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Quantifying alternative splicing from
paired-end RNA-sequencing data

David Rossell, Camille Stephan-Otto Attolini, Manuel Kroiss, and Almond
Stöcker

Abstract

RNA-sequencing has revolutionized biomedical research and, in particular, our
ability to study gene alternative splicing. The problem has important implica-
tions for human health, as alternative splicing is involved in malfunctions at the
cellular level and multiple diseases. However, the high-dimensional nature of
the data and the existence of experimental biases pose serious data analysis chal-
lenges. We find that the standard data summaries used to study alternative splicing
are severely limited, as they ignore a substantial amount of valuable information.
Current data analysis methods are based on such summaries and are hence sub-
optimal. Further, they have limited flexibility in accounting for technical biases.
We propose novel data summaries and a Bayesian modeling framework that over-
come these limitations and determine biases in a non-parametric, data-dependent
manner. These summaries adapt naturally to the rapid improvements in sequenc-
ing technology. We provide efficient point estimates and uncertainty assessments.
The approach allows to study alternative splicing patterns for individual samples
and can also be the basis for downstream differential expression analysis. We
found an over 5 fold improvement in estimation mean square error compared to
a popular approach in simulations, and substantially higher correlations between
replicates in experimental data. Our findings indicate the need for modifying the
routine summarization and analysis of alternative splicing RNA-seq studies. We
provide a software implementation in the R package casper.
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Abstract

RNA-sequencing has revolutionized biomedical research and, in
particular, our ability to study gene alternative splicing. The problem
has important implications for human health, as alternative splicing
is involved in malfunctions at the cellular level and multiple diseases.
However, the high-dimensional nature of the data and the existence of
experimental biases pose serious data analysis challenges. We find that
the standard data summaries used to study alternative splicing are
severely limited, as they ignore a substantial amount of valuable infor-
mation. Current data analysis methods are based on such summaries
and are hence sub-optimal. Further, they have limited flexibility in
accounting for technical biases. We propose novel data summaries and
a Bayesian modeling framework that overcome these limitations and
determine biases in a non-parametric, data-dependent manner. These
summaries adapt naturally to the rapid improvements in sequencing
technology. We provide efficient point estimates and uncertainty as-
sessments. The approach allows to study alternative splicing patterns
for individual samples and can also be the basis for downstream dif-
ferential expression analysis. We found an over 5 fold improvement
in estimation mean square error compared to a popular approach in
simulations, and substantially higher correlations between replicates
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in experimental data. Our findings indicate the need for modifying
the routine summarization and analysis of alternative splicing RNA-
seq studies. We provide a software implementation in the R package
casper 1.

1 Introduction

RNA-sequencing (RNA-seq) produces an overwhelming amount of genomic
data in a single experiment, providing an unprecedented resolution to address
biological problems. We focus on gene expression experiments where the
goal is to study alternative splicing (AS), which we briefly introduce. AS
is an important biological process by which cells are able to express several
variants, also known as isoforms, of a single gene. Each splicing variant
gives rise to a different protein with a unique structure that can perform
different functions and respond to internal and environmental needs. AS
is believed to contribute to the complexity of higher organisms, and is in
fact particularly common in humans (Blencowe, 2006). Additionally, it is
known to be involved in multiple diseases such as cancer and malfunctions
at the cellular level. Despite its importance, due to limitations in earlier
technologies most gene expression studies have ignored AS and focused on
overall gene expression.

Consider the hypothetical example of a gene with three splice variants
shown in Figure 1. The gene is encoded in the DNA in three exons, shown
as boxes in Figure 1. When the gene is transcribed as messenger RNA
(mRNA), it can give rise to three isoforms. Variant 1 is formed by all three
exons, whereas variant 2 skips the second exon and variant 3 the third exon.
Usually, multiple variants are expressed simultaneously at any given time.
In our example, variant 1 makes up for 60% of the overall expression of the
gene, variant 2 for 30% and variant 3 for 10%. In practice, these proportions
are unknown and our goal is to estimate them as accurately as possible.

We focus on paired-end RNA-seq experiments, as they are the current
standard and provide higher resolution for measuring isoform expression than
competing technologies, e.g. microarrays (Pepke et al., 2009). RNA-seq se-
quences tens or even hundreds of million mRNA fragments, which can then
be aligned to a reference genome using a variety of software, e.g. TopHat
(Trapnell et al., 2009), SOAP (Li et al., 2009) or BWA (Li and Durbin, 2009).
Throughout, we assume that the software can handle gapped alignments (we
used TopHat in all our examples). Early RNA-seq studies used single-end
sequencing, where only the left or right end of a fragment is sequenced. In

1https://sites.google.com/site/rosselldavid/software
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Figure 1: Three splice variants for a hypothetical gene and their relative
abundances. Exon1 is located at positions 101-400. Exon 2 at 1001- 1100.
Exon 3 at 2001-2500.

contrast, paired-end RNA-seq sequences both fragment ends. Table 1 shows
three hypothetical sequenced fragments corresponding to the gene in Figure
1. 75 base pairs (bp) were sequenced from each end. For instance, both
ends of fragment 1 align to exon 1. As the three variants contain exon 1, in
principle this fragment could have been generated by any variant. For frag-
ment 2 the left read aligned to exons 1 and 2 (i.e. it spanned the junction
between both exons), and the right read to exon 3. Hence, fragment 2 can
only have been generated from variant 1. Finally, fragment 3 visits exons
1 and 2 and hence it could have been generated either by variants 1 or 3.
The example is simply meant to provide some intuition. In practice most
genes are substantially longer and have more complicated splicing patterns.
Precise probability calculations are required to ensure that the conclusions
are sound.

Ideally, one would want to sequence the whole variant, so that each frag-
ment can be uniquely assigned to a variant. Unfortunately, current technolo-
gies sequence hundreds of base pairs, which is orders of magnitude shorter
than typical variant lengths. Current statistical approaches are based on
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Chromosome Left read Right read Exon path
Fragment 1 chr1 110-185 200-274 {1} , {1}
Fragment 2 chr1 361-400; 1001-1035 2011-2085 {1,2} , {3}
Fragment 3 chr1 301-375 1021-1095 {1} , {2}
...

Table 1: Three paired-end RNA-seq fragments. Aligned chromosome and
base pairs are indicated for both ends, allowing for gapped alignments. The
exon path indicates the sequence of exons visited by each end. A typical
experiment contains tens of millions of fragments.

the observation that, while most sequenced fragments cannot be uniquely
assigned to a variant, it is possible to make probability statements. For in-
stance, fragment 3 in Table 1 may have originated either from variants 1 or
3, but the probability that each variant generates such a fragment is differ-
ent. As we shall see below, this observation prompts a direct use of Bayes
theorem.

In principle, one could formulate a probability model that uses the full
data, i.e. the exact base pairs covered by each fragment such as provided in
Table 1. However, the massive number of sequences renders this approach
computationally prohibitive even when only considering a few genes. Several
authors proposed summarizing the data by counting the number of fragments
either covering each exon or each exon junction (e.g. Xing et al. (2006),
Mortazavi et al. (2008), Jiang and Wong (2009)). In fact, large-scale ge-
nomic databases report precisely these summaries, e.g. The Cancer Genome
Atlas project 2. One can then pose a probability model that uses count
data from a few categories as raw data, which greatly simplifies computa-
tion. While useful, this approach is seriously limited to considering pairwise
junctions, which discards relevant information. For instance, suppose that a
fragment visits exons 1, 2 and 3. Simply adding 1 to the count of fragments
spanning exons 1-2 and 2-3 ignores the joint information that a single frag-
ment visited 3 exons and decreases the confidence when inferring the variant
that generated the fragment. Our results suggest that ignoring this infor-
mation can result in a serious loss of precision. It is not uncommon that a
fragment spans more than 2 exons. Holt and Jones (2008) found a substan-
tial proportion of fragments bridging several exons in paired-end RNA-seq
experiments. In the 2009 RGASP experimental data set (Section 4) 38.0%
and 40.9% fragments spanned ≥3 exons in replicate 1 and 2, respectively. In

2http://cancergenome.nih.gov
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the 2012 ENCODE data set we found 64.7% and 65.2% in each replicate. The
2012 data had substantially longer reads and fragments, which illustrates the
rapid advancements in technology. As sequencing evolves these percentages
are expected to increase further.

We propose novel data summaries that preserve most information relevant
to alternative splicing, while maintaining the computational burden at a
manageable level. We record the sequence of exons visited by each fragment
end, which we refer to as exon path, and then count the number of fragments
following each exon path. The left end of Fragment 2 in Table 1 visits exons
1 and 2 and the right end exon 3, which we denote as {1, 2}, {3}. Notice that
a fragment following the path {1}, {2, 3} visits the same exons, so one could
be tempted to simply record {1, 2, 3} in both cases. However, the probability
of observing {1, 2}, {3} for a given variant differs from {1}, {2, 3}, and hence
combining the two paths would result in a potential loss of information. Table
1 contains hypothetical exon path counts for our example gene. We use these
counts as the basic input for our probability model.

Exon path Count
{1} , {1} 2824
{2} , {2} 105
{3} , {3} 5042
{1} , {2} 27
{1} , {1,2} 423
{1} , {3} 127
{2,3} , {3} 394
{1,2} , {3} 2
{1} , {2,3} 13

Table 2: Exon path counts for hypothetical gene

Paired-end RNA-seq is critical for AS studies. Intuitively, compared to
single-end sequencing it increases the probability of observing fragments that
connect exon junctions. Lacroix et al. (2008) showed that, although neither
protocol guarantees the existence of a unique solution, in practice paired end
(but not single end) can provide asymptotically correct estimates for 99.7% of
the human genes. In contrast, for single-end data the figure is 1.14%. Unfor-
tunately, much of the current methodology has been designed with single end
data in mind. Xing et al. (2006) formulate the problem as that of traversing
a directed acyclic graph and formulate a latent variable based approach to
estimate splice variant expression. Jiang and Wong (2009) propose a simi-
lar approach within the Bayesian framework. Both approaches were designed
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for single-end RNA-seq data. Guttman et al. (2010) and Ameur et al. (2010)
proposed strategies to detect splicing junctions, and Katz et al. (2010) and
Wu et al. (2011a) introduced models to estimate the percentage of isoforms
skipping individual exons. However, these approaches do not estimate ex-
pression at the variant level.

Several authors propose strategies that use paired-ends. Mortazavi et al.
(2008) and Trapnell et al. (2009) model the number of fragments spanning
exon junctions. Salzman et al. (2011) extend the model to consider counts
for individual exons as well as exon junctions. These approaches focus on
pairwise exon connections, ignoring valuable higher-order information, and
do not fully incorporate important technical biases. First, the sample prepa-
ration protocols usually induce an enrichment towards the 3’ end of the tran-
script, i.e. fragments are not uniformly distributed along the gene. Wu et al.
(2011b) extend the approaches above by relaxing the uniformity assump-
tion. Further, the fragment length distribution plays an important role in
the probability calculations and needs to be estimated accurately. While
the approaches above acknowledge this issue, they do not estimate this dis-
tribution from the data. Rather, strong parametric assumptions are made
based on reports provided by sequencing facilities. Our examples illustrate
that these reports can be inaccurate, and that the distribution can exhibit
multi-modalities that are not captured by the chosen parametric forms.

In summary, we propose a flexible framework to estimate alternative splic-
ing from RNA-seq studies, by using novel data summaries and accounting
for experimental biases. In Section 2 we formulate a probability model that
goes beyond pairwise connections by considering exon paths. We model the
read start and fragment size distributions non-parametrically, in order to
accommodate arbitrary shapes. Section 3 discusses model fitting and pro-
vides algorithms to obtain point estimates, asymptotic credibility intervals
and posterior samples. We show some results in Section 4 and provide con-
cluding remarks in Section 5.

2 Probability model

We formulate the model at the gene level and perform inference separately
for each gene. In some cases, exons from different genes overlap with each
other. When this occurs we group the overlapping genes and consider all
their isoforms simultaneously. It is also possible that two variants share only
a part of an exon. We sub-divide such exons into the shared part and the
part that is specific to each variant. For simplicity, from here on we refer to
gene groups simply as genes and to sub-divided exons simply as exons.

http://biostats.bepress.com/cobra/art97



Consider a gene with E exons starting at base pairs s1, . . . , sE and ending
at e1, . . . , eE . Denote the set of splicing variants under consideration by ν

(assumed to be known) and its cardinality by |ν| . Each variant is charac-
terized by an increasing sequence of natural numbers i1, i2, . . . that indicates
the exons contained therein.

2.1 Likelihood and prior

As discussed above, we formulate a model for exon paths. We denote an
exon path by ι = (ιl, ιr), where ιl = (ij, . . . , ij+k) are the exons visited by
the left-end and ιr = (ij′, . . . , ij′+k′) those by the right-end. Let P∗ be the
set of all possible exon paths and P be the subset of observed paths, i.e. the
paths followed by at least 1 sequenced fragment.

The observed data is a realization of the random variableY = (Y1, . . . , YN),
where N is the number of paired-end reads and Yi ∈ {1, . . . ,P∗} indicates
the exon path followed by read pair i. Formally, Yi arises from a mixture
of |ν| discrete probability distributions, each component corresponding to a
different splicing variant. The mixture weights π = (π1, . . . , π|ν|) give the
proportion of reads generated by each variant, i.e. its relative expression.
That is,

P (Yi = yi|π,ν) =

|ν|
∑

d=1

pyidπd,

where pkd = P (Yi = k|δi = d) is the probability of path k under variant d
and δi is a latent variable indicating the variant that originated Yi. Let Si

and Li denote the relative start and length (respectively) of fragment i. The
exon path Yi is completely determined given Si, Li and the variant δi. Hence,

pkd =

∫ ∫

I(Yi = k | Si = si, Li = li, δi = d)dPL(li | δi)dPS(si | δi, Li), (1)

where PL is the fragment distribution and PS is the read start distribution
conditional on L. As discussed in Section 2.2, by assuming that PS and PL

are shared across genes it is possible to estimate them with high precision.
Hence, for practical purposes we can treat pkd as known and pre-compute
them before model fitting. Full derivations for pkd are provided in Appendix
A.

Assuming that each fragment is observed independently, the likelihood
function can be written as

P (Y|π,ν) =

N
∏

i=1

|ν|
∑

d=1

pyidπd =

|P|
∏

k=1





|ν|
∑

d=1

pkdπd





xk

, (2)
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where xk =
∑N

i=1 I(yi = k) is the number of reads following exon path
k. (2) is log-concave, which guarantees the existence of a single maximum.
Log-concavity is given by (i) the log function being concave and monotone

increasing, (ii)
∑|ν|

d=1 pkdπd being linear and therefore concave, and (iii) the
fact that a composition g ◦ f where g is concave and monotone increasing
and f is concave is again concave. To see (iii), notice that

g ◦ f(tz1+(1− t)z2) ≥ g(tf(z1)+ (1− t)f(z2)) ≥ tg ◦ f(z1)+ (1− t)g ◦ f(z2)

where the first inequality is given by g being increasing and f concave, and
the second inequality is given by g being concave.

We complete the probability model with a Dirichlet prior on π:

π|ν ∼ Dir(q1, . . . , q|ν|). (3)

In Section 4 we assess several choices for qd. By default we set the fairly
uninformative values qd = 2, as these induce negligible bias and stabilize the
posterior mode by pooling it away from the boundaries 0 and 1. It is easy
to see that (3) is log-concave when qd ≥ 1 for all d. Given that (2) is also
log-concave, this choice of q guarantees the posterior to be log-concave, and
therefore the uniqueness of the posterior mode.

2.2 Fragment length and read start distribution esti-

mates

Evaluating the exon path probabilities in (1) that appear in the likelihood
(2) requires the fragment start distribution PS and fragment length distri-
bution PL. We assume a common PL across all genes and variants, with the
restriction that a fragment cannot be longer than the variant that generated
it. Denoting by T the length of variant δi (in bp), we let PL(l | δ) = PL(l |
T ) = P (L = l)I(l ≤ T )/P (l ≤ T ). That is, the conditional distribution of L
given δ is simply a truncated version of the marginal distribution.

Further, we assume a common fragment start distribution relative to the
variant length T . Conditional on L and T , PS is truncated so that the
fragment ends before the end of the variant. Specifically,

PS(S ≤ s | δi, L = l) = P

(

S

T
≤ z|T, L = l

)

=
ϕ
(

min{z, T−l+1
T

}
)

ϕ
(

T−l+1
T

) , (4)

where z = s/T and ϕ(z) = P (S
T
≤ z) is the distribution of the relative read

start S
T
.
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To estimate PL note that the fragment length is unknown for fragments
that span multiple exons, but it is known exactly when both ends fall in the
same exon. Therefore, we select all such fragments and estimate PL with
the empirical probability mass function of the observed fragment lengths. In
order to prevent short exons from inducing a selection bias, we only use exons
that are substantially longer than the expected maximum fragment length
(by default > 1000bp).

Estimating the fragment start distribution PS is more challenging, as we
do not know the variant that generated each fragment and therefore its rela-
tive start position cannot be determined. We address this issue by selecting
genes that have a single annotated variant, as in principle for these genes all
fragments should have been generated by that variant. Of course, the an-
notated genome does not contain all variants, and therefore a proportion of
the selected fragments may not have been generated by the assumed variant.
However, the annotations are expected contain most common variants (i.e.
with highest expression), and hence most of the selected fragments should
correspond to the annotated variant. Under this assumption, we can deter-
mine the exact start Si and length Li for all selected fragments. A difficulty
in estimating the read start distribution is that the observed (Si, Li) pairs
are truncated so that Si+Li < T , whereas we require the untruncated cumu-
lative distribution function ρ(·) in (4). Fortunately, the truncation point for
each (Si, Li) is known and therefore one can simply obtain a Kaplan-Meier
estimate of ρ(·) (Kaplan and Meier, 1958). We use the function survfit in
the R survival package (Therneau and Lumley, 2011).

3 Model fitting

We provide algorithms to obtain a point estimate for π, asymptotic credibil-
ity intervals and posterior samples.

Following a 0-1 loss, as a point estimate we report the posterior mode,
which is obtained by maximizing the product of (2) and (3), subject to the

constraint
∑|ν|

d=1 πd = 1. We note that maximum likelihood estimates are
obtained by simply setting qd = 1 in (3). This constrained optimization can
be performed with many numerical optimization algorithms. Here we used
the EM algorithm (Dempster et al., 1977), as it is computationally efficient
even when the number of variants |ν| is large. For a detailed derivation
see Appendix B. As noted above, for qd > 1 the log-posterior is concave and
therefore the algorithm converges to the single maximum. The steps required
for the algorithm are:

1. Initialize π
(0)
d = qd/

∑|ν|
d=1 qd.
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2. At iteration j, update π
(j+1)
d = qd − 1 +

∑|P|
k=1 xk

pkdπ
(j)
d

∑|ν|
i=1 pkiπ

(j)
i

.

Step 2 is repeated until the estimates stabilize. In our examples we required
|π

(j+1)
d −πj

d| < 10−5 for all d. Notice that pkd and xk remain constant through
all iterations, and hence they only need to be computed once.

We characterize the posterior uncertainty asymptotically using a nor-
mal approximation in the re-parameterized space θd = log (πd+1/π1), d =
1, . . . , |ν|−1 and the delta method (Casella and Berger, 2001). Denote by µ

the posterior mode for θ = (θ1, . . . , θ|ν|−1) and by S the Hessian of the log-
posterior evaluated at θ = µ. Further, let π(θ) be the inverse transformation
and G(θ) the matrix with (d, l) element Gdl =

∂
∂θl

πd(θ). Detailed expressions

for S, π(θ) and G(θ) are provided in Appendix C. The posterior for θ can be
asymptotically approximated by N(µ,Σ), where Σ = S−1. Hence, the delta
method approximates the posterior for π with N (π(µ), G(µ)′SG(µ)).

The asymptotic approximation is also useful for the following independent
proposal Metropolis-Hastings scheme. Initialize θ(0) ∼ T3(µ,Σ) and notice
that a prior Pπ(π) on π induces a prior Pθ(θ) = Pπ(π(θ)) × |G(θ)| on θ,
where G(θ) is as above. At iteration j, perform the following steps:

1. Propose θ∗ ∼ T3(µ,Σ) and let π∗ = π(θ∗).

2. Set θ(j) = θ∗ with probability min{1, λ}, where

λ =
P (Y|π∗,ν)Pπ(π

∗)|G(θ∗)|

P (Y|π(j−1),ν)Pπ(π(j−1))|G(θ(j−1))|

T3(θ
(j−1);µ,Σ)

T3(θ∗;µ,Σ)
(5)

Otherwise, set θ(j) = θ(j−1).

Posterior samples can be obtained by discarding some burn-in samples and
repeating the process until practical convergence is achieved.

4 Results

We assess the performance of our approach in simulations and two experimen-
tal data sets. We obtained the two human sample K562 replicates3 from the
RGASP project (www.gencodegenes.org/rgasp), and two ENCODE Project Consortium
(2004) replicated samples obtained from A549 cells (accession number wgEn-
codeEH0026254). The sequences were aligned with TopHat (Trapnell et al.,
2009) to the human genome hg19, using the default parameters and an aver-
age insert size of 200bp. We compare our results with Cufflinks (Trapnell et al.,
2012).

3ftp.sanger.ac.uk/pub/gencode/rgasp/RGASP1/inputdata/human_fastq
4genome.ucsc.edu/ENCODE
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4.1 Simulation study

We generated human genome-wide RNA-seq data, setting the simulations to
resemble the K562 RGASP data in order to keep them as realistic as possible.
We set π for each gene with 2 or more variants to its estimated value in
the K562 data using our approach and qd = 2, and simulated a number of
fragments with expected value equal to the observed number of sequences
in the K562 sample. We set the fragment start and length distributions PS

and PL to their K562 estimates (Figure 3, left). We estimated π from the
simulated data using our approach with prior parameters qd = 1 and qd = 2
and Cufflinks.

Table 3 reports the absolute and square errors (|πd − π̂d| and (πd − π̂d)
2)

averaged across all 19, 951 isoforms and 100 simulated datasets. We also
report the average squared bias and variance. Compared to Cufflinks, Casper
reduces the MAE by around 20% with qd = 1 and over 200% fold with qd = 2.
The improvement in MSE is even more pronounced, with an over 5 fold
improvement of qd = 2 over Cufflinks. The main advantage for qd = 1 lies in
a reduced bias, whereas qd = 2 improves both bias and variance substantially.

Figure 2 (a)-(b) compare the simulation truth vs. the Casper (qd = 2) and
Cufflinks estimates. We appreciate that setting qd = 2 pushes the posterior
mode away from the boundaries 0 and 1, stabilizing the estimates. The
average Pearson correlations between the truth and the estimates across the
100 simulations were 0.929, 0.798 and 0.709 for Casper with qd = 2, qd = 1
and Cufflinks, respectively. Figure 2 (c) shows the error for each transcript
as a function of the reads per kilobase per million (RPKM), a measure of
overall gene expression. It is worth noticing that Casper improves estimates
at all RPKM values. Figure 2 (d) assesses the error vs. the mean pairwise
difference between variants in a gene (number of base pairs not shared).
When all variants in a gene share most exons this difference is small, and
intuitively it indicates that variants are hard to distinguish. Conversely,
a large difference indicates that many exons are specific to a single variant,
which facilitates the estimation problem. Casper estimates are more accurate
than Cufflinks, the MAE decreasing by as much as 0.1 even for genes with
very similar variants.

We also assessed the frequentist coverage probabilities for the 95% cred-
ibility intervals given in Section 3, finding that in 94.0% of the cases they
contained the true value.
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Figure 2: Simulation study. Expression estimates vs. simulation truth for
Casper with qd = 2 (a) and Cufflinks (b). Mean absolute error vs. RPKM
(c) and the log mean base pair difference between variants in a gene (d).

MAE MSE Bias sqrt Variance
Casper (qd = 1) 0.126 0.066 0.034 0.032
Casper (qd = 2) 0.070 0.014 0.010 0.005

Cufflinks 0.156 0.076 0.048 0.028

Table 3: Mean absolute and square errors, bias and variance for simulation
study.

http://biostats.bepress.com/cobra/art97



Figure 3: Estimated fragment length (top) and start (bottom) distributions
in K562 data (left) and A549 data (right).
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4.2 Experimental data from RGASP project

The two K562 replicates were sequenced in 2009 with Solexa sequencing.
The read length was 75bp and the mean fragment length indicated in the
documentation is 200bp for both replicates. Figure 3 (top, left) shows the
estimated fragment length distributions. We observe that the mean length
differs significantly from 200bp, and that there are important differences
between replicates. Replicate 2 shows a heavy left tail that indicates a subset
of fragments substantially shorter than average. This distributional shape
cannot be captured with the usual parametric distributions. Figure 3 (left,
bottom) shows the relative start distribution. We observe more sequences
located near the transcript end in replicate 1, i.e. a higher 3’ bias. The
differences between replicates illustrate the need of flexibly modelling these
distributions for each sample separately.

We estimated the expression of all known human splicing variants (genome
version hg19) for the two replicated samples separately. Figure 4 (top) com-
pares the estimates obtained in the two samples when using Casper (qd = 2)
and Cufflinks. The consistency between samples is higher for Casper, with
Pearson correlation 0.945 versus a 0.899 for Cufflinks. The mean absolute
differences between replicates were 0.061 and 0.076 for Casper and Cufflinks
(respectively), a 20% reduction in favor of Casper. These results suggest
that Casper can provide advantages even with data from earlier sequencing
technologies.

4.3 Experimental data from ENCODE project

The two A549 replicated samples were sequenced in 2012 using Illumina
HiSeq 2000. The read length was 101bp and the average fragment length
was roughly 300bp (Figure 3, top right). These are substantially longer than
the 2009 samples from Section 4.2, and reflect the improvement in sequencing
technologies. Similar to Section 4.2, Figure 3 reveals important differences
in the fragment length (top, right) and start (bottom, right) distributions
between samples.

Figure 4 (bottom) compares the estimates obtained in the two replicates
when using Casper (qd = 2) and Cufflinks. The correlation between replicates
was 0.964 for Casper and 0.874 for Cufflinks. These findings are consistent
with the simulation study in Section 4.1, where the average correlations were
0.929 and 0.709. The mean absolute differences between replicates were 0.047
and 0.076 (respectively), a 38% reduction in favor of Casper. The findings
show that the advantage of modeling exon path counts over pairwise exon
connections becomes more pronounced as the technology evolves to sequence
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longer fragments.

5 Discussion

We proposed a model to estimate the expression of a set of known alter-
natively spliced variants from RNA-seq data. The model improves upon
previous proposals by using exon paths, which are more informative than
single or pairwise exon counts, and by flexibly estimating the fragment start
and length distributions from the observed data. We provided computation-
ally efficient algorithms for obtaining point estimates, asymptotic credibility
intervals and posterior samples.

We found that a fairly uninformative prior with qd = 2 delivers more
precise estimates than the typical qd = 1, the latter being equivalent with
maximum likelihood estimation. The advantages stem from the usual argu-
ment in favor of Bayesian shrinkage: qd = 2 pools the estimates away from
the boundaries, therefore reducing the instability of the results. Compared
to competing approaches, we observed a reduction in MSE by a factor of 5
in simulations and an increase in correlation between experimental replicates
from 0.90 to 0.95 in older studies and from 0.87 to 0.96 in recent studies.
The mean absolute difference between replicates decreased by up to 38%.
In modern studies we found that roughly 2 sequences out of 3 visited > 2
exons. These findings suggest that the current standard of simply report-
ing pairwise exon junctions adopted by most public databases is far from
optimal. Instead, reporting exon paths would allow researchers to estimate
isoform expression at a much higher precision. Given that the methodology
is implemented in the R package casper, we believe that it should be of great
value to practitioners.

A Derivation of exon path probabilities

Here we describe how to compute the probability pkd of observing exon path
k for any splicing variant d. Equivalently, we denote d by δ = (i1, . . . , i|δ|),
where ij indicates the jth exon within d. Consider variant δ after splicing,
i.e. after removing the introns. The new exon start positions are given by
s∗1 = 1 and s∗k+1 = s∗k + eik − sik + 1 for k = 1, . . . , |δ| − 1. The end of exon k
is s∗k+1 − 1. Denote by S be the read start position, L the fragment length,
r the read length, and let T = s∗|δ| − 1 be the transcript length of δ.

The goal is to compute P (ιl = (ij, . . . , ij+k), ιr = (ij′, . . . , ij′+k′)|δ). We
note that both ij , . . . , ij+k and ij′, . . . , ij′+k′ must be consecutive exons under
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Figure 4: Comparison of the estimated πd obtained in the two K562 replicates
(top) and the ENCODE replicates (bottom). Left: Casper with qd = 2;
Right: Cufflinks
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variant δ, otherwise the probability of the path is zero. The left read follows
the exon path ιl = (ij, . . . , ij+k) if and only if the read:

1. Starts in exon j, i.e. s∗j ≤ S ≤ s∗j+1 − 1

2. Ends in exon j + k, i.e. s∗j+k ≤ S + r − 1 ≤ s∗j+k+1 − 1

Similarly, the right read follows ιr = (ij′, . . . , ij′+k′) if and only if s∗j′ ≤
S+L− r ≤ sj′+1−1 and s∗j′+k′ ≤ S+L−1 ≤ s∗j′+k′+1−1. This implies that
the desired probability can be written as P (a1 ≤ S ≤ b1, a2 ≤ S+L ≤ b2|δ),
where

a1 = max{s∗j , s
∗
j+k − r + 1}

b1 = min{s∗j+1 − 1, s∗j+k+1 − r}

a2 = max{s∗j′ + r, s∗j′+k′ + 1}

b2 = min{s∗j′+1 + r − 1, s∗j′+k′+1}. (6)

Assuming that the distribution of (S, L) depends on δ only through its
transcript length T , we can write P (a1 ≤ S ≤ b1, a2 ≤ S + L ≤ b2|T ) =

∑

l

P (a1 ≤ S ≤ b1, a2 ≤ S + L ≤ b2|T, L = l)P (L = l|T ) =

∑

l

P (max{a1, a2 − L} ≤ S ≤ min{b1, b2 − L}|T, L = l)P (L = l|T ). (7)

In order to evaluate (7) we need to estimate the fragment length distribution
P (L = l|T ) and the distribution of the read start position S given L. We
assume that P (L|T ) = P (L = l)I(l ≤ T )/P (L ≤ T ), i.e. the conditional
distribution of L given T is simply a truncated version of the marginal dis-
tribution. Further, notice that the fragment end must happen before the
end of the transcript, i.e. S + L − 1 ≤ T or equivalently the relative start
position is truncated S/T ≤ ST = (T − L + 1)/T . The relative start distri-

bution is therefore truncated, i.e. P (S
T
≤ z|T, L = l) =

ϕ(min{z,ST })
ϕ(ST )

, where

ϕ(z) = P (S
T
≤ z) is the distribution of the relative read start S

T
.

Under these assumptions, the probability of observing the exon path ιl =
(ij , . . . , ij+k), ιr = (ij′, . . . , ij′+k′) under variant δ is equal to

∑

l

[

ϕ
(

min{ b1
T
, b2−l

T
, ST}

)

− ϕ
(

min
{

max{a1−1
T

, a2−l−1
T

}, ST

})

ϕ (ST )

]

+

P (L = l|T ),

where a1, b1, a2 and b2 are given in (6). Given that highly precise estimates
of P (L = l) and ϕ(·) are typically available, for computational simplicity we
treat them as known and plug them into (8).
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B EM algorithm derivation

1. E-step

Let δi ∈ {1, . . . , |ν|} be latent variables indicating the variant that reads
i = 1, . . . , N come from. The augmented log-posterior is proportional
to to

l0(π|y, δ) = logP (π|ν) + logP (y, δ|π) =

|ν|
∑

d=1

(qd − 1)log(πd) +

N
∑

i=1

|ν|
∑

d=1

I(δi = d) [log(pyid) + log(πd)] . (8)

Considering δi as a random variable, the expected value of (8) given y

and π = π(j) is equal to

E
(

l0(π
′|y, δ)|y,π(j)

)

=

|ν|
∑

d=1

(qd − 1)log(πd) +

N
∑

i=1

|ν|
∑

d=1

P (δi = d|yi,π
(j)) (log(pyid) + log(π′

d)) (9)

2. M-step

The goal is to maximize (9) with respect to π′. Let γid = P (δi =

d|yi,π
(j)) and re-parameterize π|ν| = 1−

∑|ν|−1
d=1 πd. Setting the partial

derivatives with respect to π′
d to zero gives the system of equations

π′
d

1−
∑|ν|−1

d=1 π′
d

=
qd − 1 +

∑N
i=1 γid

q|ν| − 1 +
∑N

i=1 γi|ν|
,

which has the trivial solution π′
d ∝ qd − 1 +

∑N
i=1 γid. By plugging in

γid = pyidπ
(j)
d /

∑|ν|
d=1 pyidπ

(j)
d , we obtain

π′
d ∝ qd − 1 +

N
∑

i=1

pyidπ
(j)
d

∑|ν|
d=1 pyidπ

(j)
d

.

Finally, since xk =
∑N

i=1 I(yi = k) we can group all yi’s taking the same
value and find the maximum as

π′
d ∝ qd − 1 +

|P|
∑

k=1

xk

pkdπ
(j)
d

∑|ν|
d=1 pkdπ

(j)
d

, (10)

re-normalizing π′ so that
∑|ν|

d=1 π
′
d = 1.
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C Asymptotic posterior approximation

Here we derive an asymptotic approximation to P (π | ν,Y), the posterior
distribution of the splicing variants expression π conditional on a model ν
and the observed data Y. Given that π = (π1, . . . , π|ν|) ∈ [0, 1]|ν| with
∑|ν|

i=1 πi = 1, we re-parameterize to θ = (θ1, . . . , θ|ν|−1) ∈ ℜ|ν|−1, where

θd = log
(

πd+1

π1

)

for d = 1, . . . , |ν| − 1. The goal is to approximate P (θ |

ν,Y) ∼ N(µ,Σ). For notational simplicity, in the remainder of the section
we drop the conditioning on ν.

A prior Pπ(π) induces a prior Pθ(θ) = Pπ(π(θ)) × |G(θ)| on θ, where
G(θ) is the matrix with (d, l) element Gdl =

∂
∂θl

πd(θ) and inverse transform

π1(θ) =
(

1 +
∑|ν|−1

j=1 eθj
)−1

, πd(θ) = π1(θ)exp{θd−1} for d > 1.

Define f(θ) = log (P (Y|θ)) + log (Pθ(θ)). Up to an additive constant,
f(θ) is equal to the target log-posterior distribution of θ given Y. We center
the approximating Normal at the posterior mode, i.e. µ = argmax

θ∈ℜ|ν|−1f(θ).
We set Σ = S−1 where S is the Hessian of f(θ) evaluated at θ = µ with

(l, m) element Slm = ∂2

∂θl∂θm
f(θ). We approximate µd = log

(

π∗
d+1

πd

)

, where

π∗ is the posterior mode for π provided by the EM algorithm.
Under a π ∼ Dirichlet(q) prior, simple algebra gives σlm = ∂2

∂θl∂θm
f(θ) =

|P|
∑

k=1

xk

(

∑|ν|
d=1 pkdHdlm

)(

∑|ν|
d=1 pkdπd(θ)

)

−
(

∑|ν|
d=1 pkdGdl

)(

∑|ν|
d=1 pkdGdm

)

(

∑|ν|
d=1 pkdπd(θ)

)2

+

|ν|
∑

d=1

(qd − 1)
Hdlmπd(θ)−GdlGdm

πd(θ)2
,(11)

where xk =
∑N

i=1 I(yi = k) is the number of reads following exon path k,
pkd = P (Yi = k | δ = d) is the probability of observing path k under variant
d, the gradient for πd(θ) is Gdl = ∂

∂θl
πd(θ) as before and the Hessian is

Hdlm = ∂2

∂θl∂θm
πd(θ).

We complete the derivation by providing expressions for Gdl and Hdlm.
Let s(θ) = 1 +

∑|ν|−1
j=1 eθj , then Gdl =

−eθl

s(θ)2
, if d = 1

−eθd−1+θl

s(θ)2
+ I(l = d− 1)

eθl

s(θ)
, if d ≥ 2 (12)
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and Hdlm =

2eθl+θm

s(θ)3
− I(l = m)

eθl

s(θ)2
, if d = 1

2eθd−1+θl+θm

s(θ)3
− I(l = d− 1)

eθl+θm

s(θ)
, if d ≥ 2, m 6= l, m 6= d− 1

−2e2θm

s(θ)2
+

2e3θm

s(θ)3
+

eθm

s(θ)
−

2e2θm

s(θ)2
, if d ≥ 2, m = l, m = d− 1

−eθd−1+θl

s(θ)2
+

2eθd−1+θl+θm

s(θ)3
, otherwise. (13)
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