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Robust Estimation of Pure/Natural Direct
Effects with Mediator Measurement Error

Eric J. Tchetgen Tchetgen and Sheng Hsuan Lin

Abstract

Recent developments in causal mediation analysis have offered new notions of
direct and indirect effects, that formalize more traditional and informal notions
of mediation analysis emanating primarily from the social sciences. The pure or
natural direct effect of Robins-Greenland-Pearl quantifies the causal effect of an
exposure that is not mediated by a variable on the causal pathway to the outcome,
and combines with the natural indirect effect to produce the total causal effect of
the exposure. Sufficient conditions for identification of natural direct effects were
previously given, that assume certain independencies about potential outcomes,
and a rich literature on estimation of natural direct effects has since developed. A
common situation in epidemiology is that the mediator is subject to measurement
error, in which case, existing techniques for estimating natural direct and indirect
effects could be biased and the resulting inferences could be incorrect if measure-
ment error were ignored. In this paper, the authors consider classical measurement
error of a continuous mediator. The authors propose a three-stage least-squares re-
gression technique for estimating natural direct effects on the additive scale, that
is robust to classical measurement error of the mediator under certain assump-
tions about the structure of confounding. The robustness property implies that
no additional data such as a validation sample, nor replicate measurements of the
error prone mediator are needed to recover valid mediation inferences. An im-
portant appeal of the three-stage approach is that it is easy to implement using
standard software. A simulation study is provided illustrating the finite sample
performance of the proposed approach as compared to the prevailing mediation
technique, and the new methodology is also shown to apply under a specific form
of differential additive measurement error, and to extend to multiplicative effects
under a log-linear regression framework.
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Abstract

Recent developments in causal mediation analysis have offered new notions of direct and indirect

effects, that formalize more traditional and informal notions of mediation analysis emanating

primarily from the social sciences. The pure or natural direct effect of Robins-Greenland-Pearl

quantifies the causal effect of an exposure that is not mediated by a variable on the causal pathway

to the outcome, and combines with the natural indirect effect to produce the total causal effect

of the exposure. Suffi cient conditions for identification of natural direct effects were previously

given, that assume certain independencies about potential outcomes, and a rich literature on

estimation of natural direct effects has since developed. A common situation in epidemiology is

that the mediator is subject to measurement error, in which case, existing techniques for estimating

natural direct and indirect effects could be biased and the resulting inferences could be incorrect if

measurement error were ignored. In this paper, the authors consider classical measurement error

of a continuous mediator. The authors propose a three-stage least-squares regression technique for

estimating natural direct effects on the additive scale, that is robust to classical measurement error

of the mediator under certain assumptions about the structure of confounding. The robustness

property implies that no additional data such as a validation sample, nor replicate measurements

of the error prone mediator are needed to recover valid mediation inferences. An important appeal

of the three-stage approach is that it is easy to implement using standard software. A simulation

study is provided illustrating the finite sample performance of the proposed approach as compared

to the prevailing mediation technique, and the new methodology is also shown to apply under

a specific form of differential additive measurement error, and to extend to multiplicative effects

under a log-linear regression framework.
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Epidemiologic studies often aim to quantify the extent to which an exposure is mediated by an

intermediate variable on the causal pathway to the outcome. Recent developments in causal

mediation analysis have helped formalize notions of effect decomposition of a total effect of the

exposure into its direct and indirect components. Specifically, the study of natural direct and

indirect effects, also known as pure direct and indirect effects, has received considerable attention

in recent causal inference literature, and formal conditions for identification of these effects are

now well established1−4. A variety of statistical methods for estimating mediation causal effects

have also developed in recent years6−14. However, existing mediation techniques typically rely on

the key assumption that the mediator is measured without error. The assumption of an error-free

mediator is sometimes inappropriate in practice, and inferences about natural direct and indirect

effects may be incorrect if the mediator is subject to measurement error. This paper is primarily

concerned with causal mediation analysis in the presence of classical measurement error of the

mediator. In principle, if one either had access to replicate measurements of the mediator, or

if one had internal or external validation data, one could possibly adapt one of several existing

techniques for measurement error correction, to formally account for classical measurement error.

For instance, within the context of linear models, one could use relatively straightforward regression

calibration techniques15,16 to recover unbiased inferences about natural direct and indirect effects.

However, such auxiliary data are often not available in practice, and standard measurement error

correction techniques may in reality only be useful to the extent that they provide a straightforward

framework for obtaining simple sensitivity analyses.16

In this paper, the authors propose a novel three-stage least-squares (3SLS) regression approach

for causal mediation analysis, that is completely robust to classical measurement error of the me-

diator, and that requires no additional data such as a validation sample or replicate measurements

of the error prone mediator. The proposed 3SLS approach relies on an estimator of a regression
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model for the mediator given the exposure and confounders of the exposure-mediator relation, and

also requires an estimator of the outcome regression given exposure, mediator and confounders.

The authors show that when additive effects are in view, the regression for the mediator need

not necessarily be correct to obtain, using a stratified 3SLS strategy, a consistent estimator of the

natural direct effect. Stratified 3SLS is also shown to confer some additional robustness against

modeling error of the outcome regression. A key feature of 3SLS and stratified 3SLS, is that

both methods are easy to implement using standard regression software. A simulation study is

provided illustrating the finite sample performance of the proposed approach, and comparing it

to the prevailing regression-based mediation technique; and the proposed methods are shown to

continue to apply under a certain form of differential measurement error. Finally, in an Online

Appendix, the authors also extend the approach to the multiplicative scale, and establish that,

whereas one is not required to correctly specify the first stage regression in the context of additive

effect decomposition, effect decomposition on the multiplicative scale requires that the first stage

regression of the mediator is correctly specified.

Methodology
Notation and definitions

We introduce the notation and definitions we will be using throughout. Let E denote the exposure

or treatment received by an individual, let Y denote a post-treatment outcome, and let M denote

the true value of a post-treatment intermediate variable that may serve as a mediator for the

treatment-outcome relationship. Let C denote the value of a set of pre-exposure confounding vari-

ables of the effects of E and M . Throughout, we assume that C can be partitioned into two sets

of variables C1 and C2, where C2 is known to only confound the effect of E on M , and therefore,

is not a direct cause of Y, whereas C1 may be directly related to all variables (C2, E,M, Y ) . We

assume independent and identically distributed sampling of C, E, M and Y . Then, the relation-
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ships between these variable may be depicted as in the causal diagram in Figure 1.

Insert Figure 1

We now consider counterfactuals or potential outcomes, under possible interventions on the

variables.17,18 Let Y (e) denote a subject’s outcome if treatment E were set, possibly contrary to

fact, to e. In the context of mediation there will also be potential outcomes for the intermediate

variable. Let M(e) denote a subject’s counterfactual value of the intermediate M if treatment E

were set to the value e. Finally, let Y (e,m) denote a subject’s counterfactual value for Y if E were

set to e and M were set to m. Similar definitions hold for Y (e,m, c) = Y (e,m, c1) and M(e, c).

Nonparametric structural equations models and natural direct effects

The exposition is framed around a nonparametric structural equation theory of causal inference,

described by Judea Pearl.19 Structural equations provide a nonparametric algebraic interpretation

of the diagram of Figure 1 corresponding to four functions, one for each variable on the causal

graph:

C = gC (εC) (1)

E = gE (C, εE) (2)

M = gM(C,E, εM) (3)

Y = gY (C1, E,M, εY ) (4)

Each of the nonparametric functions {gC , gE, gM , gY } represents a causal mechanism that deter-
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mines the value of the left-hand-side variable, known as the output, from variables on the right,

known as the inputs. The errors (εC , εE, εM , εY ) stand for all factors not included on the graph

that could possibly affect their corresponding outputs when all other inputs are held constant. To

be consistent with the causal graph presented in Figure 1, we require that these errors be mutually

independent, but we allow their distribution to remain arbitrary. If they were not independent

we would include an additional unmeasured variable U on the diagram with arrows into the rel-

evant variables to induce independence. Lack of a causal effect of a given variable on an output

is encoded by an absence of the variable from the right-hand side. For instance, the absence of

a direct effect of C2 on Y is encoded by the absence of C2 in gY of equation (4), which encodes

the assumption that variations in C2 will leave Y unchanged, as long as variables E,C1, M and

εY remain constant, which is also consistent with the assumption that there are no unmeasured

common causes of C2 and Y .

As stated by Pearl19, the invariance of structural equations permits their use as a basis for

modeling causal effects and potential outcomes. In fact, to emulate the intervention in which one

sets {E = e} for all individuals simply amounts to replacing the equation for E with E = e,

producing the following set of modified equations:

C = gC (εC)

E = e

M (e) = gM(C, e, εM)

Y (e) = gY (C1, e,M (e) , εY )

with {M (e) , Y (e) = Y (e,M (e))} denoting the potential outcomes had the exposure been set to

e.
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Under the above NPSEM, the independence of errors εM ⊥⊥ εY implies independence of poten-

tial outcomes for different exposure values:

Y (e,m, c1) ⊥⊥M (e∗, c) (5)

where M (e∗, c) = gM(c, e∗, εM) and Y (e,m, c1) = gY (c1, e,m, εY ) are obtained upon intervening

on (E,C) and (E,M,C1) respectively, and e, e∗ take values in {0, 1}.

Robins and Greenland1 and Pearl2 considered the following decomposition of individual total

effect of exposure:

Y (e)− Y (e∗) = Y (e,M (e))− Y (e∗,M (e∗))

= Y (e,M (e∗))− Y (e∗,M (e∗))︸ ︷︷ ︸
Natural direct effect

+ Y (e,M (e))− Y (e,M (e∗))︸ ︷︷ ︸
Natural indirect effect

where e∗ indicates a reference or baseline value of E; for instance it is common to chose e∗ = 0

for binary E, and e represents an active value of treatment. The first contrast on the right hand

side of the second line displayed above defines individual natural direct effect of treatment E on

outcome Y . The potential outcome Y (e∗,M (e∗)) captures the behavior of Y under the baseline

treatment value, while Y (e,M (e∗)) describes the behavior of Y under the active treatment value,

in a hypothetical situation where the mediator behaves as if treatment were set to baseline. The

second contrast on the right-hand side of the expression in the display above corresponds to the

natural indirect effect of treatment E on outcome Y . The potential outcome Y (e,M (e)) describes

the behavior of Y under the active treatment value, while the second “subtracts off" the behavior

of Y under the active treatment value, in a hypothetical situation where the mediator behaves as if

treatment were set to baseline. In graphical terms, the individual natural indirect effect quantifies
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for the individual, the effect of E on Y along the indirect causal pathway E → M → Y , but not

along the direct arrow from E to Y . Because potential outcomes under conflicting exposure status

are never jointly observed, individual causal effects are generally not identified. However, one can

hope that under certain assumptions, population average causal effects would become identified.

It is well known that the average total effect of E on Y is identified given data on (C,E, Y ) in the

causal diagram of Figure 1, and is given by the g-formula of Robins20 :

TE (e, e∗, c) ≡ E {Y (e)− Y (e∗) |C} =
∑
c

[E {Y |e, c} − E {Y |e∗, c}] Pr(C = c) (6)

where E stands for expectation. Pearl2 showed that under the NPSEM for the causal graph of

Figure 1, the average natural direct effect conditional on C, is nonparametrically identified by:

NDE (e, e∗, c) ≡ E {Y (e,M (e∗) |c)− Y (e∗,M (e∗) |c)}

=
∑
m

[E {Y |e,m, c} − E {Y |e∗,m, c}] Pr(M = m|E = e∗, C = c)

=
∑
m

[E {Y |e,m, c1} − E {Y |e∗,m, c1}] Pr(M = m|E = e∗, C = c) (7)

Under the NPSEM defined above, we then have that:

NDE (e, e∗, c) =
∑
m

[E {Y |e,m, c1} − E {Y |e∗,m, c1}] Pr(M = m|E = e∗, C = c)

Therefore the average natural indirect effect is obtained under the NPSEM by NIE (e, e∗, c) =

TE (e, e∗, c) − NDE (e, e∗, c) . A variety of statistical methods for estimating NDE (e, e∗, c) and

NIE (e, e∗, c) have been proposed in recent literature.5,6,9−14 Tchetgen Tchetgen and Shpitser com-

pare several of these methods and develop a semiparametric approach with attractive robustness
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and effi ciency properties.14 When, as we assume next, Y and M are both continuous, a prominent

regression strategy for estimating NDE (e, 0, c) when one takes e∗ = 0, entails fitting linear models

for Y and M, respectively, say:

Y = E (Y |e,m, c1) + εY = α0 + α1e+ α2m+ α3me+ αT4 c1 + εY (8)

M = E (M |e, c) + εM = η0 + η1e+ ηT2 c+ εM (9)

where we have allowed for an interaction between e andm in the outcome regression. In the absence

of measurement error, ordinary least squares is then typically used to obtain unbiased estimates

of the regression coeffi cients in the above display, and the natural direct effect is obtained by

evaluating equation (7) using the above linear models, which yields the simple expression10

NDE (e, e∗, c) =
(
β0 + βT1 c

)
e, (10)

where:

β0 = α1 + α3 × η0 (11)

β1 = α3 × η2 (12)

Note that if either of models (8) or (9) is incorrect, equations (11) and (12) may not hold exactly,

even though the linear form of equation (10) may actually be correctly specified. For instance, this

would be the case if the outcome regression were missing an existing interaction between e and a

component of c1. Assuming no modeling error, suppose thatM is subject to classical measurement

error, and thusMε is observed instead ofM, so that one observes data on (C,E,Mε, Y ) as depicted
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in Figure 2, where M is not directly observed:

Mε = M + ε,

ε independent mean zero error

Then, it is well known that the standard OLS estimator of the coeffi cients of the mediator regression

(9) remains unbiased, but some effi ciency loss might be incurred due to additional variation in the

regression outcome. In contrast, the OLS estimator of the coeffi cients of the regression model

(8) will generally be biased, and inference about NDE (e, 0, c) may be incorrect. In the following

section, a 3SLS approach is given, that unlike standard OLS, is robust to classical measurement

error of the mediator, and that is guaranteed, under certain conditions, to give valid inferences

about NDE (e, 0, c) regardless of such measurement error.

3SLS estimation of NDE(1, 0, c)

To introduce the proposed strategy, suppose for a moment that both regression models (8) and

(9) are correct, and assume for simplicity that the interaction parameter α3 = 0. Then, one can

verify that models (8) and (9) induce the following linear model for the conditional mean of Y

given (C,E) , upon averaging over M :

E (Y |e, c)

= E {E (Y |e,M, c) |e, c}

= α0 + α1e+ α2E (M |e, c) + αT4 c1

= α0 + α1e+ α2E (Mε|e, c) + αT4 c1

where the first equality is by the law of iterated expectations, and the last equality is by the
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assumption of classical measurement error. Therefore, one can conclude that the outcome regres-

sion parameter α remains identified in the presence of measurement error, by regressing Y on(
1, E,E (Mε|E,C) , CT

1

)T
provided that E (M |e, c)=E (Mε|e, c) can be consistently estimated, and

as long as the predicted mean E (M |e, c) is not perfectly collinear with the vector (1, e, cT1 )T . The

assumption that model (9) is correctly specified ensures the first condition, while the additional

variation due to C2 ensures that E (M |e, c) cannot be expressed exactly as a linear combination

of the components of the vector (1, e, cT1 )T . Further insight about the second condition is gained

upon noting that the condition essentially states the C2 must be a valid instrumental variable for

theM −Y conditional relation give (E,C1). In fact, recall that a key assumption was made at the

outset, that the vector of covariates C partitions into a subset of variables C1 that are known com-

mon causes of E, M and Y , and a subset of confounder C2 of the E-M relation; and is otherwise

unrelated to Y given (C1, E,M). The assumption that C2 is directly related to M, together with

the assumption that upon conditioning on (E,C1) , C2 is only related to Y through M, formally

makes C2 an instrumental variable for the effects of M on Y . Note however, that C2 is somewhat

more general than the typical instrumental variable, since it may also confound the E−M relation,

and may also be related to variables in C1. Further note that since M is not directly observed, the

second assumption needed to make C2 a valid instrumental variable, mainly that it is independent

of Y given (C1, E,M), is not empirically verifiable using the observed data (C,Mε, E, Y ). This is

because, although C2 may be independent of Y given (C1, E,M), it is not necessarily independent

of Y given (C1,Mε, E). Thus, some care is required in forming the partition between C1 and C2

that must necessarily be made on the basis of expert knowledge about the nature and structure

of the confounding operating. If the assumption is correct that C2 is a valid instrumental variable

for the M − Y relation, then upon obtaining consistent estimates of (α, η) , in principle, one could

subsequently use equations (11) and (12) to obtain estimates of NDE (1, 0, c) and NIE (1, 0, c).
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The above strategy suggests the following 3SLS approach:

Stage 1:Using data (Ei, Ci,Mε,i) , i = 1, ..., n, compute the OLS estimate of model (9) and compute

the corresponding predicted values

M̂i = η̂0 + η̂1Ei + η̂T2 Ci

i = 1, ..., n.

Stage 2: Compute the OLS α̂ = (α̂0, α̂1, α̂2, α̂3, α̂4) of Yi regressed on
(
Ei, M̂i, C1,i

)
, under the

working model

α0 + α1Ei + α2M̂i + α3M̂iEi + αT4C1,i

and compute the following predicted value

Ŷi = (α̂0 + α̂1) + (α̂2 + α̂3)Mε,i + α̂T4C1,i

For each unexposed person with Ei = 0, define the residual ∆Yi = Ŷi − Yi.

Stage 3: Compute the OLS β̂ =
(
β̂0, β̂

T
1

)
of ∆Yi regressed on (1, Ci) using unexposed individuals

only, under the working model

E (∆Yi|Ci, Ei = 0) = β0 + βT1 Ci,

then,

N̂DE (1, 0, c) = β̂0 + β̂T1 c

is the 3SLS estimator of NDE (1, 0, c) .

The following result states that, despite observing an error prone mediator, the 3SLS estimator
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N̂DE (1, 0, c) is nonetheless a consistent estimator of NDE (1, 0, c).

Result 1: Suppose that the NPSEM (1)− (4) holds, and suppose that the outcome regression model

(8) , the mediator regression (9) and the natural direct effect model (10) all hold, then we have that

the 3SLS estimator N̂DE (1, 0, c) is consistent for NDE (1, 0, c).

According to Result 1, if C2 is a valid instrumental variable of the E −M relation, then 3SLS

can be used to recover a consistent estimate of NDE (1, 0, c). However, the approach relies on

correct specification of both models (8) and (9). In the following section, we describe a stratified

3SLS approach that relaxes modeling requirements, and only requires a correct regression for the

outcome for exposed individuals.

Stratified 3SLS estimation of NDE(1, 0, c)

Consider the following stratified 3SLS approach:

Stratified Stage 1:Using data (Ci,Mε,i) , for exposed individuals only, i.e. with Ei = 1, i = 1, ..., n

compute the OLS estimate of the working model stratified on E = 1

E (Mε|E = 1, c) = η∗0 + η∗T2 c,

and compute their corresponding predicted value

M̂∗
i = η̂∗0 + η̂∗T2 Ci.

Stratified Stage 2:Using data for exposed individuals only, compute the OLS estimate α̂∗ =
(
α̂∗0, α̂

∗
2, α̂

∗
3, α̂

∗T
4

)T
of Yi regressed on

(
M̂∗

i , C1,i

)
, under the working model

α∗0 + α∗2M̂
∗
i + α∗T4 C1,i
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and compute the corresponding predicted values for unexposed individuals

Ŷ ∗i = α̂∗0 + α̂∗2Mε,i + α̂∗T4 C1,i.

For each unexposed person define the residual ∆Y ∗i = Ŷ ∗i − Yi.

Stratified Stage 3: Compute the OLS β̂∗ =
(
β̂∗0 , β̂

∗T
1

)
of ∆Y ∗i regressed on (1, Ci) using data on

unexposed individuals only, under the model

E (∆Y ∗i |Ci, Ei = 0) = β∗0 + β∗T1 Ci

N̂DE
∗

(1, 0, c) = β̂∗0 + β̂∗T1 c

is the stratified 3SLS estimator of NDE (1, 0, c) .

The appendix gives a proof of the following result:

Result 2: Suppose the NPSEM (1)− (4) holds, and assume the following outcome regression model

restricted to exposed individuals:

E (Yi|M,Ei = 1, C1,i) = α∗0 + α∗2Mi + α∗T4 C1,i (13)

and the natural direct effect model (10) both hold; then, we have that the stratified 3SLS estimator

N̂DE
∗

(1, 0, c) is consistent for NDE (1, 0, c).

Result 2 improves on Result 1 and, in addition to a correct natural direct effect model (10) only

requires a correct working model for the outcome of exposed individuals. According to the result,

stratified 3SLS is guaranteed to be asymptotically unbiased under many more data generating

mechanisms than 3SLS. To see why, note that if model (8) were incorrect because it failed to

14 http://biostats.bepress.com/cobra/art96



incorporate an interaction between exposure and at least one component of C1; then, Model (13)

would still be correctly specified and therefore stratified 3SLS would produce correct inferences

about the natural direct effect, while both the standard estimator of direct effect, and 3SLS would

not.

Statistical inference aboutNDE (1, 0, c) requires a consistent estimator of the variance-covariance

matrix of β̂ or of β̂∗, which we give in the Appendix, denoted Σ̂ and Σ̂∗, respectively. Then, a

Wald-type 95% confidence intervals, say for instance β̂∗0 is given by β̂
∗
0 ± 1.96σ̂∗11, where σ̂

∗2
jk is the

element of Σ̂∗ in row j and column k. Alternatively, one could use the nonparametric bootstrap to

estimate the variance-covariance matrices of β̂ and β̂∗, respectively.

Estimation of NIE(1, 0, c)

Because the potential mediator M is not directly needed to estimate total effects, inference about

the latter quantity is completely unaffected by measurement error of the mediator and can be

obtained by using standard regression techniques using only data on (Y,E,C). For example,

consider the linear model for the mean of Y given (E,C) :

E (Y |e, c) = γ0 + γ1e+ γT2 ec+ γT3 c

then, under the previous assumption that C includes all confounders of the effects of E, it is

straightforward to verify that this corresponds to the following linear model for the conditional

total effect of E on Y given C :

TE (1, 0, c) = γ1 + γT2 c

and therefore, standard OLS can be used to obtain an unbiased estimate of γ =
(
γ0, γ1, γ

T
2 , γ

T
3

)T
,

which in turn gives an unbiased estimate of the total effect TE (1, 0, c) . Finally, the natural indirect
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effect NIE (1, 0, c) is obtained by computing NIE (1, 0, c) = TE (1, 0, c) − NDE (1, 0, c) using

estimates of (γ, β).

A simulation study

In this section, we report a simulation study that illustrates the finite sample performance of

estimators introduced in previous sections. We generated 1000 samples of size n = 500, 1000, 2000

from the following model:

(Model.C)

C1 ∼ Normal(3, 2);

[C2|C1] ∼ Normal(0.5 + 1.3× C1, 3);

(Model.E)

[E|C1, C2] ∼ Bernoulli ([1 + exp{− (0.01× C1 − 0.03× C2)}]−1) ;

(Model.M)

[M |E,C1, C2] ∼ Normal(1 + 10× E + C1 + C2 + η4 × C1 × E, 4);

η4 = 0, 5;

(Model.Y)

[Y |M,A,X1, X2, X3] ∼ Normal(0.2 + 3× E + 0.4×M + α3 × E ×M + C1 + α5 × E × C1, 3);

(α3, α5) = (0, 0) ; (3, 0) ; (3,−4) ;

(Measurement Error Model)

Mε = M +Normal(0, 4× k/(1− k));

k = 0, 0.05 , 0.15, 0.3, 0.5.

By evaluating equation (7) under the model in the above display, we obtain the following expression

for the conditional natural direct effect:

NDE (1, 0, c) = β0 + β1 × C1 + β2 × C2
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where β0 = 6; β1 = 3 + α5; β2 = 3

The simulation study evaluated and compared the performance of the prominent estimator

of direct effect, which uses equations (11) and (12) , with that of 3SLS and Stratified 3SLS. To

assess the impact of measurement error, the three estimators were evaluated with no measurement

error, i.e. k = 0, and were compared as the degree of measurement error was increased, i.e.

k = 0, 0.05 , 0.15, 0.3, 0.5, and α5 = η4 = 0 such that all models were correctly specified. To

compare the various methods in terms of robustness to partial modeling error, data was generated

with η4 = 5 and α5 = −4, such that the working models used by the standard approach as well

as 3SLS were mis-specified by virtue of omitting certain nonzero interactions, and we assessed

whether the proposed stratified 3SLS approach was likewise affected by such modeling error.

Insert Tables 1-5.

Tables 1-5 summarize the simulation results regarding inferences about β = (β0, β1, β2) . For

the most part, the results largely agree with the theory developed in the previous sections. Mainly,

all three estimators performed well at both moderate and large sample size in the absence of both

measurement and modeling error, see rows for k = 0 in Tables 1-4. Furthermore, when all models

were correct and measurement error was absent, the proposed estimators were somewhat less effi -

cient than the standard estimator. This is not surprising since the latter essentially amounts in this

particular setting to the maximum likelihood estimator. However, introducing a moderate amount

of measurement error can have severe implications for the standard approach, compromising both

bias and coverage of the estimator and corresponding confidence intervals. Such effects are par-

ticularly notable when there is an E −M interaction in the outcome regression, as illustrated in

17 Hosted by The Berkeley Electronic Press



Tables 3 and 4. In contrast, the proposed 3SLS estimators seemed quite robust to measurement

error, with bias considerably smaller than the standard approach and coverage preserved at the

nominal level of 95%. The disastrous performance of the standard approach became worse with

increasing measurement error, irrespective of sample size.

Modeling error due to omission of an E−C1 interaction in the outcome regression was likewise

observed to be detrimental to performance of the standard approach, even when the mediator was

observed without error, i.e. k = 0, see rows of Table 5 with α5 = 5 . As dictated by theory, the

proposed 3SLS approach was likewise affected by such modeling error as illustrated in Table 5,

however, stratified 3SLS was found not to be affected by this form of modeling error. Modeling

error due to omission of an E − C1 interaction in the mediator regression likewise gave biased

results using the standard approach and 3SLS as can be seen in the rows of Table 5 where η4 6= 0,

however, as predicted by our theoretical results, stratified 3SLS was not affected by this form of

mis-specification of the mediator regression. More extensive simulation results are provided in the

Online Appendix under a variety of additional settings, further confirming that both at moderate

and large sample sizes, the estimators essentially behaved as theorized by Results 1 and 2.

Differential additive measurement error

Previous sections have assumed that measurement error of the mediator is nondifferential and

thus, independent of the outcome measure. In this section, it is shown that this assumption can be

relaxed, and that progress can still be made if we allow for a certain form of differential additive

measurement error. Specifically, suppose that the correlation, denoted ρ, between the continuous

outcome residual error εY and the measurement error ε ofM is not zero, such that the measurement

error of the mediator is correlated with the outcome Y, but the measurement error ε is otherwise

independent of (E,C,M). This situation is depicted in the causal diagram of Figure 2, where the
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double-headed edge represents the correlation between the measurement error and the continuous

outcome, and ensures that the measurement error is d-separated from (E,C,M), thus graphically

encoding their independence. In the appendix, we show that Results 1 and 2 continue to hold even

if ρ 6= 0, and therefore allowing for the magnitude of measurement error operating to depend on the

outcome. Intuitively, the results continue to hold principally because, as confirmed by inspecting

the causal diagram of Figure 2, the association between εY and the measurement error ε does not

invalidate C2 as an instrumental variable for the effects of M on Y. This is in fact the case since

C2 continues to only affect Y through its effects onM, even after the double-headed edge has been

added to the diagram of Figure 2 to allow for differential measurement error.

Interestingly, the measurement error depicted in Figure 2 could arise if the intermediate were

not measured exactly at the moment that is relevant for occurrence of the event, but were measured

at a later stage. For example, it is sometimes only possible in epidemiologic studies, to measure

the mediator concurrently with the outcome from cross-sectional data. If such cross-sectional data

on the outcome and intermediate variables were available, but the exposure data were collected at

an earlier time such that the temporal ordering between E and (M,Mε,Y ) were ensured, then one

would expect the mismeasured mediator to generally be correlated with the outcome for reasons

not directly related to the latent intermediate M , exposure, and pre-exposure confounders C1. In

principle, the differential additive measurement error model depicted in Figure 2 could be used to

model such measurement error due to cross-sectional measurements of the mediating and outcome

variables, in which case, the methodology developed in this paper could be used to recover valid

mediation inferences that account for the mediator measured concurrently with the outcome. The

diagram of Figure 2 is closely related to the "intraindividual variation over time models" of le Cessie

et al16, however, whereas le Cessie et al.16 assumed that measurement error of the intermediate is

independent of the outcome, such an assumption is not made here.
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Discussion

In this paper, the authors have proposed two-stage and three-stage regression techniques for esti-

mating natural direct and indirect effects in the presence of measurement error of the mediator.

The proposed methods which are shown to apply quite generally for a continuous outcome, can also

be used for a binary outcome under a log-linear model for the risk of the outcome; see the Online

Appendix. The basic assumption made by the methods, is that the structure of confounding is

such that a subset of the confounders of the exposure-mediator relation, is known to only affect the

outcome through its effects on the mediator. However, one should also note that when available, a

more conventional instrumental variable for the effects of the mediator on the outcome can also be

used in this capacity. For instance, if available, replicate measurements of the mediator can be used

in 2SLS and 3SLS, even though, such replicates do not usually confound the exposure-mediator

relation.

The paper has mainly considered the context of a prospective study, but the approach can be

adapted to accommodate other study designs often encountered in epidemiologic practice. For

instance, the methods described above could be used in a case-control study by taking one of two

strategies. If the outcome were rare, one could simply restrict 2SLS or 3SLS to controls and discard

data on cases; but more generally, if sampling fractions were known, one could simply re-weight

cases and controls by the inverse of their associated probability of selection into the sample in

conjunction with 2SLS or 3SLS estimation.

Finally, an important direction future work could consider, is whether the methods can be

developed and extended to the context of a survival outcome.13
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Appendix

Proof of Result 1: Assuming that the first stage regression of M is correctly specified, we have

that M̂i is consistent for E (M |Ei, Ci) , and therefore, as long as E
(
WW T

)
is not singular, where

W T = (1, E,E (M |E,C) ,E (M |E,C)E,CT
1 ), the second stage regression estimate α̂ converges in

probability to the solution of the population normal equation: E
{
W
(
Y − α†TW

)}
= 0 which α† =

α solves, since αTW = E {E (Y |E,M,C) |C,E} . The assumption that C2 is a valid instrumental

variable guarantees that E
(
WW T

)
is not singular. As a result, Ŷi is consistent for α0 + α1Ei +

α2Mε,i + α3Mε,iEi + αT4C1,i.

The Stage 3 regression estimate β̂ converges in probability to the solution of the population

normal equation

0 = E
{(

1, CT
)T

(1− E)
((
α0 + α1 + α2Mε + α3Mε + αT4C1

)
− Y − β†0 − β

†T
1 C

)}
= E

{(
1, CT

)T
(1− E)

×
((
α0 + α1 + (α2 + α3)E (Mε|M,C,E = 0) + αT4C1

)
− E (Y |E = 0,M,C)− β†0 − β

†T
1 C

)}
= E

{(
1, CT

)T
(1− E)

((
α0 + α1 + (α2 + α3)M + αT4C1

)
− E (Y |E = 0,M,C)− β†0 − β

†T
1 C

)}
= E

{(
1, CT

)T
(1− E)

(
E (Y |E = 1,M,C)− E (Y |E = 0,M,C)− β†0 − β

†T
1 C

)}
= E

{(
1, CT

)T
(1− E)

(
E {E (Y |E = 1,M,C)− E (Y |E = 0,M,C) |E = 0, C} − β†0 − β

†T
1 C

)}

which β†0 − β
†T
1 C = β0 − βT1 C solves since, under the assumptions stated in the result,

E {E (Y |E = 1,M,C)− E (Y |E = 0,M,C) |E = 0, C} = NDE(1, 0, C).

21 Hosted by The Berkeley Electronic Press



Proof of Result 2: The second Stage regression solves the normal equation:

∑
i

Ei

(
Yi −

(
α̂∗0 + α̂∗2M̂

∗
i + α̂∗T4 C1,i

))(
1, M̂∗

i , C
T
1,i

)T
= 0 (14)

where M̂∗
i satisfies the first Stage normal equation:

∑
i

Ei

(
Mε,i − M̂∗

i

) (
1, CT

i

)T
= 0 (15)

Therefore, equation (14) can be written

0 =
∑
i

Ei

(
Yi −

(
α̂∗0 + α̂∗2M̂

∗
i + α̂∗T4 C1,i

))(
1, M̂∗

i , C
T
1,i

)T
=
∑
i

Ei
(
Yi −

(
α̂∗0 + α̂∗2Mε,i + α̂∗T4 C1,i

)) (
1, M̂∗

i , C
T
1,i

)T
+ α̂∗2

∑
i

Ei

(
Mε,i − M̂∗

i

)(
1, M̂∗

i , C
T
1,i

)T
︸ ︷︷ ︸

=0

by equation (15) and the fact that
(

1, M̂∗
i , C

T
1,i

)
can be expressed as a linear transformation of(

1, CT
i

)
. Let η∗0 + η∗T2 c denote the limiting value of η̂∗0 + η̂∗T2 c which is not necessarily equal to

E (M |E = 1, c) , and let W1 =
(
1, η∗0 + η∗T2 C,CT

1,i

)T
and W2 =

(
1,Mε,i, C

T
1,i

)T
, then, as long as

E
(
EW1W

T
2

)
is not singular, α̂∗ converges in probability to the solution α∗ of the population

equation:

E
(
Ei
(
Yi −

(
α∗0 + α∗2Mε,i + α∗T4 C1,i

)) (
1, η∗0 + η∗T2 Ci, C

T
1,i

)T)
= 0

which is solved by α∗ = α. The assumption that E
(
EW1W

T
2

)
is not singular is ensured by the

assumption that C2 is a valid instrumental variable. Finally, β̂∗ =
(
β̂∗0 , β̂

∗T
1

)
is consistent for β

by the same argument used in the last part of the proof of Result 1.
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Variance Estimators: We give analytic expressions of consistent variance-covariance estimators:

Var(β̂): Consider the first stage OLS η̂, its large sample expansion gives

η̂ − η ≈ n−1
∑
i

U1,i

where U1,i = E
(
X1,iX

T
1,i

)−1
X1,iε

∗
M,i

X1,i = (1, Ei, Ci)
T

ε∗M,i = Mε,i −
(
η0 + η1Ei + ηT2 Ci

)

A standard Taylor approximation gives the large sample expansion of the second stage OLS α̂

α̂− α ≈ n−1
∑
i

U2,i

where U2,i = E
(
X2,iX

T
2,i

)−1 {
X2,iε

∗
Y,i − E

(
(α2 + α3Ei)X2,iX

T
1,i

)
U1,i
}

X2,i =
(
1, Ei,E (Mi|Ei, Ci) ,E (Mi|Ei, Ci)iEi, CT

1,i

)T
ε∗Y,i = Yi −XT

2,iα
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Finally, the Stage 3 regression gives β̂ with large sample expansion:

β̂ − β ≈ n−1
∑
i

U3,i

where U3,i = E
(
(1− Ei)X3,iX

T
3,i

)−1
×
{

(1− Ei)X3,iεNDE,i + E
[
(1− Ei)X3,iX

T
4,i

]
× U2,i

}
X3,i =

(
1, CT

i

)T
X4,i =

(
1, 1,Mε,i,Mε,i, C

T
1,i

)T
εNDE,i = XT

4,iα− Yi − β0 − βT1 Ci

The variance-covariance matrix of β̂ is therefore approximately given by

n−1E
(
U3,iU

T
3,i

)
= n−1E

(
(1− Ei)X3,iX

T
3,i

)−1
× E

[{
(1− Ei)X3,iεNDE,i + E

[
(1− Ei)X3,iX

T
4,i

]
× U2,i

}
×
{

(1− Ei)XT
3,iεNDE,i + UT

2,i × E
[
(1− Ei)X3,iX

T
4,i

]}]
E
(
(1− Ei)X3,iX

T
3,i

)−1

An estimator of this matrix is obtained upon substituting all unknown parameters by the corre-

sponding estimates, and by replacing population expectations with empirical expectations. For

instance, E
(
(1− Ei)X3,iX

T
3,i

)
is consistenty estimated by n−1

∑
i

(
(1− Ei)X3,iX

T
3,i

)
...etc
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Var(β̂∗): Consider the first stage stratified OLS η̂∗, its large sample expansion gives

η̂∗ − η∗ ≈ n−1
∑
i

U∗1,i

where U∗1,i = E
(
X∗1,iX

∗T
1,i

)−1
X∗1,iε

∗
M,i

X∗1,i = (Ei, EiCi)
T

ε∗M,i = Mε,i − η∗TX∗1,i

A standard Taylor approximation gives the large sample expansion of the second stage OLS α̂

α̂∗ − α∗ ≈ n−1
∑
i

U4,i

where U4,i = E
(
X∗2,iX

∗T
2,i

)−1 {
X∗2,iε

†
Y,i − E

(
α∗2X

∗
2,iX

∗T
1,i

)
U∗1,i

}
X∗2,i =

(
Ei, EiE (Mi|Ei, Ci) , EiCT

1,i

)T
ε†Y,i = Yi −X∗T2,i α∗

β̂ − β ≈ n−1
∑
i

U5,i

where U5,i = E
(
(1− Ei)X3,iX

T
3,i

)−1
×
{

(1− Ei)X3,iεNDE,i + E
[
(1− Ei)X3,iX

T
7,i

]
× U4,i

}
εNDE,i = XT

7,iα
∗ − Yi − β0 − βT1 Ci

X7,i = (1,Mε,i, C
T
1,i)

T
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The variance-covariance matrix of β̂ is therefore approximately given by

n−1E
(
U5U

T
5

)
= E

(
(1− Ei)X3,iX

T
3,i

)−1
{
E
[
(1− Ei)X3,iε

2
NDE,iX

T
3,i

]
+ E

[
(1− Ei)X3,iX

T
6,i

]
E
[
U4,iU

T
4,i

]
E
[
(1− Ei)XT

3,iX6,i

]}
E
(
(1− Ei)X3,iX

T
3,i

)−1

An estimator of this matrix is obtained upon substituting all unknown parameters by the corre-

sponding estimates, and by replacing population expectations with empirical expectations.
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Figure 3. Differential measurement error for the mediator M
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