.1. Lemma 4.2 is the cornerstone of the study of the

asymptotic behavior of the TMLE Ψ(P ∗n).

4.2.3 Asymptotics. The theory of estimating equations (see Chapter 25 in van der Vaart,

1998; van der Laan and Robins, 2003, and references therein) and Lemma 4.2 pave the way to

describing the asymptotic behavior of the TMLE Ψ(P ∗n). We refer the interested to Appendix A

and (van der Laan and Rose, 2011, Section 18) for a formal presentation. In summary, under

a set of conditions often referred to as regularity conditions, the TMLE Ψ(P ∗n) is a consistent

estimator of the truth Ψ(P0) and it satisfies a central limit theorem. The latter set of conditions

include the requirement that Q(P ∗n) and g(P ∗n) both must converge to some Q1 and g1 with

either Q1 = Q(P0) or g1 = g(P0) representing the truth. It also includes the requirement that

D?(P ∗n) must belong to a P0-Donsker class with probability tending to one, and that a second-

order term involving a product of distances between Q(P ∗n) and Q1 on the one hand and g(P ∗n)

and g1 on the other hand is oP (1/
√

n). If both Q1 = Q(P0) and g1 = g(P0) then the TMLE is

asymptotically efficient and its asymptotic variance is consistently estimated by PnD?(P ∗n)2, the
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14 A. Chambaz and others

estimated variance of the efficient influence curve at P ∗n . Furthermore, if g(P ∗n) is a maximum-

likelihood estimator of g(P0) based on a correctly specified parametric model, then PnD?(P ∗n)2

is a conservative estimator of the asymptotic variance of Ψ(P ∗n).

5. Simulation study

We present a simulation study that aims to illustrate the TMLE methodology, evaluate its per-

formance numerically, and investigate the theoretical properties discussed in the previous section.

We generate a simulation scheme by specifying the system of structural equations presented in

Section 3.2. Complete details of the simulation study data generation are presented in Appendix B

of the Supplementary Material. We denote P s as the resulting data-generating distribution. The

true value of the parameter of interest Ψ(P s) can be estimated with great precision by Monte

Carlo; using a simulated dataset of one million observations under the intervention A0:2 = 10:2

yields Ψ(P s) ≈ 0.72.

We repeat B = 1000 times the following steps: (i) simulate a dataset with sample size n = 3000

under P s, and (ii) estimate Ψ(P s) with Ψ(P ∗n,b), the bth TMLE based on this bth simulated

dataset. We also keep track of the initial estimator Ψ(P 0
n,b) based on the same dataset. We then

repeat that entire procedure four times, by relying either on a small library or a large library with

the super learner to estimate the initial density, and by relying either on a correctly specified

maximum likelihood estimator for g(P s) or the super learner. The estimation of Q(P s) always

relies on the super learning procedure. See Table 1 for results. It is worth emphasizing that we

cannot guarantee that the regularity conditions required in Section 4.2.3 to derive the asymptotic

behavior of the TMLE are met.

The specifics of the super learning procedure that we use are reported in Appendix C of the

Supplementary Material. We only emphasize here that when we estimate a component QLj
(P s)

for j = 2, 3, we actually regress Lj on the set Pa(Lj) \ {C1:j−1} of its parents deprived of
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C1:j−1. Similarly, when we estimate the component QA2(P s), we actually regress A2 on the set

Pa(A2) \ {C1} of its parents deprived of C1, and when we estimate a component QCj,k
(P s) for

some 2 6 j 6 3 and 1 6 k 6 K, we actually regress Cj,k on the set Pa(Cj,k) \ {Cj′,k′ : 1 6 j′ <

j, 1 6 k′ 6 K}. This considerably diminishes the computational burden. Furthermore, and in

the same spirit, we summarize each Cj (1 6 j 6 3) by the binary description (Cj,1, Cj,2, Cj,3) =

(1{Cj = 1},1{Cj = 2},1{Cj > 3}). Overall, this makes the super learning procedure less apt at

estimating the various components of P s.

Four important features arise from Table 1. First, and as expected, the TMLE performs

better than the initial estimator in terms of bias and root mean-squared error (rMSE) in all

situations. One reaches the same conclusion visually when one looks at Figure 1. Second, the

initial estimator performs better when it relies on the small super learner library than the large

one. This illustrates the fact that building a better estimator of P0 (if one agrees on the superiority

of the super learner with a larger library upon the super learner with a smaller library relative to

the task of estimating P0) does not necessarily translate into building a better estimator of Ψ(P0),

which is precisely one of the motivations of the TMLE procedure. Third, and surprisingly, the

TMLE performs equally well whether it relies on a correct g-specification or not in terms of bias

and rMSE, for both super-learning libraries. However, the conclusions are very different when one

considers the empirical coverage. This coverage is guaranteed by the confidence intervals based

on the central limit theorem for the TMLE and the estimation of the asymptotic variance by the

estimated variance of the efficient influence curve at P ∗n . Indeed, the TMLE performs better in

terms of empirical coverage when it relies on the larger super learner library than on the smaller

one, with better results when the g-specification is correct. Yet, with an empirical coverage of

89.4% relying on the large super learning library and incorrect g-specification, the TMLE does not

achieve the required 95% coverage in the situation we care for the most. When the g-specification

is correct, this might be a pure second order term issue that would have disappeared for larger
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16 A. Chambaz and others

sample size. Judging by Figure 1, the approximate normality seems satisfactory, and the issue

is raised through the estimation of the asymptotic variance of the TMLE. Note that although

n = 3001 seems quite a large sample size, the estimation of g3(P0) only relies on 397 observations

(see Table 3).

In order to address this issue, we propose the use of the bootstrap to estimate the asymptotic

variance. This also enables us to consider bootstrapped confidence intervals. We emphasize that

there is no theoretical guarantee that this should work. The bootstrap has also been used for

the purpose of correcting flawed confidence intervals by Stitelman and van der Laan (2010), to

compensate for a lack of normality. Other solutions can be thought of here (including the targeted

estimation of the asymptotic variance), but they are beyond the scope of this article.

Therefore, we now repeat B = 50 times the following steps: (i) simulate a dataset of sample

size n = 3000 under P s, hence an empirical measure Pn,b, (ii) estimate Ψ(P s) with Ψ(P ∗n,b), the

bth TMLE based on this bth simulated dataset, and (iii) resample independently M = 100 times

a dataset of n = 3000 independent variables drawn from Pn,b and estimate Ψ(P s) with Ψ(P ∗n,b,m),

the mth TMLE based on this mth bootstrapped dataset. We keep track of all Ψ(P ∗n,b), Ψ(P ∗n,b,m)

(1 6 b 6 B and 1 6 m 6 M). We repeat this entire procedure two times, by relying either

on the same small or large libraries for the super learner as above. In both cases, g(P s) is

estimated by super learning. For each 1 6 b 6 B, we compute the empirical standard deviation

of {Ψ(P ∗n,b,m) : 1 6 m 6 M}, from which we deduce a 95% confidence interval by relying on the

central limit theorem. We also compute the confidence interval based on the 2.5th and 97.5th

percentiles of {Ψ(P ∗n,b,m) : 1 6 m 6 M}.

Two important features arise from Table 2. First, and in agreement with the previous simu-

lation, the TMLE performs better in terms of coverage when it relies on the large super learner

library than on the smaller one. This result is independent of the way confidence intervals are

built (based on the central limit theorem with an asymptotic variance estimated by nonparamet-
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ric bootstrap or on quantiles). The same conclusion holds when one considers the mean widths

of the confidence intervals. Second, this simulation shows that it is more reliable coveragewise

to build the confidence intervals based on the central limit theorem with an asymptotic variance

estimated by nonparametric bootstrap than on quantiles. On average, the former method yields

slightly wider confidence intervals than the latter method. Overall, only one of the four configu-

rations (small super learning library and confidence intervals based on quantiles) empirically fails

to guarantee the prescribed coverage. Indeed, the probability that a binomial random variable

with parameter (50, 95%) be smaller than 43 equals approximately 1.2%.

6. DAIFI Study

We observe n = 3001 women and report in Table 3 the empirical probabilities of Aj = 1 (each

j = 0, 1, 2), the empirical probabilities of Lj = 1 (each j = 0, 1, 2, 3), and the empirical conditional

means of Cj given A0:j−1 = 10:j−1, Lj−1 = 0 (each j = 0, 1, 2, 3). The latter conditional means

correspond to the mean number of embryos transferred or frozen in women who have undergone

j unsuccessful IVF cycles at the next attempt. They only slightly differ from each other.

We apply the TMLE methodology as described in Sections 4.2 and 5. Following the conclusions

of our simulation study, we rely on the central limit theorem to construct a 95% confidence

interval, with an asymptotic variance estimated by bootstrap (M = 100 iterations). The results

(point estimate, confidence interval) do not depend on the choice of super learner library (small

or large), nor on the choice of the number of binary indicators Cj,1, . . . , Cj,K used to summarize

each Cj , j = 1, 2, 3 (K ∈ {3, . . . , 8}). The point estimate equals Ψ(P ∗n) = 0.50 with [0.48, 0.53]

as 95% confidence interval. In conclusion, future participants in a program of at most four IVF

cycles can be confidently informed that approximately half of them may subsequently succeed in

having a child.
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7. Discussion

Our goal was to develop an estimator to study probability of success during a course of at most

four cycles of IVF in France, taking into account the time-dependent confounding of the number

of embryos transferred at each cycle. For this, we developed and implemented a TMLE, which

has desirable statistical properties discussed in this article, including double robustness. TMLE

also allows the incorporation of machine learning methods or ensembling algorithms such as

super learning for the estimation of the relevant components of the likelihood. Our simulation

study explored the theoretical properties of the described TMLE, with noteworthy results. Firstly,

using the estimated variance of the efficient influence curve does not provide the desired empirical

coverage, and our simulation study suggests the use of the nonparametric bootstrap for variance

estimation and confidence intervals based on the central limit theorem. Unsurprisingly, we also

find that the TMLE has improved performance with regard to coverage when a larger super

learner library is used. Finite sample theory shows that one should make the library as large as

possible (van der Laan and others, 2007).

Our estimate of the success of a four cycle IVF program in the DAIFI study was equal

to 50% (95% confidence interval [0.48, 0.53]). This result was similar to previous analyses that

did not control for time-dependent confounding, namely Chambaz (2011) with a result of 51%

(95% confidence interval [0.48, 0.53]) and the Kaplan–Meier survival analysis of Soullier and

others (2008) with a point estimate of 52% (95% confidence interval [0.49, 0.55]). Biologically,

the number of embryos transferred at each cycle should have an effect on its success. Therefore,

among multiple explanations, it is possible that other measured variables, particularly in the

analysis of Chambaz (2011), such as age or the number of embryos transferred at the first cycle,

had larger impacts on the outcome and the additional adjustment for number of embryos resulted

in a trivial difference in the estimate. While this result was unexpected, it could not have been

anticipated a priori given our subject matter background, and the TMLE that adjusts for time-
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dependent confounders presented in this article is preferred to the one developed by Chambaz

(2011). In other applications, adjusting for time-dependent confounders is likely to improve the

accuracy of the estimates.

Our result that 50% of future program participants will succeed in having a child in the course

of at most four IVF cycles is quite high. Consider the following: if the successive menstrual cycles

of a woman were independent and stationary, then having a child in the course of at most four

menstrual cycles would have a 50% chance to occur if the probability of succeeding at each cycle

were equal to 16%. Furthermore, the average population fecundability (i.e., the probability that

a woman who is neither pregnant nor in postpartum amenorrhea will conceive during a given

menstrual cycle with unprotected intercourse) range between 17% and 30%, depending on the

way it is computed (Leridon, 1977; Heckman and Walker, 1990).

8. Supplementary Material

The reader is referred to the online Supplementary Materials for technical appendices and details

of the simulation scheme. Supplementary Material is available online at
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Table 1. Simulation results (1/2). The true value of the parameter of interest is Ψ(P s) ≈ 0.72. “rMSE”
stands for root mean-squared error and “coverage” for the empirical coverage of the 95% confidence
intervals based on the central limit theorem and the estimated variance of the efficient influence curve at
P ∗

n . All values are multiplied by 100.

small super learner library large super learner library
g correct g incorrect g correct g incorrect

estimator init. TMLE init. TMLE init. TMLE init. TMLE
bias -1.80 0.42 -2.01 0.38 -2.58 -0.47 -2.40 -0.39
rMSE 2.23 1.57 2.36 1.58 2.62 1.31 2.47 1.30
coverage - 85.2 - 81.0 - 91.8 - 89.4

Table 2. Simulation results (2/2). We report the empirical coverages and mean widths of the 95% confi-
dence intervals (CIs) based on the central limit theorem and the estimation of the asymptotic variance by
nonparametric bootstrap and those of the confidence interval based on the 2.5th and 97.5th percentiles
of the bootstrapped TMLEs. All values are multiplied by 100.

small super learner library large super learner library
CIs based on CLT quantiles CLT quantiles
coverage 96.0 86.0 100.0 92.0
mean width 6.79 6.39 5.37 5.06

[Received August 1, 2010; revised October 1, 2010; accepted for publication November 1, 2010 ]
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Fig. 1. Kernel estimates of the densities of the initial and targeted minimum loss estimators. In each
graph, the vertical line indicates the true values of the parameter of interest Ψ(P s) ≈ 0.72. The first and
second rows respectively correspond to the use of a small or large library for the super learning procedure.
The first column corresponds to the estimation of g(P s) by maximum likelihood on a correctly specified
parametric model, while the second column corresponds to the estimation of g(P s) by super learning.

Table 3. Empirical probabilities of Aj = 1 (each j = 0, 1, 2), empirical probabilities of Lj = 1 (each
j = 0, 1, 2, 3), and empirical conditional means of Cj given A0:j−1 = 10:j−1, L0:j−1 = 00:j−1 (each
j = 0, 1, 2, 3), as computed on the DAIFI data. In the fifth column, we report between parentheses the
number of women involved in the computation of the corresponding empirical conditional mean.

empirical probabilities of empirical conditional mean of # women
IVF cycle j Aj = 1 Lj = 1 Cj given A0:j−1 = 10:j−1, L0:j−1 = 00:j−1

0 75% 22% 3.31 (3001)
1 59% 32% 3.09 (1624)
2 49% 35% 2.95 (813)
3 - 37% 3.23 (397)
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APPENDIX

A. TMLE Updating Procedure in Detail

The TMLE updating procedure involves computing the terms of the right-hand side sum in (4.4).

To do so, we actually start from the “last term”, Π(D(P )|TQL3
)(O), see Section A.1, then derive

the previous terms recursively going backwards, see Sections A.2 and A.3. The following almost

exhaustive description makes it very easy to write down the corresponding algorithm and code.

∗To whom correspondence should be addressed.
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A.1 First update

For the sake of notational consistency, let us characterize ∆3 by ∆3(O) = L3. Remember that we

know (at least numerically) the projection Π(D(P 0
n)|T (QL3)) (just substitute P 0

n for P in (4.5)).

The first update goes as follows. We define H0
n(O) = 1 and characterize P 0

n(ε) (for any ε ∈ R)

as being the data-generating distribution for O such that (i) Pa(L3) has the same distribution

under P 0
n(ε) as under P 0

n , and (ii) the conditional distribution of L3 given Pa(L3) under P 0
n(ε)

is the Bernoulli law with parameter

expit
(
logitP 0

n(L3 = 1|Pa(L3)) + εH0
n(O)

)
(by convention, logit (0) = −∞, logit (1) = +∞, expit (−∞) = 0 and expit (+∞) = 1). One

can easily check that {P 0
n(ε) : ε ∈ R} fluctuates P 0

n (i.e., P 0
n(0) = P 0

n) in the direction of

Π(D(P 0
n)|T (QL3)) for the weighted log-likelihood loss function L0

n characterized by L0
n(P )(O) =

−1{A0:2=10:2}
G2(P 0

n)(O) logP (O). Indeed,

∂

∂ε
L0
n(P 0

n(ε))(O)|ε=0 = −Π(D(P 0
n)|T (QL3))(O).

The optimal stretch ε0n along that fluctuation of P 0
n is that which minimizes the empirical loss,

i.e., ε0n = arg minε∈R PnL
0
n(P 0

n(ε)). We conclude this first update by setting P 1
n = P 0

n(ε0n).

For the sake of preparing the next fluctuation, we derive (numerically) EP 1
n
[∆3(O)|Pa(L3)] =

P 1
n(L3 = 1|C3,K ,Pa(C3,K)), from which we deduce

EP 1
n
[∆3(O)|Pa(C3,K)] = EP 1

n
[EP 1

n
[∆3(O)|Pa(L3)]|Pa(C3,K)]

=
∑

c3∈{0,1}

P 1
n(C3,K = c3|Pa(C3,K))P 1

n(L3 = 1|C3,K = c3,Pa(C3,K)),

hence in turn the projection

H1
n(O) ≡ Π(∆3|T (QC3,K ))(O) = EP 1

n
[∆3(O)|C3,K ,Pa(C3,K)]− EP 1

n
[∆3(O)|Pa(C3,K)],

which satisfies

Π(D(P 1
n)|T (QC3,K ))(O) = H1

n(O)
1{A0:2 = 10:2}
G2(P 1

n)(O)
.
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The discussion of four important points are in order:

• this fluctuation obviously only fluctuates the conditional distribution of L3 given Pa(L3);

it does so in the direction of the corresponding component of the current estimate of the

efficient influence curve, D?(P 0
n);

• for each 0 6 j 6 2, if 1{A0:j = 10:j} = 1 then Gj(P 0
n)(O) > 0; otherwise we say that the

weight 1{A0:j=10:j}
Gj(P 0

n)(O) equals 0 by convention;

• deriving what P 1
n is merely amounts to fitting a weighted logistic regression of L3 on H0

n(O)

with an offset equal to logitP 0
n(L3 = 1|Pa(L3)), using only those observations for which

A
(i)
0:2 = 10:2 and the corresponding weights 1/G2(P 0

n)(O(i));

• it holds that PnΠ(D(P 1
n)|T (QL3)) = 0.

A.2 Successive 2nd to (K + 1)th updates

We describe now the next K successive updates. Starting from k = 1, we characterize P kn (ε) (for

any ε ∈ R) as being the data-generating distribution of O such that (i) Pa(C3,K+1−k) has the

same distribution under P kn (ε) as under P kn , (ii) the conditional distribution of C3,K+1−k given

Pa(C3,K+1−k) is the Bernoulli law with parameter

expit
(
logitP kn (C3,K+1−k = 1|Pa(C3,K+1−k)) + εHk

n(O)
)
,

and (iii) all remaining variables have the same conditional distributions given their parents under

P kn (ε) as under P kn . One can easily check that {P kn (ε) : ε ∈ R} fluctuates P kn (i.e., P kn (0) =

P kn ) in the direction of Π(D(P kn )|T (QC3,K+1−k)) for the weighted log-likelihood loss function Lkn

characterized by Lkn(P )(O) = −1{A0:2=10:2}
G2(Pkn )(O)

logP (O). Indeed,

∂

∂ε
Lkn(P kn (ε))(O)|ε=0 = −Π(D(P kn )|T (QC3,K+1−k))(O).
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4 A. Chambaz and others

The optimal stretch εkn along that fluctuation of P kn is that which minimizes the empirical loss,

i.e., εkn = arg minε∈R PnL
k
n(P kn (ε)), and we conclude this update by setting P k+1

n = P kn (εkn).

For the sake of preparing the next fluctuation, we now derive EPk+1
n

[∆3(O)|Pa(C3,K+1−k)]. If

k < K then we can deduce from there

EPk+1
n

[∆3(O)|Pa(C3,K−k)] = EPk+1
n

[EPk+1
n

[∆3(O)|Pa(C3,K+1−k)]|Pa(C3,K−k)],

hence in turn the projection Π(∆3|T (QC3,K−k)), which can be written as

Π(∆3|T (QC3,K−k))(O) = EPk+1
n

[∆3(O)|C3,K−k,Pa(C3,K−k)]− EPk+1
n

[∆3(O)|Pa(C3,K−k)].

Then we set Hk+1
n (O) = Π(∆3|T (QC3,K−k))(O), which satisfies

Π(D(P k+1
n )|T (QC3,K−k))(O) = Hk+1

n (O)
1{A0:2 = 10:2}
G2(P k+1

n )(O)
.

Now, everything is in place to carry on and undertake the next fluctuation: if k < K then we

increment k ← k + 1 and repeat the procedure described in the current Section A.2, otherwise

we proceed to Section A.3. Again four important points are in order:

• the latter kth fluctuation obviously only fluctuates the conditional distribution of C3,K+1−k

given Pa(C3,K+1−k); it does so in the direction of the corresponding component of the

current estimate of the efficient influence curve, D?(P kn );

• we emphasize that G2(P kn ) = G2(P 0
n) so that there is no ambiguity in the definition of the

weight 1{A0:2=10:2}
G2(Pkn )(O)

;

• deriving what is P k+1
n from P kn merely amounts to fitting a weighted logistic regression of

C3,K+1−k on Hk
n(O) with an offset equal to logitP kn (C3,K+1−k = 1|Pa(C3,K+1−k)), using

only those observations for whichA(i)
0:2 = 10:2 and the corresponding weights 1/G2(P 0

n)(O(i));

• eventually, we have PnΠ(D(PK+1
n )|T (QL3)) = PnΠ(D(PK+1

n )|T (QC3,K+1−k)) = 0 for all

1 6 k 6 K.
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A.3 Successive (K + 2)th to 3(K + 1)th updates

The next 2(K + 1) updates are very similar to the (K + 1) updates that we described in Sec-

tions A.1 and A.2, because we leave unchanged (i.e., do not fluctuate) the initial estimation of

the conditional distribution of A2 given Pa(A2) and, later, of A1 given Pa(A1). In other words,

all the data-generating distributions P kn that we consider below are such that g(P kn ) = g(P 0
n).

Consequently, there will be no ambiguity in the forthcoming definitions of the weights 1{A0:j=10:j}
Gj(Pkn )(O)

for each j = 0, 1.

A.3.1 (K + 2)th update. We characterize ∆2(P ) for all P ∈ M by setting ∆2(P )(O) =

EP [∆3(O)|A2 = 1,Pa(A2)] (the subscript ‘2’ refers to the fact that ∆2(P )(O) depends on O only

through L2 and Pa(L2)). We know ∆2(PK+1
n ) because we have derived earlier the conditional

expectation EPK+1
n

[∆3(O)|Pa(C3,1) ≡ (A2, L2,Pa(L2))]. By the tower rule, it holds that

EPK+1
n

[D(PK+1
n )(O)|L2,Pa(L2)]

= EPK+1
n

(
1{A0:2 = 10:2}
G2(PK+1

n )(O)
EPK+1

n

[
∆3(O)−Ψ(PK+1

n )

∣∣∣∣∣A2, L2,Pa(L2)

] ∣∣∣∣∣L2,Pa(L2)

)

=
(
∆2(PK+1

n )(O)−Ψ(PK+1
n )

) 1{A0:1 = 10:1}
G1(PK+1

n )(O)
. (A.1)

Thus deriving

HK+1
n (O) ≡ Π(∆2(PK+1

n )|T (QL2))(O) = ∆2(PK+1
n )(O)− EPK+1

n
[∆2(PK+1

n )(O)|Pa(L2)]

yields the next component of the efficient influence curve, because

Π(D(PK+1
n )|T (QL2))(O) = HK+1

n (O)
1{A0:1 = 10:1}
G1(PK+1

n )(O)
.

Interestingly, it is not necessary to compute Ψ(PK+1
n ) to derive Π(D(PK+1

n )|T (QL2)), even

though the parameter appears in (A.1).

Now we fluctuate the conditional distribution of L2 given Pa(L2) only, and do so in the

direction of the corresponding component of the current estimate of the efficient influence curve,
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6 A. Chambaz and others

D?(PK+1
n ). Similarly to Section A.1, we characterize PK+1

n (ε) (for any ε ∈ R) as being the

data-generating distribution for O such that (i) Pa(L2) has the same distribution under PK+1
n (ε)

as under PK+1
n , (ii) the conditional distribution of L2 given Pa(L2) is the Bernoulli law with

parameter

expit
(
logitPK+1

n (L2 = 1|Pa(L2)) + εHK+1
n (O)

)
,

and (iii) all remaining variables have the same conditional distributions given their parents under

PK+1
n (ε) as under PK+1

n . One can easily check that {PK+1
n (ε) : ε ∈ R} fluctuates PK+1

n (i.e.,

PK+1
n (0) = PK+1

n ) in the direction of Π(D(PK+1
n )|T (QL2)) for the weighted log-likelihood loss

function LK+1
n characterized by LK+1

n (P )(O) = − 1{A0:1=10:1}
G1(P

K+1
n )(O)

logP (O). Indeed,

∂

∂ε
LK+1
n (PK+1

n (ε))(O)|ε=0 = −Π(D(PK+1
n )|T (QL2))(O).

The optimal stretch εK+1
n along that fluctuation of PK+1

n is that which minimizes the empirical

loss, i.e., εK+1
n = arg minε∈R PnL

K+1
n (PK+1

n (ε)), and we conclude this update by setting PK+2
n =

PK+1
n (εK+1

n ).

For the sake of preparing the next fluctuation, we derive EPK+2
n

[∆2(PK+2
n )(O)|Pa(L2)], from

which we deduce

EPK+2
n

[∆2(PK+2
n )(O)|Pa(C2,K)] = EPK+2

n
[EPK+2

n
[∆2(PK+2

n )(O)|Pa(L2)]|Pa(C2,K)],

hence in turn the projection

HK+2
n (O) ≡ Π(∆2(PK+2

n )|T (QC2,K ))(O)

= EPK+2
n

[∆2(PK+2
n )(O)|C2,K ,Pa(C2,K)]− EPK+2

n
[∆2(PK+2

n )(O)|Pa(C2,K)],

which satisfies

Π(D(PK+2
n )|T (QC2,K ))(O) = HK+2

n (O)
1{A0:1 = 10:1}
G1(PK+2

n )(O)
.

We emphasize that:
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• deriving PK+2
n from PK+1

n merely amounts to fitting a weighted logistic regression of L2 on

HK+1
n (O) with an offset equal to logitPK+1

n (L2 = 1|Pa(L2)), using only those observations

for which A
(i)
0:1 = 10:1 and the corresponding weights 1/G1(P 0

n)(O(i));

• it holds that PnΠ(D(PK+2
n )|T (QLj )) = PnΠ(D(PK+2

n )|T (QC3,K+1−k)) = 0 for all 1 6 k 6

K and 2 6 j 6 3.

A.3.2 (K + 3)th to 2(K + 1)th updates. We now carry out the next K updates similarly to

Section A.2. Define for conciseness κ(`, k) = (3−`)(K+1)+k for all 1 6 k 6 K and 1 6 ` 6 2. Set

` = 2. Starting from k = 1, we characterize Pκ(`,k)n (ε) (for any ε ∈ R) as being the data-generating

distribution of O such that (i) Pa(C`,K+1−k) has the same distribution under Pκ(`,k)n (ε) as under

P
κ(`,k)
n , (ii) the conditional distribution of C`,K+1−k given Pa(C`,K+1−k) is the Bernoulli law

with parameter

expit
(

logitPκ(`,k)n (C`,K+1−k = 1|Pa(C`,K+1−k)) + εHκ(`,k)
n (O)

)
,

and (iii) all remaining variables have the same conditional distributions given their parents under

P
κ(`,k)
n (ε) as under Pκ(`,k)n . One can easily check that {Pκ(`,k)n (ε) : ε ∈ R} fluctuates Pκ(`,k)n

(i.e., Pκ(`,k)n (0) = P
κ(`,k)
n ) in the direction of Π(D(Pκ(`,k)n )|T (QC`,K+1−k)) for the weighted log-

likelihood loss function L
κ(`,k)
n characterized by L

κ(`,k)
n (P )(O) = −1{A0:(`−1)=10:(`−1)}

G`−1(P
κ(`,k)
n )(O)

logP (O).

Indeed,

∂

∂ε
Lκ(`,k)n (Pκ(`,k)n (ε))(O)|ε=0 = −Π(D(Pκ(`,k)n )|T (QC`,K+1−k))(O).

The optimal stretch ε
κ(`,k)
n along that fluctuation of Pκ(`,k)n is that which minimizes the empir-

ical loss, i.e., εκ(`,k)n = arg minε∈R PnL
κ(`,k)
n (Pκ(`,k)n (ε)), and we conclude this update by setting

P
κ(`,k)+1
n = P

κ(`,k)
n (εκ(`,k)n ).

We now derive E
P
κ(`,k)+1
n

[∆j(P
κ(`,k)+1
n )(O)|Pa(C`,K+1−k)] for the sake of preparing the next
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fluctuation. If k < K then we can deduce from there

E
P
κ(`,k)+1
n

[∆j(Pκ(`,k)+1
n )(O)|Pa(C`,K−k)]

= E
P
κ(`,k)+1
n

[E
P
κ(`,k)+1
n

[∆j(Pκ(`,k)+1
n )(O)|Pa(C`,K+1−k)]|Pa(C`,K−k)],

hence in turn the projection Π(∆j(P
κ(`,k)+1
n )|T (QC`,K−k)), which can be written as

Π(∆j(Pκ(`,k)+1
n )|T (QC`,K−k))(O)

= E
P
κ(`,k)+1
n

[∆j(Pκ(`,k)+1
n )(O)|C`,K−k,Pa(C`,K−k)]−E

P
κ(`,k)+1
n

[∆j(Pκ(`,k)+1
n )(O)|Pa(C`,K−k)].

Then we set Hκ(`,k)+1
n (O) = Π(∆j(P

κ(`,k)+1
n )|T (QC`,K−k))(O), which satisfies

Π(D(Pκ(`,k)+1
n )|T (QC`,K−k))(O) = Hκ(`,k)+1

n (O)
1{A0:(`−1) = 10:(`−1)}
G`−1(Pκ(`,k)+1

n )(O)
.

Now, everything is in place to carry on and undertake the next fluctuation: if k < K then we

increment k ← k + 1 and repeat the procedure described in the current Section A.3.2, otherwise

we proceed to Section A.3.3. We emphasize that:

• deriving what is Pκ(`,k)+1
n from P

κ(`,k)
n merely amounts to fitting a weighted logistic regres-

sion of C`,K+1−k on H
κ(`,k)
n (O) with an offset equal to

logitPκ(`,k)n (C`,K+1−k = 1|Pa(C`,K+1−k)),

using only those observations for which A
(i)
0:1 = 10:1 and the weights 1/G`−1(P 0

n)(O(i));

• eventually, we have PnΠ(D(P 2(K+1)
n )|T (QLj )) = PnΠ(D(P 2(K+1)

n )|T (QCj,K+1−k)) = 0 for

all 1 6 k 6 K and 2 6 j 6 3.

A.3.3 (2K + 3)th update. We characterize ∆1(P ) for all P ∈ M by setting ∆1(P )(O) =

EP [∆2(P )(O)|A1 = 1,Pa(A1)] (the subscript ‘1’ refers to the fact that ∆1(P )(O) depends on O

only through L1 and Pa(L1)). We know ∆1(P 2K+2
n ) because we have derived earlier the condi-
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tional expectation EP 2K+2
n

[∆2(P 2K+2
n )(O)|Pa(C2,1) ≡ (A1,Pa(A1))]. Following the lines of Sec-

tion A.3.1, we derive H2K+2
n (O) ≡ Π(∆1(P 2K+2

n )|T (QL1))(O) which yields the next component

of the efficient influence curve, because

Π(D(P 2K+2
n )|T (QL1))(O) = H2K+2

n (O)
1{A0 = 1}

g0(P 2K+2
n )(O)

.

Now we fluctuate the conditional distribution of L1 given Pa(L1) only, and do so in the

direction of the corresponding component of the current estimate of the efficient influence curve,

D?(P 2K+2
n ). Similarly to Sections A.1 and A.3.1, we characterize P 2K+2

n (ε) (for any ε ∈ R) as

being the data-generating distribution for O such that (i) Pa(L1) has the same distribution under

P 2K+2
n (ε) as under P 2K+2

n , (ii) the conditional distribution of L1 given Pa(L1) is the Bernoulli

law with parameter

expit
(
logitP 2K+2

n (L1 = 1|Pa(L1)) + εH2K+2
n (O)

)
,

and (iii) all remaining variables have the same conditional distributions given their parents under

P 2K+2
n (ε) as under P 2K+2

n . One can easily check that {P 2K+2
n (ε) : ε ∈ R} fluctuates P 2K+2

n (i.e.,

P 2K+2
n (0) = P 2K+2

n ) in the direction of Π(D(P 2K+2
n )|T (QL1)) for the weighted log-likelihood

loss function L2K+2
n characterized by L2K+2

n (P )(O) = − 1{A0=1}
g0(P

2K+2
n )(O)

logP (O). Indeed,

∂

∂ε
L2K+2
n (P 2K+2

n (ε))(O)|ε=0 = −Π(D(P 2K+2
n )|T (QL1))(O).

The optimal stretch ε2K+2
n along that fluctuation of P 2K+2

n is that which minimizes the empir-

ical loss, i.e., ε2K+2
n = arg minε∈R PnL

2K+2
n (P 2K+2

n (ε)), and we conclude this update by setting

P 2K+3
n = P 2K+2

n (ε2K+2
n ).

For the sake of preparing the next fluctuation, we derive EP 2K+3
n

[∆1(P 2K+3
n )(O)|Pa(L1)], from

which we deduce EP 2K+3
n

[∆1(P 2K+3
n )(O)|Pa(C1,K)] hence in turn the projection H2K+3

n (O) ≡

Π(∆1(P 2K+3
n )|T (QC1,K ))(O), which satisfies

Π(D(P 2K+3
n )|T (QC1,K ))(O) = H2K+3

n (O)
1{A0 = 1}

g0(P 2K+3
n )(O)

.
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We emphasize that:

• deriving P 2K+3
n from P 2K+2

n merely amounts to fitting a weighted logistic regression of

L1 on H2K+2
n (O) with an offset equal to logitP 2K+2

n (L1 = 1|Pa(L1)), using only those

observations for which A
(i)
0 = 1 and the corresponding weights 1/g0(P 0

n)(O(i));

• we have PnΠ(D(P 2K+3
n )|T (QLj′ )) = PnΠ(D(P 2K+3

n )|T (QCj,K+1−k)) = 0 for all 1 6 k 6 K,

2 6 j 6 3, and 1 6 j′ 6 3.

A.3.4 (2K+4)th to last updates. The next K updates are accurately described in Section A.3.2

when one sets ` = 1 there. We do not update QW (P 0
n), the marginal distribution of W . Actually,

even if one tried to in the same spirit as we have carried out the previous updates, one would end

up not updatingQW (P 0
n). Eventually, the whole updating procedure bends P 0

n into P ∗n ≡ P
3(K+1)
n .

Its differences relative to the initial estimator stem from the fact that P ∗n targets Ψ(P0) whereas

P 0
n does not. This is notably reflected in the following equalities: for all 1 6 k 6 K and 1 6 j 6 3,

PnΠ(D(P ∗n)|T (QLj )) = PnΠ(D(P ∗n)|T (QCj,K+1−k)) = 0. (A.2)

We can add that, since on one hand Ψ(P ) = EP (Y 1{A0:2 = 10:2}/G2(P )(O)) and on the other

hand QW (P ∗n) = QW (P 0
n) = Pn,W , the empirical distribution of W , it also automatically holds

that

PnΠ(D(P ∗n)|T (QW )) = 0. (A.3)

Combining (A.2) and (A.3) yields the result stated in Lemma 4.2.

A.3.5 Comments. Consider first the computation of the TMLE Ψ(P ∗n) which proves, perhaps

surprisingly, very easy at this stage of the procedure. Characterize ∆0(P ) for all P ∈M by setting

∆0(P )(W ) = EP [∆1(P )(O)|A0 = 1,W ]. We know ∆0(P ∗n) because we have derived earlier the

conditional expectation EP∗n [∆1(P ∗n)(O)|Pa(C1,1) ≡ (A0,W )]. Furthermore, the “first term” of

http://biostats.bepress.com/ucbbiostat/paper299
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the right-hand side of (4.4) evaluated at P = P ∗n satisfies (A.3) and

Π(D(P ∗n)|TQW )(O)

= EP∗n

(
1{A0 = 1}
g0(P ∗n)(O)

EP∗n

[
∆1(P ∗n)(O)−Ψ(P ∗n)

∣∣∣∣∣A0,W

])
= ∆0(P ∗n)(W )−Ψ(P ∗n).

Thus, it straightforwardly holds that Ψ(P ∗n) = 1
n

∑n
i=1 ∆0(P ∗n)(W (i)).

Second, we would like to comment on the reason why we systematically relied on weighted lo-

gistic regressions on covariates Hk
n(O) with weights of the form 1{A0:j = 10:j}/Gj(P kn )(O) instead

of unweighted logistic regressions on covariates of the form Hk
n(O)1{A0:j = 10:j}/Gj(P kn )(O). By

using this trick, we actually guarantee that the numerical values of Gj(P kn )(O) are required only

at our observations O(1), . . . , O(n), therefore limiting the overall computational burden.

B. The Simulation Scheme

We describe here the data-generating distribution P s used for the simulation study. First, W =

(W1,W2, C0, L0) is drawn from the empirical distribution of W based on the DAIFI data set.

If L0 = 1, then all the remaining components are fully determined by our set of conventions.

Otherwise, the next components of O are successively drawn conditionally on their past and

following the chronological ordering. Specifically, A0 is conditionally drawn from the Bernoulli

law with parameter expit (1 + 0.05C0) if W1 = 0 and expit (1 + 0.1C0) if W1 = 1. If A0 = 0

then all the remaining components are fully determined by our set of conventions. Otherwise, C1

is conditionally drawn from the binomial law with parameter (n1, p1) = (min(19,max(1, (C0 +

1)/p1)), 0.5+C0
3+2 max(4,C0)

) if W1 = 0 or (n1, p1) = (min(19,max(1, C0 + 1/p1)), 1/3+C0
2.67+2 max(4,C0)

) if

W1 = 1. Then L1 is conditionally drawn from the Bernoulli law with parameter expit (0.26 log(W1)−

0.48 log(2 + C3
1 )) if W1 = 0 and expit (0.52 log(W1)− log(2 + 0.01C3

1 )) if W1 = 1.

If L1 = 1, then all the remaining components are fully determined by our set of conventions.

Otherwise,A1 is conditionally drawn from the Bernoulli law with parameter expit (2 min(1, 0.25C1))
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if W1 = 0 and expit (min(1, 0.25C1)) if W1 = 1. If A1 = 0 then all the remaining components

are fully determined by our set of conventions. Otherwise, C2 is conditionally drawn from the

binomial law with parameter (n2, p2) = (min(19,max(1, (C1 + 1)/p2)), 0.75+C1
3.5+2 max(4,C1)

) if W1 = 0

or (n2, p2) = (min(19,max(1, C1 + 1/p2)), 0.67+C1
3.33+2 max(4,C1)

) if W1 = 1. Then L2 is conditionally

drawn from the Bernoulli law with parameter expit (1− 0.29
√
W1 − 0.72 log(2 + C3

2 )) if W1 = 0

and expit (2− 0.15
√
W1 − 2 log(2 + 0.01C3

2 )) if W1 = 1.

If L2 = 1, then all the remaining components are fully determined by our set of conven-

tions. Otherwise, A2 is conditionally drawn from the Bernoulli law with parameter expit (0.1 −

0.05 min(1, 0.25C2)) if W1 = 0 and expit (0.2 − 0.2 min(1, 0.25C2)) if W1 = 1. If A2 = 0 then

all the remaining components are fully determined by our set of conventions. Otherwise, C3

is conditionally drawn from the binomial law with parameter (n3, p3) = (min(19,max(1, (C2 +

1)/p3)), 0.83+C2
3.67+2 max(4,C2)

) if W1 = 0 or (n3, p3) = (min(19,max(1, C2 + 1/p3)), 0.8+C2
3.6+2 max(4,C2)

) if

W1 = 1. Then, L3 is conditionally drawn from the Bernoulli law with parameter expit (−4 −

W 2
1 /2116 + 0.72 log(2 +C3

2 )) if W1 = 0 and expit (−5 +W 2
1 /1058− 4 log(2 + 0.01C3

2 )) if W1 = 1.

Note that the resulting distribution P s actually obeys a system of structural equations as

discussed in Section 3.2 of the main manuscript. The functional forms are made intricate in order

to convince the reader that the super learner library is misspecified for the estimation of both

Q(P s) and g(P s), see Section C. Furthermore, the true value of the parameter of interest Ψ(P s)

can be estimated with great precision by Monte Carlo. Using a simulated dataset of one million

observations under the intervention A0:2 = 10:2 yields Ψ(P s) ≈ 0.72.

C. Specifics of the Super Learning Procedure

Super learning is a cross-validation based aggregation method that builds a predictor as a convex

combination of base predictors (van der Laan and others, 2007; van der Laan and Rose, 2011).

The weights of the convex combination are chosen so as to minimize the prediction error. This

http://biostats.bepress.com/ucbbiostat/paper299
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error is expressed in terms of the nonnegative least squares (NNLS) loss function (Lawson and

Hanson, 1995) and estimated by V -fold cross-validation. Heuristically the resulting predictor is

by construction at least as good as the best of the base predictors. This statement has a rigorous

form implying oracle inequalities (van der Laan and others, 2007; van der Laan and Rose, 2011).

The algorithmic challenge is easily overcome, thanks to the R-package SuperLearner by Polley

and van der Laan (2011) and the library of R packages (R Development Core Team, 2010) built

by the statistical community. We choose V = 5. As for the base predictors, which are classifiers

since we only consider binary random variables, they involve (in alphabetical order):

- Elastic nets (large library only): we use the glmnet R package by Friedman and others

(2010), with its default values and the tuning parameter alpha set to 1 and 0.5.

- Generalized additive models: we use the gam R package by Hastie (2011), with its default

values and the tuning parameter deg.gam set to 2 and 3.

- Generalized linear models (large library only): we use the glm R function.

- Random forests: we use the randomForest R package by Liaw and Wiener (2002), with its

default values.
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Proof of equality (3.2). Set 1 6 j 6 3. The right-hand side term of (3.2) equals

P (Lj = 1|C0:j , L0:j−1,W )

= E[P (Lj = 1|C0:j , A0:j−1, L0:j−1,W )|C0:j , L0:j−1,W ]

=
∑

a0:j−1∈{0,1}j
P (Lj = 1|C0:j , A0:j−1 = a0:j−1, L0:j−1,W )×P (A0:j−1 = a0:j−1|C0:j , L0:j−1,W )

= P (Lj = 1|C0:j , A0:j−1 = 10:j−1, L0:j−1,W )× P (A0:j−1 = 10:j−1|C0:j , L0:j−1,W )

= 1{Cj > 1}P (Lj = 1|C0:j , A0:j−1 = 10:j−1, L0:j−1,W )

= 1{Cj > 1, A0:j−1 = 10:j−1}P (Lj = 1|C0:j , A0:j−1 = 10:j−1, L0:j−1,W ).

Furthermore, the left-hand side of (3.2) satisfies

P (Lj = 1|C0:j , A0:j−1, L0:j−1,W )

= 1{A0:j−1 = 10:j−1}P (Lj = 1|C0:j , A0:j−1 = 10:j−1, L0:j−1,W )

= 1{Cj > 1, A0:j−1 = 10:j−1}P (Lj = 1|C0:j , A0:j−1 = 10:j−1, L0:j−1,W ).

Clearly, the two expressions coincide. �
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