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A prior-free framework of coherent inference
and its derivation of simple shrinkage

estimators

David R. Bickel

Abstract

The reasoning behind uses of confidence intervals and p-values in scientific prac-
tice may be made coherent by modeling the inferring statistician or scientist as
an idealized intelligent agent. With other things equal, such an agent regards a
hypothesis coinciding with a confidence interval of a higher confidence level as
more certain than a hypothesis coinciding with a confidence interval of a lower
confidence level. The agent uses different methods of confidence intervals con-
ditional on what information is available. The coherence requirement means all
levels of certainty of hypotheses about the parameter agree with the same distribu-
tion of certainty over parameter space. The result is a unique and coherent fiducial
distribution that encodes the post-data certainty levels of the agent.

While many coherent fiducial distributions coincide with confidence distributions
or Bayesian posterior distributions, there is a general class of coherent fiducial
distributions that equates the two-sided p-value with the probability that the null
hypothesis is true. The use of that class leads to point estimators and interval
estimators that can be derived neither from the dominant frequentist theory nor
from Bayesian theories that rule out data-dependent priors. These simple estima-
tors shrink toward the parameter value of the null hypothesis without relying on
asymptotics or on prior distributions.
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Abstract

The reasoning behind uses of con�dence intervals and p-values in scienti�c practice

may be made coherent by modeling the inferring statistician or scientist as an idealized

intelligent agent. With other things equal, such an agent regards a hypothesis coin-

ciding with a con�dence interval of a higher con�dence level as more certain than a

hypothesis coinciding with a con�dence interval of a lower con�dence level. The agent

uses di�erent methods of con�dence intervals conditional on what information is avail-

able. The coherence requirement means all levels of certainty of hypotheses about the
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parameter agree with the same distribution of certainty over parameter space. The re-

sult is a unique and coherent �ducial distribution that encodes the post-data certainty

levels of the agent.

While many coherent �ducial distributions coincide with con�dence distributions or

Bayesian posterior distributions, there is a general class of coherent �ducial distributions

that equates the two-sided p-value with the probability that the null hypothesis is true.

The use of that class leads to point estimators and interval estimators that can be

derived neither from the dominant frequentist theory nor from Bayesian theories that

rule out data-dependent priors. These simple estimators shrink toward the parameter

value of the null hypothesis without relying on asymptotics or on prior distributions.

Keywords: con�dence distribution; con�dence curve; con�dence measure; con�dence pos-

terior distribution; �ducial inference; large-scale simultaneous inference; multiple hypothesis

testing; multiple comparison procedure; observed con�dence level
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1 Introduction

In the years following the oracle that some form of �ducial inference may play a pivotal

role in 21st-century statistics (Efron, 1998), there has been an ongoing resurgence of interest

in �ducial distributions that generate con�dence intervals (e.g., Schweder and Hjort, 2002;

Singh et al., 2005; Polansky, 2007; Singh et al., 2007; Tian et al., 2011; Bityukov et al., 2011;

Kim and Lindsay, 2011; Bickel, 2011b, 2012b) and in �ducial distributions more generally

(e.g., Hannig et al., 2006; Hannig, 2009; Xiong and Mu, 2009; Gibson et al., 2011; Wang

et al., 2012; Zhao et al., 2012). Fiducial inference initially promised an objective alternative

to Bayesianism as a form of inductive reasoning (Fisher, 1973) but has historically su�ered

from problems of understanding the meaning of �ducial probability and from the ability to

derive con�icting �ducial probabilities from the same family of sampling distributions (see

Wilkinson, 1977). This paper addresses both di�culties by interpreting �ducial probability

in terms of the theories of coherent decision making that also undergird Bayesian inference.

The main thesis is that many of the usual applications of con�dence intervals in sci-

ence lead to reasonable inferences that can be improved by enforcing self-consistency in the

technical sense of probabilistic coherence, which does not in itself require Bayesian posterior

distributions (Hacking, 1967; Goldstein, 1997; Bickel, 2012a). Using a con�dence interval

procedure is reasonable when the con�dence level of the interval estimate computed using

the observed data is at least approximately monotonic with the degree of certainty or level

of belief that the statistician has in saying the true value of the parameter lies in the interval

(Cox, 1958). In other words, higher con�dence levels correspond to higher subjective lev-

els of certainty of the statistician adopting the con�dence procedure; otherwise, a di�erent

procedure should be adopted in the absence of other considerations. If consistent with one
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another, the certainty levels of that statistician can be encoded as a probability distribu-

tion on parameter space known as a con�dence distribution. If the same statistician would

reasonably and self-consistently use another con�dence procedure for another parameter in

the data analysis, the levels of certainty of the �rst parameter can still be represented as

a probability distribution, this time a �ducial distribution that need not be a con�dence

distribution. The situation described here is abstracted by replacing the actual statistician

with an arti�cially intelligent agent that either approximates the certainty levels of the ac-

tual decision-makers or that serves to derive the hypothetical consequences of adopting its

�ducial distributions for statistical inference.

The metaphor of a decision-making agent that has a unique �ducial distribution for

any data set leads to coherent hypothesis tests, point estimates, and interval estimates

without the requirement of eliciting the actual levels of belief of any human agent. Since the

coherent agent is fully determined by choices of con�dence interval and hypothesis testing

procedures, the subjectivity involved is no greater than that already present in frequentist

inference. While some likelihoodists have criticized frequentism for even that subjectivity

(Royall, 1997, �3.7), the subjectivity involved in selecting the rejection region for signi�cance

testing coheres with post-positivistic philosophies of science that frankly acknowledge that

scienti�c inference is not a matter of following an algorithm (Polanyi, 1962, �3.1).

Section 2 provides preliminary concepts and propositions, demonstrating that interpret-

ing con�dence levels as certainty levels or hypothetical levels of belief leads either to non-

coherent estimates and hypothesis testing or to inference on the basis of a con�dence distribu-

tion of the parameter as if it were a Bayesian posterior distribution. Iterating that reasoning

along the lines of Fisher's �ducial argument for multiple parameters leads to merging con-

�dence distributions into a parameter distribution that is coherent in the sense that it is a
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probability measure. This is �ducial inference in the sense that it is a modern development

of �ducial reasoning but without the often impractical requirements involving aspects of

conditional inference and without violating the rules of ordinary probability theory, that of

the Kolmogorov axioms. The framework proposed in Section 2 also di�ers from Fisher's in

its incorporation of nested con�dence sets of vector parameters. Thus, the proposed frame-

work for inference is presented as a realization of the core ideas behind the original �ducial

argument, Neyman-Pearson con�dence intervals, and theories of coherent decision-making

that prescribe minimizing expected loss with respect to a posterior distribution (e.g., von

Neumann and Morgenstern, 1953; Savage, 1954). (Following the usage in Dempster (2008),

Eaton and Sudderth (2010), and Bickel (2012a), the term �posterior� herein means data-

dependent and thus includes but is not limited to a Bayesian posterior relative to some

prior.)

Section 3 demonstrates that the resulting framework of �ducial inference can lead to

shrinkage in point and interval estimates toward a null hypothesis value in a way that is

not possible in the pure frequentist and pure Bayesian approaches. For example, Figure 1

displays the shrunken parameter estimate as an alternative to the usual frequentist estimate

computed after testing the null hypothesis. Given the two-sided p-value PV, the maximum-

likelihood estimate θ̂ is simply shrunk to (1− PV) θ̂. That value would only be available from

Bayes's theorem if the prior depended on the sample size such that the posterior probability

of the null hypothesis were equal to PV.

Lastly, remarks elaborating on technical points appear in Section 4, a brief discussion on

equating p-values with �ducial probabilities in Section 5, and longer proofs in Appendix A.

5

Hosted by The Berkeley Electronic Press



Figure 1: Estimates of the normal mean relative to its standard error as a function of the
observed number of standard errors from 0, the null hypothesis value. The black curve is
the posterior mean with respect to the �ducial distribution, and the gray line is the MLE,
plotted as a solid line wherever the null hypothesis is rejected at the 5% signi�cance level
and as a dashed line elsewhere. See Example 8 for details.
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2 Fiducial distributions

The concept of a �ducial distribution will be introduced in order to ground coherent decision

making in the procedure of con�dence intervals or more general con�dence sets. In this

way, the coherence condition will be supplemented with a con�dence-based condition in

order to prescribe point estimates, interval estimates, hypothesis tests, and other actions

that minimize expected loss. The various types of �ducial distributions are formulated as

frequentist posteriors: the basic �ducial distribution is de�ned in Section 2.1, and other

�ducial distributions are de�ned in Section 2.2.

2.1 Basic �ducial distributions

2.1.1 Fiducial probability as coherent con�dence

The basic parameter θ and nonbasic parameter γ are in the parameter sets denoted by

Θ and Γ, respectively. The distinction between the basic and nonbasic parameters will

become clear shortly. For now, it is enough to note that which parameter is basic cannot

be a function of which parameter happens to be of interest provided that the background

(pre-data) knowledge of the hypothetical agent is �xed (Remark 1).

The observed n-tuple x is a member of X , where X ⊆ Rn. Let B (X ) denote the σ-�eld

of Borel subsets of X . The family of distributions of the random variable X of outcome x

is {Pθ,γ : θ ∈ Θ, γ ∈ Γ}, where each Pθ,γ is de�ned on the measurable space (X ,B (X )). The

set of all closed interval subsets of [0, 1] will be denoted by I. Herein, ⊂ (as opposed to

⊆) means �is a proper subset of.� A function Θ̂ = Θ̂• (•) on X × I is a procedure of nested

con�dence sets for θ if there is a function p = p• (•) : X × Θ → [0, 1], such that, for any

7
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I ∈ I,

Θ̂x (I) = {θ ∈ Θ : px (θ) ∈ I} (1)

for all x ∈ X and such that the corresponding nested con�dence set estimator Θ̂• (I) on X

satis�es

Pθ,γ

(
θ ∈ Θ̂X (I)

)
= |I| (2)

for all θ ∈ Θ and γ ∈ Γ, where |•| is the Lebesgue measure. (Since I is an interval in this

case, |I| is the width of I.) As a result, |I| is called the con�dence level of Θ̂• (I), and p is

called the con�dence curve of Θ̂ (Birnbaum, 1961; Blaker, 2000).

Lemma 1. If Θ̂ is the procedure of nested con�dence sets for θ that is de�ned by some

con�dence curve p, then pX (θ) is uniformly distributed between 0 and 1 (pX (θ) ∼ U (0, 1))

for all θ ∈ Θ.

Proof. By the de�nitions of a con�dence level and a procedure of nested con�dence sets,

formulas (1)-(2) yield

Pθ,γ (pX (θ) ∈ I) = |I| (3)

for all I ∈ I, θ ∈ Θ, and γ ∈ Γ. Thus, using I = [α, 1] for any α ∈ [0, 1],

Pθ,γ (pX (θ) ≥ α) = Pθ,γ (pX (θ) ∈ [α, 1]) = 1− α.

Lemma 1 implies that px (θ0) is the observed p-value for testing the null hypothesis that

θ = θ0 against alternative hypothesis that pX (θ0) is stochastically less than U (0, 1). For

that reason, px (•) has usually been called a p-value function or a signi�cance function in

8
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the case of a scalar basic parameter (Θ ⊆ R1) (e.g., Fraser, 1991).

Con�dence sets used in practice are typically interpreted such that the con�dence levels

have the same order as the levels of certainty a statistician or scientist would place on the

hypotheses that the parameter value is within the con�dence sets. To state this formally for

a procedure Θ̂ of nested set estimators, let Hx

(
Θ̂
)
denote the set of nested con�dence sets

corresponding to x ∈ X :

Hx

(
Θ̂
)

=
{

Θ̂x (I) : I ∈ I
}
. (4)

Given any two observations x1, x2 ∈ X and any two parameter subsets Θ1 ∈ Hx1

(
Θ̂
)
and

Θ2 ∈ Hx2

(
Θ̂
)
, the hypothesis that θ ∈ Θ1 is considered no more certain than (�) the

hypothesis that θ ∈ Θ2 if and only if the highest con�dence level corresponding to the

former hypothesis is less than or equal to that corresponding to the latter:

Θ1 � Θ2 ⇐⇒ sup
∣∣∣Θ̂−1

x1
(Θ1)

∣∣∣ ≤ sup
∣∣∣Θ̂−1

x2
(Θ2)

∣∣∣ . (5)

The parameter θ that de�nes those hypotheses is called the basic parameter.

De�nition 1. Let σx denote any σ-�eld such that Hx

(
Θ̂
)
⊂ σx. For any x ∈ X , a proba-

bility measure Cx on (Θ, σx) is a certainty distribution that is compatible with a con�dence

procedure Θ̂ and with its con�dence curve p if

Cx1 (Θ1) ≤ Cx2 (Θ2) ⇐⇒ Θ1 � Θ2 (6)

for all x1, x2 ∈ X ; Θ1 ∈ Hx1

(
Θ̂
)
; Θ2 ∈ Hx2

(
Θ̂
)
.

Other �ducial distributions will be de�ned in Section 2.2.
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Example 1. Consider the spherically normal model:

X ∼ N
(
ξθ, γ2I

)
,

where X is a random column vector of n observable responses, θ ∈ Rd is a column vector of

d < n unknown means, ξ is a n×d design matrix, γ is the unknown standard deviation, and

I is the d × d identity matrix. Thus, x is the �xed column vector of n observed responses.

Let θ̂ (x) and γ̂ (x) denote the maximum likelihood estimates of θ and γ, respectively, and

let Cx be the multivariate t distribution of location d-vector θ̂, scale matrix γ̂2 (x) ξTξ, and

n−d degrees of freedom. If ϑ is the random variable with distribution Cx, i.e., ϑ ∼ Cx, then

(
ϑ− θ̂ (x)

)T

ξTξ
(
ϑ− θ̂ (x)

)
γ̂2 (x) d

(7)

is Fd,n−d, the random variable distributed as the F -distribution with 〈d, n− d〉 degrees of

freedom (Box and Tiao, 1992, �2.7.2). Let cx denote the probability density function equal to

the Radon-Nikodym derivative of Cx with respect to the Lebesgue measure. If Θ̂x is de�ned

by the density contours such that Cx

(
ϑ ∈ Θ̂x (I)

)
= |I| and

θ1 /∈ Θ̂x (I) , θ2 ∈ Θ̂x (I) =⇒ cx (θ1) < cx (θ2)

for all I ∈ I, then Θ̂X (I) is a 100 |I|% con�dence region in the sense that it satis�es formula

(2) (Box and Tiao, 1992, �2.9.0). According to formula (6), Cx is a certainty distribution

that is compatible with Θ̂.N

The procedure of nested set estimators also provides a general concept of a con�dence
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distribution.

De�nition 2. For any x ∈ X , a probability measure Kx on (Θ, σx) is a con�dence distribu-

tion that is compatible with Θ̂ if, for every Θ1 ∈ Hx

(
Θ̂
)
,

Kx (Θ1) ∈ Kx (Θ1) , (8)

where Kx (Θ1) =
{
|I| : Pθ,γ

(
θ ∈ Θ̂X (I)

)
= |I| , I ∈ I, Θ̂x (I) = Θ1

}
.

The de�nition speci�ed by formula (8) extends the usual con�dence distribution of a

scalar parameter de�ned on the basis of strictly nested con�dence intervals (Cox, 1958)

to con�dence distributions of higher-dimensional basic parameters de�ned on the basis of

con�dence sets that could have Θ̂x (I1) = Θ̂x (I2) for some I1 6= I2. In the former case, σx

is the Borel �eld over Θ. Polansky (2007), Singh et al. (2007), and Bickel (2011b, 2012a)

present alternative de�nitions of con�dence distributions of vector basic parameters. The

de�nition used here is a slight generalization of the �con�dence posterior� found in Bickel

(2012b, �2.3).

The simplest type of �ducial distribution is a special case of a con�dence distribution.

De�nition 3. For any x ∈ X , a probability measure Πx on (Θ, σx) is a basic �ducial

distribution that is compatible with Θ̂ if, for every Θ1 ∈ Hx

(
Θ̂
)
,

Πx (Θ1) ≥ Pθ,γ

(
θ ∈ Θ̂X (I)

)
(9)

for all I ∈ I such that Θ̂x (I) = Θ1.

Formulas (8) and (9) are related by Πx (Θ1) = supKx (Θ1). In Example 1, Cx is a

basic �ducial distribution as well as a certainty distribution. The inequality of formula (9)

11
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essentially follows van Berkum et al. (1996); see also Bickel (2012b,d) and references.

De�nition 3 sheds light on the relationship between the concepts of a certainty distri-

bution and a basic �ducial distribution. Every basic �ducial distribution is necessarily a

certainty distribution, as is clear from fact that formulas (5) and (9) imply formula (6).

The converse is not necessarily true, but satisfaction of a condition usually met in practice

is su�cient for a certainty distribution Cx to be a basic �ducial distribution. The con�dence

procedure Θ̂ is said to be potentially invertible if, for any ε > 0, there are an x ∈ X and a

Ix ⊆ I that satisfy

|∪I∈IxI| ≥ 1− ε (10)

such that the function Θ̃x (•) : Ix → Θx is invertible (bijective) for some Θx ⊆ Θ, where

Θ̃x (I) = Θ̂x (I) for all I ∈ Ix. The condition is trivially met when, as in Example 1, Θ̂x

is bijective for all x ∈ X , since in that case |∪I∈IxI| = 1 in formula (10) with Ix = I

and Θ̃x = Θ̂x for all x ∈ X and I ∈ I. The next example illustrates this non-trivial but

commonly applicable result:

Theorem 1. With Θ as any interval such that sup Θ = ∞, let Θ̂ be a procedure of nested

con�dence intervals for θ ∈ R that is de�ned by some con�dence curve p. If px (•) is a

strictly increasing and continuous function such that limθ→∞ px (θ) = 1 for all x ∈ X , then

Θ̂ is potentially invertible.

Proof. By Lemma 1, pX (θ) ∼ U (0, 1) for all θ ∈ Θ. It follows that, for any ε > 0, there

is an x ∈ X such that limθ→inf Θ px (θ) < ε. For any such ε and x, let Ix denote the set

of all closed interval subsets of [ε, 1]. Since |∪I∈IxI| = 1 − ε, inequality (10) clearly holds.

The invertibility of Θ̃x (•) is a consequence of the stated assumption that px (•) is strictly

increasing and continuous.
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Example 2. The observable vector X consists of n independent random variables of distri-

bution N (µ, σ2) with µ and σ unknown. Let υ (•) : X × R→ [0,∞[ and τ (•) : X × R→ R

denote the functions such that

υ (x;µ) = τ 2 (x;µ) ;

τ (x;µ) =
µ̂ (x)− µ
σ̂ (x) /

√
n
,

which is the observed Student t statistic with µ as the null hypothesis value, for any x ∈ X .

If the basic parameter is θ = µ2, then the nonbasic parameter is the pair γ = (µ/ |µ| , σ), and

τ (X;µ) is a pivotal quantity with the Student t distribution of n − 1 degrees of freedom,

implying that υ (X;µ) = F1,n−1. (The ratio µ/ |µ| is the sign of µ.) A con�dence procedure

Θ̂ can then be constructed by de�ning the con�dence curve p according to the upper-tailed

p-value

px (θ) = Pθ,γ (υ (X; 0) ≥ υ (x; 0)) (11)

for all x ∈ X , θ ≥ 0, and γ ∈ {−1, 0, 1} × ]0,∞[. Because Θ = [0,∞[ and because formula

(11) implies that px (•) is strictly increasing and continuous for all x ∈ X , the conditions of

Theorem 1 are met even though Θ̂X (•) is almost surely not invertible.N

Theorem 2. Let Θ̂ be a procedure of nested con�dence sets for θ that is de�ned by some

con�dence curve p. If Θ̂ is potentially invertible, then every certainty distribution compatible

with Θ̂ is also a basic �ducial distribution that is compatible with Θ̂.

2.1.2 P-values as hypothesis probabilities

The next result provides su�cient conditions for equating the certainty level of a simple

(point) null hypothesis with a p-value.
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Corollary 1. Let Θ̂ be a procedure of nested con�dence intervals for θ that is de�ned by

some con�dence curve p. Under the conditions of Theorem 2, every certainty distribution

Cx compatible with Θ̂ is also a basic �ducial distribution that is compatible with Θ̂ and, if

Θ = [θ0,∞[ for some θ0 ∈ R, then, for all x ∈ X ,

Cx (ϑ = θ0) = px (θ) , (12)

where ϑ ∼ Cx, i.e., ϑ is the random variable of distribution Cx.

Example 3. Example 2, continued. Since the conditions of Corollary 1 are satis�ed, the

certainty level of the hypothesis that the parameter value equals zero is equal to the p-value

of the test with θ = 0 as the null hypothesis:

Cx (ϑ = 0) = px (0) = P0,γ (υ (X; 0) ≥ υ (x; 0)) (13)

for all x ∈ X and γ ∈ {−1, 0, 1} × ]0,∞[. That is simply the usual two-sided p-value from

the single-sample t-test, as equation (11) makes clear. N

In conclusion, since Bayesian posterior probabilities are typically not equal to two-sided

p-values, Corollary 1 prevents certainty theory from being regarded as a special case of

Bayesian theory (�5).

Some operating characteristics of testing hypotheses under the equality of the p-value and

the certainty level appear in the remainder of this subsection. They do not in themselves

warrant the use of the �ducial distribution but rather report some of its repeated-sampling

properties. Here, δi,j is Kronecker's delta: δθ0,θ0 = 1 and δθ,θ0 = 0 for θ 6= θ0.

Theorem 3. Consider the null hypothesis that θ = θ0 for some θ0 ∈ Θ. For a Type I error

14
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cost `I > 0 and a Type II error cost `II > 0, the loss function L : Θ× {0, 1} → {0, `I, `II} is

de�ned by L (θ, 0) = (1− δθ,θ0) `II and L (θ, 1) = δθ,θ0`I. If the action a (x) ∈ {0, 1} is chosen

to minimize expected loss with respect to a certainty distribution Cx that is compatible with

a con�dence curve p and that meets the criteria of Corollary 1 for all x ∈ X , then

a (x) =


1 if px (θ0) < α (`)

0 if px (θ0) > α (`) ,

(14)

where ` = `I/`II, and α (`) = (1 + `)−1 is the Type I error rate of a (X).

Proof. It is known that some algebra leads to

a (x) = arg min
b=0,1

∫
L (θ, b) dΠx (θ) =


1 if Cx (ϑ = θ0) < α (`)

0 if Cx (ϑ = θ0) > α (`)

for any parameter distribution Πx. Corollary 1 implies that Cx (ϑ = θ0) = px (θ0), which

leads to equation (14) by substitution. Because pX (θ0) ∼ U (0, 1) by Lemma 1 under θ = θ0,

the Type I error rate is

Pθ0,γ (a (X) = 1) = Pθ0,γ (pX (θ) < α (`)) = α (`) . (15)

For instance, equation (14) implies that the practice of rejecting the null hypothesis at

the 0.05 signi�cance level would be appropriate if ` = 19, i.e., if the cost of a Type I error

were 19 times as much as the cost of a Type II error.

15
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Corollary 2. If θ = θ0 in addition to the assumptions of Theorem 3, then the loss L (θ, a (X))

averaged over the sample space is

∫
L (θ0, a (x)) dPθ0,γ (x) =

`I
1 + `

.

[
` =

`I
`II

]

Proof. By equation (14),

∫
L (θ0, a (x)) dPθ0,γ (x) = Pθ0,γ (a (X) = 0)L (θ, 0) + Pθ0,γ (a (X) = 1)L (θ, 1)

= Pθ0,γ (a (X) = 0) (1− δθ0,θ0) `II + Pθ0,γ (a (X) = 1) δθ0,θ0`I

= 0 + Pθ0,γ (a (X) = 1) `I.

According to equation (15), the �rst factor of the right-hand-side is α (`).

Since the loss function of Theorem 3 may be less applicable when a p-value is reported

as a measure of evidence rather than compared to a �xed signi�cance level, quadratic loss

of the p-value as a point estimator of a hypothesis truth value is often considered (Bickel,

2012a). In this context, Hwang et al. (1992) and Morgenthaler and Staudte (2005) �nd

that the p-value is not necessarily admissible under the frequentist decision theory of Wald

(1961). However, the next theorem indicates that the p-value is often optimal according to

theories of minimizing expected loss with respect to the agent's parameter distribution (e.g.,

Savage, 1954). Its repeated-sampling performance under the null hypothesis is quanti�ed in

the corollary.

Theorem 4. Consider the null hypothesis that θ = θ0 for some θ0 ∈ Θ. The quadratic

loss function L : Θ × [0, 1] → [0, 1] is de�ned by L
(
θ, δ̂
)

=
(
δ̂ − δθ,θ0

)2

. If the action

δ̂ (x) ∈ [0, 1] is chosen to minimize expected loss with respect to a certainty distribution Cx
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that is compatible with a con�dence curve p and that meets the criteria of Corollary 1 for all

x ∈ X , then δ̂ (x) = px (θ0).

Proof. A standard result (e.g., Lad, 1996) is that δ̂ (x) = Cx (ϑ = θ0) minimizes expected

quadratic loss for any parameter distribution Cx. Corollary 1 implies that Cx (ϑ = θ0) =

px (θ0).

Corollary 3. If θ = θ0 in addition to the assumptions of Theorem 4, then the loss averaged

over the sample space is ∫
L
(
θ, δ̂ (x)

)
dPθ,γ (x) =

1

3
.

Proof. Theorem 4 gives δ̂ (x) = px (θ0), with the result that

∫
L
(
θ0, δ̂ (x)

)
dPθ0,γ (x) =

∫
(px (θ0)− δθ0,θ0)

2 dPθ0,γ (x)

=

∫ (
p2
x (θ0)− 2p2

x (θ0) + 12
)
dpx (θ0)

= E
(
U2 − 2U + 1

)
= E

(
U2
)
− 2E (U) + 1,

where, by equation Corollary 1, U ∼ U (0, 1). Finally, E (U2) = 1/3 and E (U) = 1/2.

2.2 Other �ducial distributions

As above, the distribution of X depends on the value of some full parameter. Let Φ denote

a set of target parameter values, where each target parameter value is a function of the

full parameter value. Hypothesis tests, e�ect-size estimates, and other actions may depend

on the value of the target parameter. In other words, any potential parameter of interest

is a function of the target parameter. The possible dependence of the distribution of X

on another parameter, called the nontarget parameter, is suppressed for notational economy.
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Suppose there are measurable spaces
(
Φ(1),Σ(1)

)
,
(
Φ(2),Σ(2)

)
and functions •′ : Φ→ Φ(1), •′′ :

Φ→ Φ(2) such that the function φ : Φ→ Φ(1) × Φ(2) is bijective (invertible), where φ (φ) =

(φ′, φ′′) for all φ ∈ Φ. Thus, φ = φ−1 ((φ′, φ′′)) for any φ ∈ Φ, with the interpretation that φ′

and φ′′ are subparameters of φ that together contain all the information in φ. Accordingly,

•′ and •′′ are called subparameter functions.

The general de�nition of a �ducial distribution is self-referential with the recursion stop-

ping at one or more basic �ducial distributions (De�nition 1).

De�nition 4. Consider a �ducial distribution Π
(1)
x on

(
Φ(1),Σ(1)

)
and a probability distribu-

tion Π
(2)
x (•|φ′) on

(
Φ(2),Σ(2)

)
for every φ ∈ Φ. Let π

(1)
x : Φ(1) → [0,∞[ and π

(2)
x (•|φ′) : Φ(2) →

[0,∞[ denote the probability density functions de�ned in terms of Radon-Nikodym di�eren-

tiation of Π
(1)
x and Π

(2)
x (•|φ′) with respect to the same dominating measure. A probability

distribution Πx on a measurable space (Φ,Σ) is called the joint �ducial distribution that ex-

tends Π
(1)
x and Π

(2)
x if it corresponds to a probability density function πx : Φ(1)×Φ(2) → [0,∞[

such that

πx (φ′, φ′′) = π(1)
x (φ′) π(2)

x (φ′′|φ′) (16)

for all φ ∈ Φ and if P(2)
x =

{
Π

(2)
x (•|φ′) : φ ∈ Φ

}
satis�es these conditions:

1. For all φ ∈ Φ such that φ′′ is a function of φ′, the probability distribution Π
(2)
x (•|φ′) is

∆φ′′ , the Dirac measure with support at φ′′ (probability distribution concentrated at

φ′′).

2. Let Φ? denote the set of all φ ∈ Φ such that φ′′ is not a function of φ′. At least one of

the following statements holds:

(a) Consider the function φ(1) : Φ(2) → Φ(1) that satis�es φ(1) (φ′′) = φ′ for each
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φ ∈ Φ?. For all φ ∈ Φ?, the conditional �ducial distribution given φ′ is de�ned by

Π(2)
x (•|φ′) = Π(2)

x

(
•|φ(1)

(
ϕ(2)

)
= φ′

)
, (17)

which is the conditional probability distribution of ϕ(2) given φ(1)
(
ϕ(2)

)
= φ′,

where ϕ(2) is the random variable distributed as some �ducial distribution Π
(2)
x .

(b) For all φ ∈ Φ?, Π
(2)
x (•|φ′) is a �ducial distribution. In this case, the probability

distribution

Π(2)
x = Π(2)

x (•) =

∫
Π(2)
x (•|φ′) dΠ(1)

x (φ′) (18)

is called the marginal �ducial distribution with respect to Π
(1)
x and P(2)

x .

Any parameter distribution is a �ducial distribution if it is a probability distribution that

can be deduced from a basic �ducial distribution or a joint �ducial distribution. N

According to the de�nition and Kolmogorov probability theory, any distribution of a

parameter is a �ducial distribution if it is a basic �ducial distribution, a conditional �ducial

distribution, a marginal �ducial distribution, or a joint �ducial distribution. While basic

�ducial distributions are necessarily con�dence distributions, other �ducial distributions are

often not con�dence distributions.

The joint �ducial distributions of Examples 4 and 5 are well-known posterior distributions

derived by Fisher via his �ducial argument and by Je�reys via improper priors (Je�reys,

1998, �7.1). Speci�c instances of �ducial distributions that have no Bayesian counterpart

are introduced for the �rst time in Section 3.

Example 4. As in Example 2, the observable vector X consists of n independent random

variables of distribution Pθ,σ = N (θ, σ2) with θ and σ unknown. With the parameterization
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φ = (θ, σ2), de�ne the subparameter functions such that φ′ = σ2 and φ′′ = θ for all φ ∈

R× ]0,∞[. Let υ (•) : X × ]0,∞[→ ]0,∞[ and τ (•) : X ×R× ]0,∞[→ R denote the pivot

functions such that

υ (x;σ) =
(n− 1) σ̂2 (x)

σ2
; τ (x; θ, σ) =

θ̂ (x)− θ
σ/
√
n

for all x ∈ X , θ ∈ R, and σ ∈ ]0,∞[, where θ̂ (x) and σ̂2 (x) are the usual estimates of the

mean and variance. Since υ (X;σ) has a χ2 distribution with n − 1 degrees of freedom for

all σ ∈ ]0,∞[, there is a random variable ς2 of basic �ducial distribution Π
(1)
x such that

Π(1)
x (ς ≤ σ) = Pθ,σ (υ (X; 1) ≥ υ (x; 1))

for all x ∈ X , θ ∈ R, and σ ∈ ]0,∞[. Likewise, since τ (X; θ, σ) has a standard normal

distribution for all θ ∈ R and σ ∈ ]0,∞[, there is a random variable ϑ (σ2) of basic �ducial

distribution Π
(2)
x (•|σ2) such that

Π(2)
x

(
ϑ
(
σ2
)
≤ θ|σ2

)
= Pθ,σ (τ (X; 0, σ) ≥ τ (x; 0, σ))

for all x ∈ X , θ ∈ R, and σ ∈ ]0,∞[. The distribution Πx of the resulting random variable

ϕ = (ϑ (ς2) , ς2) is the joint �ducial distribution according to equation (16). With θ as the

parameter of interest, Yates (1939) eliminated the nuisance parameter σ by integration with

respect to Π
(1)
x , �nding that the posterior mean ϕ′′ = ϑ̄ =

∫
ϑ (s2) dΠ

(1)
x (s2) is distributed

such that
(
ϑ̄− θ̂ (x)

)√
n/ŝ (x) has the Student t distribution with n−1 degrees of freedom.

That marginal �ducial distribution is also the con�dence distribution for θ that corresponds

to τ (X; θ, σ (X)) as the pivotal quantity (Wilkinson, 1977). N
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In that example, the �ducial distribution of the parameter of interest is a con�dence

distribution. That is not always the case, as the next example makes clear.

Example 5. For samples of sizes n1 and n2 from two di�erent normal populations of un-

known means (θ1, θ2) and variances (σ2
1, σ

2
2), the ni-tuple Xi = (Xi,1, . . . , Xi,n1) has indepen-

dently distributed components Xi,j ∼ N (µi, σ
2
i ) for i = 1, 2 and j = 1, . . . , ni. The parameter

of interest is the di�erence in means, θ = θ1− θ2. As seen in Example 4, marginal inferences

may be made about θi on the basis of the random parameter ϑ̄i, distributed according to

the marginal �ducial distribution such that
(
ϑ̄i − θ̂i (x)

)√
ni/ŝi (x) has the Student t dis-

tribution with n− 1 degrees of freedom for i = 1, 2, where θ̂i (x) and ŝi (x) are the observed

estimates of the mean and variance for the ith sample. Let φ = (φ′, φ′′) = (θ1, θ2), let C ′

denote the �ducial distribution of ϑ̄1, and let Π
(2)
x (•|φ′) denote the �ducial distribution of

ϑ̄2 for all θ1 ∈ R. Since marginalization according to equation (16) implies that ϑ̄1 and ϑ̄2

are independent, the marginal �ducial distribution of ϑ = ϑ̄1 − ϑ̄2 is the Behrens-Fisher

�ducial distribution of the di�erence in means (Fisher, 1935). As has often been pointed

out, that �ducial distribution does not lead to exact con�dence intervals; thus, the �ducial

distribution of ϑ is not a con�dence distribution. N

Because a sampling model and data set do not lead to a unique �ducial distribution,

it is useful at this point to formalize the concept of a hypothetical intelligent agent that

ultimately bases its decisions on con�dence intervals. Let P denote the set of all �ducial

distributions on (Φ,Σ) that can be constructed with X as the data space. A �ducial agent

(FA) is a function Π : X → P such that its basic �ducial distributions are derived from the

same procedures of nested con�dence sets and such that its joint �ducial distributions are

related to its other �ducial distributions by equation (16) for the same measurable spaces

and subparameter functions (•′ and •′′). Thus, the �ducial distribution of any FA Π and
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observation x ∈ X is uniquely speci�ed by Π (x), which is denoted by Πx above. Likewise, a

Bayesian posterior is uniquely speci�ed by the prior and family of sampling distributions that

represent the beliefs of a Bayesian agent. This correspondence between �ducial or Bayesian

agents and �ducial or Bayesian posteriors adds formal support to the claim of Fraser (2008)

and Hannig (2009) that Bayesian inference faces essentially the same uniqueness problem as

�ducial inference. Unique �ducial distributions can alternatively be derived under certain

conditions by considering the con�dence procedure as part of the model of the physical

system (Remark 3).

Example 6. Welch (1947) proposed a system of approximate con�dence intervals as a solu-

tion to the Behrens-Fisher problem (Example 5). The corresponding approximate con�dence

distribution, as an approximate basic �ducial distribution, represents the posterior beliefs

of a di�erent agent than the agent whose posterior beliefs are represented by the �ducial

distribution derived in Example 5. The latter agent is a better idealization of statisticians

who would order the certainty level of hypotheses according to the con�dence levels from

the basic �ducial distributions of Example 5 when making inferences about the mean as

well as when making inferences about the standard deviation. Such ordering is not coherent

with ordering levels of certainty according to the con�dence levels of Welch (1947). This has

far-reaching implications for statistical practice (Remark 1). N

In some cases, the statistician may have di�culty in committing to a single FA. When

multiple FAs are equally suitable as representations of the posterior beliefs of a scientist,

organization, or other real agent, the most representative FAs may be coherently combined

into a single posterior distribution via simple arithmetic averaging (see, e.g., Paris, 1994) or

the game-theoretic method of Bickel (2012d). The combined posterior distribution will not

necessarily be a �ducial distribution.
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3 Inference in the presence of a plausible null hypothesis

3.1 Certainty based on a plausible null hypothesis

In many applications involving testing the null hypothesis that that φ = φ0 for some φ0 ∈ Φ,

the parameter value φ0 is regarded as a priori more plausible than any other parameter

value, at least for the sake of argument or reporting. That information can be encoded in

joint �ducial distributions by using the Dirac measure in place of a basic �ducial distribution,

as De�nition 4 allows.

A simple and widely applicable way to do that begins by de�ning φ′ as a distance from

the most plausible parameter value. In this setting, Φ(1) ⊆ [0,∞[, and the subparameter

functions •′ and •′′ and a magnitude transformation mag satisfy φ′′ = φ and

φ′ = mag (φ) = D (φ, φ0)

for all φ ∈ Φ, where D is a distance measure. Let Π
(2)
x denote the basic �ducial distribution

that is compatible with a procedure of nested con�dence sets for φ. By assumption, Π
(2)
x

meets the conditions of Corollary 1. Since mag (φ′′0) = 0 implies that φ0 = φ, De�nition 4

requires that Π
(2)
x (•|0) = ∆φ0 . Let τ (X;φ, γ) be a pivotal quantity that de�nes the random

variable ϑ(2) of a basic �ducial distribution Π
(2)
x compatible with a con�dence curve p(2) by

Π(2)
x

(
ϑ(2) ≤ φ0

)
= Pφ,γ (τ (X;φ0, γ) ≥ τ (x;φ0, γ))

for all x ∈ X , φ ∈ Φ\ {φ0}, and γ ∈ Γ, where Γ is the set of possible values of the nontarget

parameter, which in this subsection is required to be nonbasic (�2.1). To de�ne Π
(1)
x , the

parameter φ will be broken into its magnitude component φ′ and direction component, a
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member of

Dφ0 = {φ/φ′ : φ ∈ Φ\ {φ0}} .

Let υ (x;φ′, δ, γ) = |τ (x;φ′δ, γ)| and Pφ′,δ,γ = Pφ′δ,γ for all x ∈ X , φ ∈ Φ\ {φ0}, δ ∈ Dφ0 ,

and γ ∈ Γ. Suppose there is a random variable ϑ(1) of basic �ducial distribution Π
(1)
x,φ0

that

is compatible with a procedure of nested con�dence sets for θ(1) that is de�ned by some

con�dence curve p
(1)
•,φ0 . This �ducial distribution must satisfy

Π
(1)
x,φ0

(
ϑ(1) ≤ φ′

)
= p

(1)
x,φ0

(φ′) = Pφ′,δ,γ (υ (X;φ′, δ, γ) ≥ υ (x;φ′, δ, γ))

for all x ∈ X , φ ∈ Φ\ {φ0}, δ ∈ Dφ0 , and γ ∈ Γ. Since the �ducial distribution Π
(2)
x generates

conditional �ducial distributions according to equation (17) for φ ∈ Φ\ {φ0}, there is a joint

�ducial distribution that extends Π
(1)
x,φ0

and Π
(2)
x . That distribution is denoted by Cx,φ0 and

is called a �ducial distribution in the presence of the plausible null hypothesis that φ = φ0.

Letting ϕ denote the random variable of distribution Cx,φ0 , that �ducial distribution is

succinctly expressed as a mixture of ∆φ0 and Π
(2)
x

(
•|ϑ(2) 6= φ0

)
:

Cx,φ0 (•) = Cx,φ0 (ϕ = φ0)Cx,φ0 (•|ϕ = φ0) + Cx,φ0 (ϕ 6= φ0)Cx,φ0 (•|ϕ > φ0)

=
Π

(1)
x,φ0

(
ϑ(1) = φ+ (φ0)

)
∆φ0 (•) +

Π
(1)
x,φ0

(
ϑ(1) > φ+ (φ0)

)
Π(2)
x

(
•|ϑ(2) 6= φ0

) (19)

= Π(2)
x

(
•|ϑ(2) > φ0

)
+
(
∆φ0 (•)− Π(2)

x

(
•|ϑ(2) 6= φ0

))
Π

(1)
x,φ0

(
ϑ(1) = φ0

)
.

The certainty level of the plausible null hypothesis is equal to a p-value since Π
(1)
x,φ0

meets
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the conditions of Corollary 1 and since Φ(1) ⊆ [0,∞[. Speci�cally,

Cx,φ0 (ϕ = φ0) = Π
(1)
x,φ0

(ϕ = φ0) = p
(1)
x,φ0

(φ′0) . (20)

Simpli�cation in the form of

Π(2)
x

(
•|ϑ(2) 6= φ0

)
= Π(2)

x (•) (21)

(equality up to measure 0) is possible in the case that Π
(2)
x

(
ϑ(2) 6= φ0

)
= 1, as when ϑ(2) ∼

Π
(2)
x is continuous. The next example illustrates this.

Example 7. In the notation of this subsection, equation (13) of Example 3 says Π
(1)
x,0

(
ϑ(1) = 0

)
=

p′x,0 (0) , where p′x,0 (0) is the usual two-sided p-value from the single-sample t-test of the

null hypothesis that the mean is equal to 0, i.e., that φ = φ0. Thus, equation (20)

equates that p-value with the posterior level of certainty in that hypothesis: Cx,0 (ϕ = 0) =

p′x,0 (0) . By contrast, the basic �ducial distribution Π
(2)
x assigns 0 certainty to the hypothesis(

Π
(2)
x

(
ϑ(2) = 0

)
= 0
)
since it admits a continuous density function: the continuous ran-

dom variable ϑ(2) ∼ Π
(2)
x is proportional to a noncentral t variate according to expression

(7), in which d = 1 here. Using the same example but with a known variance and in the

multivariate setting (d ≥ 2) of Example 1, Stein (1959) pointed out the discrepancy be-

tween Π
(1)
x,0

(
ϑ(1) ∈ •

)
and Π

(2)
x

((
ϕ(2)

)T
ϕ(2) ∈ •

)
and favored the former for inference about

mag (θ) = θTθ since Π
(1)
x,0 corresponds to a con�dence procedure for mag (θ); Remark 4 brie�y

surveys the literature on this discrepancy. In the context of the prior plausibility of the null

hypothesis value φ0 = 0 (Bickel, 2012b,d), equation (19) indicates that there can be no

con�ict between the two distributions: Π
(1)
x,0 only pertains to the magnitude of θ, and Π

(2)
x
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only pertains to its direction. By contrast, in the context of no prior plausibility of one value

of φ above any other, Π
(2)
x rather than Cx,0 would be appropriate for the minimization of

expected utility. More formally, Cx,0 and Π
(2)
x correspond to the idealized knowledge bases

of di�erent agents, one of which may better represent actual knowledge. N

3.2 E�ect-size estimates shrunk toward the null hypothesis

In this subsection, it is assumed that Π
(2)
x

(
ϑ(2) 6= φ0

)
= 1, entailing that equation (21)

holds. The conditions of Corollary 1 are also taken for granted with the result that every

basic �ducial distribution considered is a con�dence distribution.

3.2.1 Point estimation

An estimator of a parameter is considered consistent if it converges in Pφ,γ-probability to

the true value of the parameter. Similarly, for a scalar parameter (φ ∈ R), the signi�cance

function is called asymptotically powerful (cf. Bickel, 2012a) if it converges in probability to

0 or 1 under the alternative hypothesis (φ 6= φ0):

qX (φ0)
Pφ,γ→


1 if φ < φ0

0 if φ > φ0.

(22)

Let •̄x denote the posterior mean of a parameter with respect to its �ducial distribution for

any observation x ∈ X ; again, �posterior� abbreviates �data-dependent� and is not necessarily

a Bayesian posterior for a data-independent prior. The posterior means of the ϑ(2) and ϕ
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de�ned in Section 3.1 are their expectation values with respect to their �ducial distributions:

ϑ̄(2)
x =

∫
φdΠ(2)

x

(
φ
)

; (23)

ϕ̄x =

∫
φdΠx

(
φ
)

= p
(1)
x,φ0

(φ′0)φ0 +
(

1− p(1)
x,φ0

(φ′0)
)
ϑ̄(2)
x , (24)

where φ ∈ Φ is the dummy variable of integration. Setting φ0 = 0 yields the shrunken

parameter estimate advertised in Section 1: ϕ̄x =
(

1− p(1)
x,0 (0)

)
ϑ̄

(2)
x , as will be exploited in

Example 8.

Theorem 5. Let Φ = Rd1 for some d1 ∈ {1, 2, . . . }. If Π
(2)
x

(
ϑ(2) 6= φ0

)
= 1, if the

alternative-conditional posterior mean ϑ̄
(2)
X is a consistent estimator of φ, and if the p-value

p
(1)
X,φ0

(φ0) is asymptotically powerful, then the alternative-marginal posterior mean ϕ̄X is a

consistent estimator of φ.

Proof. First, the result is easily obtained in the case of a true null hypothesis (φ = φ0). Since

ϑ̄
(2)
X

Pφ0,γ→ φ = φ0, equation (24) immediately yields ϕ̄X
Pφ0,γ→ φ0. Next, consider the case of a

true alternative hypothesis (φ 6= φ0). According to equation (24), for any ε > 0,

lim
n→∞

Pφ,γ

(∣∣∣ϕ̄X − ϑ̄(2)
X

∣∣∣ < ε
)

= lim
n→∞

Pφ,γ

(∣∣∣p(1)
X,φ0

(φ′0)
(
φ0 − ϑ̄(2)

X

)∣∣∣ < ε
)

= lim
n→∞

Pφ,γ

∣∣∣ϑ̄(2)
X − φ0

∣∣∣ < ε∣∣∣p(1)
X,φ0

(φ′0)
∣∣∣
 ,

which is 1 according to equation (23) since ϑ̄
(2)
X

Pφ,γ→ φ by the de�nition of consistency and

since
∣∣∣p(1)
X,φ0

(φ′0)
∣∣∣ by equation (22). Thus, ϕ̄X

Pφ,γ→ ϑ̄
(2)
X . Together, ϑ̄

(2)
X

Pφ,γ→ φ and ϕ̄X
Pφ,γ→ ϑ̄

(2)
X

are su�cient for ϕ̄X
Pφ,γ→ φ.
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The result is widely applicable. Indeed, for the special case of a scalar basic parameter

(φ ∈ R), Singh et al. (2007) found that ϑ̄
(2)
X is a consistent estimator of φ under broad

conditions.

Example 8. Example 7, continued. For n → ∞, Figure 1 compares the posterior mean

based on the �ducial distribution to the maximum-likelihood estimate (MLE), which is the

sample mean in this case. The plot illustrates how the �ducial distribution provides a

smooth alternative to estimation after testing with respect to a �xed signi�cance threshold.

Thus, that practice (Fisher, 1925; Montazeri et al., 2010) may be interpreted as a dirty

approximation to coherent frequentist inference. However, in this case, no approximation is

warranted on computational grounds since the posterior mean is simply ϕ̄x =
(

1− p(1)
x,0

)
ϑ̄

(2)
x

according to equation (24), where p
(1)
x,0 (0) is the two-sided p-value and ϑ̄

(2)
x is the sample

mean.

Smooth shrinkage can also be achieved through methods of frequentist model averag-

ing (FMA) aimed at estimating a parameter (Claeskens and Hjort, 2008). With respect

to point estimation, the certainty-distribution approach and FMA have many of the same

advantages over estimation after testing and estimation after model selection, their respec-

tive threshold-dependent counterparts. However, existing FMA methods require asymptotic

approximations that �ducial distributions do not, indicating that the latter may be more

reliable for small samples. Nonetheless, �ducial distributions can depend nonetheless on

asymptotic con�dence intervals when exact con�dence intervals are not available. Another

advantage of basing point estimation on a joint �ducial distribution is coherence with interval

estimates.
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3.2.2 Interval estimation

Many contexts call for reporting certainty regions, regions that contain the parameter at

some speci�ed level of certainty. When the target parameter is a scalar (φ ∈ R), the regions

are intervals. In that case, it is convenient to de�ne the certainty curve as the function

p•,φ0 (•) : X × Φ→ [0, 1] such that

px,φ0 (φ) = Cx,φ0 (ϕ ≤ φ)

for all x ∈ X and φ ∈ Φ, where ϕ ∼ Cx,φ0 . Unlike p
(1)
•,φ0 and p

(2), this p•,φ0 is not a con�dence

curve since Cx,φ0 is not a con�dence distribution. By equation (19),

px,φ0 (φ) = p
(1)
x,φ0

(φ′0) 1[φ0∞) (φ) +
(

1− p(1)
x,φ0

(φ′0)
)
p(2)
x (φ) .

Inverting px,φ0 yields, for any β ∈ [0, 1],

p−1
x,φ0

(β) =



(
p

(2)
x

)−1
(

β

1−p(1)x,φ0(φ
′
0)

)
if β <

(
1− p(1)

x,φ0
(φ′0)

)
p

(2)
x (φ0)

φ0 if

(
1− p(1)

x,φ0
(φ′0)

)
p(2)
x (φ0) ≤ β ≤(

1− p(1)
x,φ0

(φ′0)
)
p(2)
x (φ0) + p

(1)
x,φ0

(φ′0)(
p

(2)
x

)−1
(
β−p(1)x,φ0(φ

′
0)

1−p(1)x,φ0(φ
′
0)

)
if β >

(
1− p(1)

x,φ0
(φ′0)

)
p

(2)
x (φ0) + p

(1)
x,φ0

(φ′0)

(25)

The interval

Φ̂x,φ0 (β1, β2) =
[
p−1
x,φ0

(β1) , p−1
x,φ0

(β2)
]

is the (β2 − β1) 100% certainty interval centered at (β1 + β2) /2 in the presence of the plausible

null hypothesis that φ = φ0, where 0 ≤ β1 ≤ β2 ≤ 1.
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It is clear from equation (25) that, for any φ ∈ Φ, those certainty intervals are almost

always shorter than the con�dence intervals based on Π
(2)
x . When φ is close to φ0, that

improvement tends to be substantial. Thus, nested con�dence intervals successfully generate

interval estimates that smoothly shrink toward the plausible hypothesis value rather than

retaining the frequentist coverage property that is appropriate when such a value is unknown.

Bickel (2012c) derived the equivalent of equation (25) with an estimated or approxi-

mate Bayesian posterior probability of the null hypothesis in place of the p-value p
(1)
x,φ0

(φ′0).

A key di�erence from the present approach is the interpretation of the interval estimates.

Whereas the marginal con�dence intervals of Bickel (2012c) may be interpreted as an ap-

proximation to the physical distribution of the parameter, that interpretation cannot apply

to the above certainty intervals since p
(1)
x,φ0

(φ′0) is not a Bayesian posterior probability for

any data-independent prior (�5).

4 Remarks

Remark 1. Example 6 brings into bold relief the fundamental di�erence between the proposed

use of con�dence distributions and frequentism as it is usually practiced: there is no FA

that would switch from the one-sample t-test to the Welch t-test merely due to a change

in the parameter of interest. In the �ducial distribution approach, inferences for a given

agent cohere with each other regardless of choices of the parameter of interest, whereas

many frequentists would instead follow Cox (2006) in changing the system of con�dence

intervals according to the parameter of interest even in the absence of changes in background

information. The objective Bayesian practice of using reference priors that depend on which

parameter is of interest (e.g., Berger, 2009) also sacri�ces coherence in favor of reducing
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inference to automatic rules (Bickel, 2012e).

Remark 2. The concise term �con�dence measure� (Bickel, 2009) for what is here called

a con�dence distribution is less subject to misunderstanding than other terms in the lit-

erature. Many authors call the exact con�dence measure a �con�dence distribution� (e.g.,

Efron, 1993; Schweder and Hjort, 2002). By contrast, more recent papers (e.g., Singh et al.,

2005, 2007) use �con�dence distribution� for the cumulative distribution function (CDF) of

an exact con�dence measure and use �asymptotic con�dence distribution� for the CDF of

any con�dence measure. To avoid the confusion generated by those di�erent de�nitions of

�con�dence distribution,� the term �con�dence posterior distribution� (Bickel, 2011b, 2012a)

has been suggested as a term that emphasizes its use in minimizing posterior expected loss.

Polansky (2007, p. 24) coined �observed con�dence levels� for probabilities associated with

con�dence measures.

Remark 3. Since Section 2.2 de�nes the �ducial distribution in terms of the procedure of

con�dence intervals that contains the relevant information is relevant to the knowledge base

of an intelligent agent, it does not extend the statistical model of the physical system.

That model remains the family of distributions, which is insu�cient to specify a �ducial

distribution. However, the basic �ducial distribution has much in common with extended

models, including the structural models of Fraser (1968) and the pivotal models of Barnard

(1980) and Barnard (1995) (with Barnard (1996)). While a structural model is de�ned by

adding a transformation group to the family of distributions, and a pivotal model is de�ned

by adding a pivot to the family, the two are isomorphic under general conditions (Fraser,

1996). See also McCullagh (2002) and Helland (2004, 2009) for closely related extensions of
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the physical model. These considerations may play a role in discriminating between agents

and their corresponding �ducial distributions (Remark 4). In contrast with both �ducial

distributions and extended physical models, Fisher did not intend the �ducial argument to

depend on any assumptions in addition to the family of distributions (Dawid and Stone,

1982, comment by Fraser) except for the assumption that any physical prior distribution

(�5) is unknown (Fisher, 1973).

Remark 4. Previous work related to selecting a �ducial distribution according to the available

background information is expressed here in the notation of Example 7. Wilkinson (1977)

found the nonzero probabilities of the null hypothesis provided by Π
(1)
x,0 appropriate when

the null hypothesis has plausibility apart from xi. By contrast, he found the 0 probability of

the null hypothesis provided by Π
(2)
x appropriate in the absence of any pre-data information

about φ. Wilkinson (1977, pp. 126-127) reasoned that the null hypothesis would not be of

su�cient interest for statistical inference were it implausible, which is consistent with the

agent-based theory of the present paper. One way to determine which agent best represents

prior information is to require invariance to certain parameter and data transformations.

Helland (2004) proposed choosing between Π
(1)
x,0 and Π

(2)
x on the basis of transformation

properties; see Remark 3. Similarly, from a subjective Bayesian viewpoint, whether the

uniform prior is appropriate depends on an agent's beliefs (Berger, 1985, �4.7.9).
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5 Discussion

While the general theory of Section 2 is built on elements of frequentist and Bayesian rea-

soning, it leads to distinctive results that can be derived from neither frequentist theory

nor Bayesian theory alone. Speci�cally, ordering levels of belief according to con�dence

levels of nested con�dence intervals in a framework of maximum expected utility leads to

�ducial distributions that are not necessarily con�dence distributions or Bayesian posterior

distributions.

A striking implication of this �ducial approach is the interpretation of the p-value as the

level of agent belief in the null hypothesis (��2.1.2, 3.1). Given the conditions of Lemma 1

and Corollary 1, the certainty level of a simple null hypothesis is distributed as a p-value

under the null hypothesis: CX (ϑ = θ0) ∼ U (0, 1). That sharply con�icts with the behavior

of the Bayesian posterior probability of the null hypothesis, which converges to 1 under the

null hypothesis under widely applicable conditions. Thus, while many �ducial distributions

are equal to certain objective Bayesian posterior distributions (Je�reys, 1998, �7.4), the joint

�ducial distributions emphasized in Section 3 have no strict Bayesian counterpart.

The discrepancy between the p-value and Bayesian posterior probabilities of the null

hypothesis (Berger and Sellke, 1987) has been explained in terms of treating the simple

(sharp) null hypothesis as an approximation of a composite null hypothesis centered at the

parameter value of the null hypothesis (Gómez-Villegas and Sanz, 1998). From the point of

view of e�ect-size estimation, the low probability of a simple null hypothesis is irrelevant if

the estimated e�ect size is too small to be of any practical signi�cance. For that reason, the

impact of the proposed approach on point and interval estimation (�3.2) is more relevant to

applications than the probability of the null hypothesis in itself.
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The tension between the �ducial probability and a Bayesian posterior probability of the

null hypothesis is also alleviated by recalling that the former is only appropriate inasmuch

as the physical distribution of the parameter is unknown. As epistemological distributions,

�ducial distributions must yield to Bayesian posteriors to the extent that physical priors

are known (Bickel, 2011a, 2012b,d). For example, if a physical prior is fully known, then

the Bayesian posterior completely replaces the �ducial distribution (Fisher, 1973; Wilkinson,

1977).
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Appendix A: Additional proofs

Proof of Theorem 2 The ordering speci�ed by formulas (5) and (6) implies the existence

of a function ω : [0, 1] → [0, 1] such that Cx (Θ1) = ω
(

sup
∣∣∣Θ̂−1

x (Θ1)
∣∣∣) for all x ∈ X and

Θ1 ∈ Hx

(
Θ̂
)
. By formulas (1) and (4),

Cx (Θ1) = Cx
(
px (ϑ) ∈ I (Θ1)

)
= ω

(∣∣I (Θ1)
∣∣) , (26)

for all Θ1 ∈ Hx

(
Θ̂
)
, where I (Θ1) is the widest interval in Θ̂−1

x (Θ1), and ϑ is the random

variable of distribution Cx. Therefore, since the con�dence procedure is potentially invertible,
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there is an x ∈ X and a Ix ⊆ I such that, given any ε > 0 and δ ∈ ]0, 1[,

ω (|[α, α + δ]|) ≤ Cx (α ≤ px (ϑ) ≤ α + δ) ≤ ω (|[α, α + δ]|+ ε)

for all α ∈ [0, 1− δ]. Since ε is arbitrarily small, the function ω must satisfy

Cx (α ≤ px (ϑ) ≤ α + δ) = ω (|[α, α + δ]|)

= ω (δ)

for all α ∈ [0, 1− δ]. Since ω (δ) (the right-hand side) does not depend on α and since

Cx (0 ≤ px (ϑ) ≤ 1) = 1, px (ϑ) is uniformly distributed between 0 and 1 for all x ∈ X , and

ω (δ) = δ for all δ ∈ [0, 1]. Consequently, by formula (26),

Cx (Θ1) =
∣∣I (Θ1)

∣∣ = sup
∣∣∣Θ̂−1

x (Θ1)
∣∣∣ ≥ ∣∣∣Θ̂−1

x (Θ1)
∣∣∣

for all Θ1 ∈ Hx

(
Θ̂
)
. In conclusion, Cx (Θ1) ≥ |I| for all I ∈ I such that Θ̂x (I) = Θ1.

Substitutions involving formulas (3) and (9) complete the proof.

Proof of Corollary 1 The �rst claim follows immediately from Theorems 1 and 2. Since

every certainty distribution Cx is also a basic �ducial distribution, the de�nition of the latter

yields

Cx (ϑ = θ0) = Cx ([θ0, θ0]) ≥ Pθ,γ (pX (θ) ∈ [0, α])

for all α ∈ [0, 1] such that {θ ∈ Θ : px (θ) ∈ [0, α]} = [θ0, θ0]. Thus,

Cx (ϑ = θ0) = Pθ,γ (pX (θ) ≤ px (θ)) .
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Lemma 1 then gives formula (12).

References

Barnard, G., 1980. Pivotal inference and the Bayesian controversy. Trabajos de Estadistica

Y de Investigacion Operativa 31, 295�318.

Barnard, G. A., 1995. Pivotal models and the �ducial argument. International Statistical

Review / Revue Internationale de Statistique 63, 309�323.

Barnard, G. A., 1996. Corrigenda: Pivotal models and the �ducial argument. International

Statistical Review / Revue Internationale de Statistique 64.

Berger, J.O., B. J. S. D., 2009. The formal de�nition of reference priors. Annals of

Statistics 37 (2), 905�938.

Berger, J. O., 1985. Statistical Decision Theory and Bayesian Analysis. Springer, New York.

Berger, J. O., Sellke, T., 1987. Testing a point null hypothesis: The irreconcilability of p

values and evidence. Journal of the American Statistical Association 82, 112�122.

Bickel, D. R., 2009. A frequentist framework of inductive reasoning. Technical Report,

Ottawa Institute of Systems Biology, arXiv:math.ST/0602377.

Bickel, D. R., 2011a. Blending Bayesian and frequentist methods according to the precision

of prior information with an application to hypothesis testing. Technical Report, Ottawa

Institute of Systems Biology, arXiv:1107.2353.

Bickel, D. R., 2011b. Estimating the null distribution to adjust observed con�dence levels

for genome-scale screening. Biometrics 67, 363�370.

36

http://biostats.bepress.com/cobra/art95



Bickel, D. R., 2012a. Coherent frequentism: A decision theory based on con�dence sets.

Communications in Statistics - Theory and Methods 41, 1478�1496.

Bickel, D. R., 2012b. Controlling the degree of caution in statistical inference with the

Bayesian and frequentist approaches as opposite extremes. Electron. J. Statist. 6,

686�709.

Bickel, D. R., 2012c. Empirical Bayes interval estimates that are conditionally equal to

unadjusted con�dence intervals or to default prior credibility intervals. Statistical

Applications in Genetics and Molecular Biology 11 (3), art. 7.

Bickel, D. R., 2012d. Game-theoretic probability combination with applications to

resolving con�icts between statistical methods. International Journal of Approximate

Reasoning 53, 880�891.

Bickel, D. R., 2012e. The strength of statistical evidence for composite hypotheses:

Inference to the best explanation. Statistica Sinica 22, 1147�1198.

Birnbaum, A., 1961. Con�dence curves: An omnibus technique for estimation and testing

statistical hypotheses. Journal of the American Statistical Association 56, pp. 246�249.

Bityukov, S., Krasnikov, N., Nadarajah, S., Smirnova, V., 2011. Con�dence distributions in

statistical inference. AIP Conference Proceedings 1305, 346�353.

Blaker, H., 2000. Con�dence curves and improved exact con�dence intervals for discrete

distributions. Canadian Journal Of Statistics 28 (4), 783�798.

Box, G. E. P., Tiao, G. C., 1992. Bayesian Inference in Statistical Analysis.

Wiley-Interscience.

37

Hosted by The Berkeley Electronic Press



Claeskens, G., Hjort, N. L., 2008. Model Selection and Model Averaging. Cambridge

University Press, Cambridge.

Cox, D. R., 1958. Some problems connected with statistical inference. The Annals of

Mathematical Statistics 29, 357�372.

Cox, D. R., 2006. Principles of Statistical Inference. Cambridge University Press,

Cambridge.

Dawid, A. P., Stone, M., 1982. The functional-model basis of �ducial inference (with

discussion). The Annals of Statistics 10, 1054�1074.

Dempster, A. P., 2008. The dempster-shafer calculus for statisticians. International Journal

of Approximate Reasoning 48, 365�377.

Eaton, M., Sudderth, W. D., 2010. Invariance of posterior distributions under

reparametrization. Sankhya A 72 (1996), 101�118.

Efron, B., 1993. Bayes and likelihood calculations from con�dence intervals. Biometrika 80,

3�26.

Efron, B., 1998. R. A. Fisher in the 21st century, invited paper presented at the 1996 R. A.

Fisher lecture. Statistical Science 13, 95�114.

Fisher, R., 1935. The �ducial argument in statistical inference. Annals of Human Genetics

6, 391�398.

Fisher, R. A., 1925. Statistical Methods for Research Workers. Oliver and Boyd, London.

Fisher, R. A., 1973. Statistical Methods and Scienti�c Inference. Hafner Press, New York.

38

http://biostats.bepress.com/cobra/art95



Fraser, D. A. S., 1968. The Structure of Inference. John Wiley, New York.

Fraser, D. A. S., 1991. Statistical inference: likelihood to signi�cance. Journal of the

American Statistical Association 86, 258�265.

Fraser, D. A. S., 1996. Some remarks on pivotal models and the �ducial argument in

relation to structural models. International Statistical Review / Revue Internationale de

Statistique 64, 231�236.

Fraser, D. A. S., 2008. Fiducial inference. In: Durlauf, S. N., Blume, L. E. (Eds.), The New

Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke.

Gibson, G. J., Streftaris, G., Zachary, S., 2011. Generalised data augmentation and

posterior inferences. Journal of Statistical Planning and Inference 141, 156�171.

Goldstein, M., 1997. Prior inferences for posterior judgements. Structures and Norms in

Science, 55�71.

Gómez-Villegas, M. a., Sanz, L., Jun. 1998. Reconciling Bayesian and frequentist evidence

in the point null testing problem. Test 7 (1), 207�216.

Hacking, I., 1967. Slightly more realistic personal probability. Decision, Probability, and

Utility.

Hannig, J., 2009. On generalized �ducial inference. Statistica Sinica 19, 491�544.

Hannig, J., Iyer, H., Patterson, P., 2006. Fiducial generalized con�dence intervals. Journal

of the American Statistical Association 101, 254�269.

Helland, I. S., 2004. Statistical inference under symmetry. International Statistical Review

72, 409�422.

39

Hosted by The Berkeley Electronic Press



Helland, I. S., 2009. Steps Towards a Uni�ed Basis for Scienti�c Models and Methods.

World Scienti�c Publishing Company, Singapore.

Hwang, J. T., Casella, G., Robert, C., Wells, M. T., Farrell, R. H., 1992. Estimation of

accuracy in testing. The Annals of Statistics 20, 490�509.

Je�reys, H., 1998. Theory of Probability. Oxford University Press, London.

Kim, D., Lindsay, B. G., 2011. Using con�dence distribution sampling to visualize

con�dence sets. Statistica Sinica 21 (2), 923�948.

Lad, F., 1996. Operational Subjective Statistical Methods: A Mathematical, Philosophical,

and Historical Introduction. Wiley-Interscience.

McCullagh, P., 2002. What is a statistical model? (with discussion). The Annals of

Statistics 30, 1225�1310.

Montazeri, Z., Yanofsky, C. M., Bickel, D. R., 2010. Shrinkage estimation of e�ect sizes as

an alternative to hypothesis testing followed by estimation in high-dimensional biology:

Applications to di�erential gene expression. Statistical Applications in Genetics and

Molecular Biology 9, 23.

Morgenthaler, S., Staudte, R. G., 2005. Conditionally optimal weights of evidence. Acta

Mathematicae Applicatae Sinica, English Series 21 (2), 247�256.

Paris, J. B., 1994. The Uncertain Reasoner's Companion: A Mathematical Perspective.

Cambridge University Press, New York.

Polansky, A. M., 2007. Observed Con�dence Levels: Theory and Application. Chapman

and Hall, New York.

40

http://biostats.bepress.com/cobra/art95



Polanyi, M., 1962. Personal Knowledge: Towards a Post-critical Philosophy. University of

Chicago Press, Chicago.

Royall, R., 1997. Statistical Evidence: A Likelihood Paradigm. CRC Press, New York.

Savage, L. J., 1954. The Foundations of Statistics. John Wiley and Sons, New York.

Schweder, T., Hjort, N. L., 2002. Con�dence and likelihood. Scandinavian Journal of

Statistics 29, 309�332.

Singh, K., Xie, M., Strawderman, W. E., 2005. Combining information from independent

sources through con�dence distributions. Annals of Statistics 33, 159�183.

Singh, K., Xie, M., Strawderman, W. E., 2007. Con�dence distribution (CD) � distribution

estimator of a parameter. IMS Lecture Notes Monograph Series 2007 54, 132�150.

Stein, C., 1959. An example of wide discrepancy between �ducial and con�dence intervals.

The Annals of Mathematical Statistics 30, 877�880.

Tian, L., Wang, R., Cai, T., Wei, L.-J., 2011. The highest con�dence density region and its

usage for joint inferences about constrained parameters. Biometrics 67 (2), 604�10.

van Berkum, E., Linssen, H., Overdijk, D., 1996. Inference rules and inferential

distributions. Journal of Statistical Planning and Inference 49, 305�317.

von Neumann, J., Morgenstern, O., 1953. Theory of Games and Economic Behavior.

Princeton University Press, Princeton.

Wald, A., 1961. Statistical Decision Functions. John Wiley and Sons, New York.

41

Hosted by The Berkeley Electronic Press



Wang, C., Hannig, J., Iyer, H. K., 2012. Fiducial prediction intervals. Journal of Statistical

Planning and Inference 142 (7), 1980�1990.

Welch, B. L., 1947. The generalization of student's problem when several di�erent

population variances are involved. Biometrika 34, 28�35.

Wilkinson, G. N., 1977. On resolving the controversy in statistical inference (with

discussion). Journal of the Royal Statistical Society B 39, 119�171.

Xiong, S., Mu, W., 2009. On construction of asymptotically correct con�dence intervals.

Journal of Statistical Planning and Inference 139 (4), 1394�1404.

Yates, B. F., 1939. An apparent inconsistency arising from tests of signi�cance based on

�ducial distributions of unknown parameters. Proc. Camb. Phil. Soc. 5, 579�591.

Zhao, S., Xu, X., Ding, X., 2012. Fiducial inference under nonparametric situations.

Journal of Statistical Planning and Inference.

42

http://biostats.bepress.com/cobra/art95


