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Causal Mediation in a Survival Setting with
Time-Dependent Mediators

Wenjing Zheng and Mark J. van der Laan

Abstract

The effect of an expsore on an outcome of interest is often mediated by inter-
mediate variables. The goal of causal mediation analysis is to evaluate the role
of these intermediate variables (mediators) in the causal effect of the exposure on
the outcome. In this paper, we consider causal mediation of a baseline exposure
on a survival (or time-to-event) outcome, when the mediator is time-dependent.
The challenge in this setting lies in that the event process takes places jointly with
the mediator process; in particular, the length of the mediator history depends on
the survival time. As a result, we argue that the definition of natural effects in this
setting should be based on only blocking those paths from treatment to mediators
that are not through the survival history. We propose to use a stochastic inter-
ventions (SI) perspective, introduced by Didelez, Dawid, and Geneletti (2006), to
formulate the causal mediation analysis problem in this setting. Under this for-
mulation, the mediators are regarded as intervention variables, onto which a given
counterfactual distribution is enforced. The natural direct and indirect effects can
be defined analogously to the ideas in Pearl (2001). In particular, they also allow
for a total effect decomposition and an interpretation of the natural direct effect
as a weighted average of controlled direct effects. The statistical parameters that
should arise are defined nonparametrically; therefore, they have meaningful inter-
pretations, independent of the causal formulations and assumptions. We present
a general semiparametric inference framework for these parameters. Using their
efficient influence functions, we develop semiparametric efficient and robust tar-
geted substitution-based (TMLE) and estimating-equation-based (A-IPTW) esti-
mators. An IPTW estimator and g-computation estimator will also be presented.



1 Introduction

An exposure often acts on an outcome of interest directly, and/or indirectly through the

mediation of some intermediate variables. Identifying and quantifying these two types

of effects contribute to further understanding of the underlying causal mechanism. Much

of the existing literature on causal mediation is focused on applications in non-survival

settings. Causal mediation of a treatment effect on a survival outcome, by contrast, has

received relatively fewer attention. In this work, we study mediation analysis in a survival

setting with baseline treatment and time-dependent mediator. More specifically, consider a

study where covariates and treatment are measured at baseline, and at each follow up visit,

one measures the value of an intermediate variable of interest (mediator) and whether

death or right censoring (e.g. lost to follow up, end of study) has occurred. A subject’s

observations end after death or right censoring. Suppose we are interested in the effect of

the treatment on the time till death (failure time), and the mediator lies on the causal path-

way between these two — the risk of one dying at a given time depends on the mediator

history, which is also affected by the treatment. Therefore, the treatment can act on the

failure time directly, and/or indirectly through its effect on the mediator. The goal of me-

diation analysis is to quantify these two types of treatment effects on the failure time. The

challenge in this setting lies in that the outcome of interest is a process (the event process)

that happens jointly with the mediator process.

One way to assess the direct effect of the treatment on failure time is to compare the

distributions of the failure times under different treatments regimens while the mediators

are fixed to some common pre-specified values. This is known as the controlled direct

effect (e.g. Pearl (2001)). Its analysis is very similar to that of a time-dependent determin-

istic treatment in a non-mediation setting; we refer the reader to existing literature on this

topic (e.g. Robins (1997), Hernan, Brumback, and Robins (2000), Stitelman, Gruttola,

Wester, and van der Laan (2011)). Controlled direct effects are of interest if the treatment

effect under one particular mediator value constitutes a meaningful scientific question. If

that is not the case, one may ask a different direct effect question: what would be the effect

of treatment on failure time if the treatment had no effect on the mediator (i.e. the mediator

takes its value as if treatment were absent)? One way to rigorously formulate this question

is using the so-called natural direct effect parameter (Robins and Greenland (1992), Pearl

(2001)). The natural direct effect has a complementary natural indirect effect; together

they provide a decomposition of the overall effect of the treatment on the outcome. In this

paper, we focus on the natural direct and indirect effects.

In the case of a time-independent mediator that is measured before the onset of the

event process (and censoring process), the definition of natural effects and their identifia-

bility (e.g. Lange and Hansen (2011), Tchetgen Tchetgen (2011)) can be extended from
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the formulations in non-longitudinal setting (e.g. Robins and Greenland (1992), Pearl

(2001), Robins (2003), Petersen, Sinisi, and van der Laan (2006), Imai, Keele, and Ya-

mamoto (2010)). For inference of these parameters, the use of additive hazard models for

the outcome and linear models for the mediator are proposed in Lange and Hansen (2011);

the use of accelerated failure time and proportional hazard models are studied in Tein and

MacKinnon (2003) and VanderWeele (2011); robust estimators for the natural direct and

indirect effects under proportional hazards models and additive hazards models, as well as

sensitivity analysis techniques for assessing the impact of the violation of the mediator’s

ignorability assumption, are developed in Tchetgen Tchetgen (2011). A more complex

variation of this setting is when there is a confounder (the recanting witness covariate,

Avin, Shpitser, and Pearl (2005)) of the mediator–outcome relation that is affected by the

treatment of interest. Robins and Richardson (2010) show that with additional conditions

regarding independence (or deterministic dependence) of the counterfactual recanting wit-

ness under various treatment levels, the resulting mediation parameters can be identified.

Tchetgen Tchetgen and VanderWeele (2012) show that these additional conditions can be

avoided in some special cases of binary recanting witness, or under additional parametric

assumptions on the mediator–recanting witness relation.

In the case of a time-dependent mediator, the probability of the mediator process hav-

ing a given non-degenerate length would depend on the failure time. This interdependency

between the event process and the mediator process poses a challenge when extending the

results from the time-independent mediator setting. Firstly, the event history affects both

the current mediator (taking a non-degenerate value) and the current event indicator, but

it is part of the outcome of interest and thus is not a recanting witness covariate. More

specifically, the treatment affects a current mediator both directly and indirectly through

its effect on the event history. In asking what is the effect of a given treatment level on

the event process not mediated by the mediator process, one must specify how the paths

from treatment to mediator should be blocked. If one blocks all paths from treatment

to mediators (both the direct paths of treatment to mediator and the paths through event

history), then the parameters defined would be a direct generalization of the definition of

mediation formula and natural effects in time-independent mediator settings (by regarding

event history as a recanting witness). However, this generalization would yield parame-

ters that are not interpretable for the purpose of effect mediation in this survival setting,

since the relation of treatment and event process (outcome of interest) is also altered; we

elaborate this further in appendix A4.1. In this light, we argue that, for the current survival

setting, the definition of mediation formula and natural effects should be based on block-

ing only those paths from the treatment to mediator that are not through survival history

(these would be an extension of the path-specific effects discussed in Pearl (2001), Avin

et al. (2005), Robins and Richardson (2010)). The direct effect question these parameters
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would address is: what is the effect of treatment on the survival time, if the treatment had

no effect on the mediator process other than through survival history?

Having specified the effects of interest, the second challenge arises in formulating

these as parameters in a causal framework. Under the traditional definition of mediation

parameters in a non-longitudinal setting (e.g. Robins and Greenland (1992), Pearl (2001),

Avin et al. (2005), Robins and Richardson (2010)), the mediator is regarded as interme-

diate counterfactual outcome. In extending this definition to our effects of interest in the

current setting, the time-varying mediators become intermediate counterfactual outcomes

under a different treatment level than that of their parent counterfactual survival history.

Consequently, the identifiability conditions of the resulting parameters would impose re-

strictions on the event indicators — conditions that we find too strong for the purpose of

a survival study (this causal formulation is elaborated in detail in appendix A4.2, the re-

sulting statistical parameters are the same as those in the main text). As an alternative,

we propose to adopt a stochastic interventions (SI) perspective to causal mediation, intro-

duced by Didelez, Dawid, and Geneletti (2006). Under this formulation, the mediators

are regarded as intervention variables, onto which a given counterfactual distribution is

enforced. The natural effects can be defined analogously to the ideas in Pearl (2001) and

Avin et al. (2005). In particular, they also allow for a total effect decomposition and an

interpretation of the natural direct effect as a weighted average of controlled direct ef-

fects. Importantly, however, one should note that even though these SI-based parameters

and their non-SI-based counterparts in appendix A4.2 all identify to the same statistical

parameters, they are formally different causal parameters defined under different formula-

tions (but aim to answer the same type of mediation questions). For concreteness, we will

use the probability of surviving beyond a given time as the effect measure of interest.

The statistical parameters that should arise have meaningful interpretations, regard-

less of the causal formulations and assumptions; we develop a general semiparametric

inference framework for these parameters. More specifically, we will derive the efficient

influence functions under a locally saturated semiparametric model, and establish their

robustness properties. The variances of these functions provide local efficiency bounds,

and their robustness properties give information on the types of model mis-specifications

that would still allow for unbiased estimation of the parameters. These efficient influence

functions can be used to construct robust and locally semiparametric efficient estimators

(e.g. an estimating-equation-based A-IPTW estimator, or a substitution-based TMLE es-

timator).

This paper proceeds as follows. We begin by considering the case with no right cen-

soring (section 2), as it allows us to focus on the mediator–outcome relation; we then

generalize the results to the case with right censoring (section 3). In section 2.1, we de-

fine the causal parameters of interest and establish their identifiability conditions. Sep-
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arately, non-SI based formulations are discussed in appendix A4. Section 2.2 concerns

the semiparametric inference of the statistical parameters. The efficient influence curves

are derived in section 2.2.1, and their robustness properties are studied in section 2.2.2.

In section 2.3, we present the g-computation, IPTW, A-IPTW and TMLE estimators for

the natural direct effect; a simulation study (section 2.3.5) is conducted to evaluate their

performances. Similar estimators for the natural indirect effect are given in appendix A3.

In section 3, we extend the results to the case with right censoring. We will only focus

on the identification and the efficient influence function of the mediation formula. The

corresponding results for the natural direct and indirect effects can be derived from these

by following the steps in section 2. The paper concludes with a discussion section.

2 No right censoring.

For simplicity, we begin by considering the case when there is no right censoring (i.e.

failure times are always observed). Firstly, we establish the definition of a counterfac-

tual failure time pertinent to mediation analysis in the present setting, and determine the

identifiability conditions for the parameters of interest. Thereafter, we derive the efficient

influence functions of the parameters under a locally saturated semiparametric model, and

present the g-computation, IPTW, A-IPTW and TMLE estimators for these parameters.

Generalization of these results to account for right censoring are addressed in section 3.

2.1 Data and parameters of interest

Consider a study where each individual’s baseline covariates W ∈W and a baseline treat-

ment A ∈A are measured at the beginning of the study (t = 0). At each of the subsequent

follow-up visit t ∈ {1, . . . ,τ}, one measures the value of the mediator Zt ∈Z , and whether

death (or the event of interest) has occurred. Let T denote the visit where death was first

reported. We refer to T as the failure time. In this section, we assume that T is always ob-

served. The observation on an individual is given by O = (W,A,(Z1, . . . ,ZT ),T ), since the

records end after death (or event of interest). Let Nt ≡ I(T ≤ t) be a process that jumps to

1 after death, and let dNt ≡ I(T = t) denote the event indicator. The data structure can be

represented as O= (W,A,(Zt ,dNt : t = 1, . . . ,τ)), where for t > T , Zt is given a degenerate

value that is outside of Z . Let P0 denote the probability distribution of O. The observed

data consists of n i.i.d observations of O∼ P0.

From here on, for any 1 ≤ t ≤ τ and a time-dependent variable V , we will use the

boldface Vt to denote the vector (V1, . . . ,Vt), use V j≥t to denote the vector (Vt , . . . ,Vτ).
When referring to the entire vector Vτ , we will also use the shorthand V. For any 1≤ s≤
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t ≤ τ , Vt
s will denote (Vs, . . . ,Vt). Degenerate indices such as V−1 or Vs−1

s all signify the

empty set.

The following Non-Parametric Structural Equations Model (NPSEM, Pearl (2009))

encodes the time-ordering assumption on the variables:

W = fW (UW )

A = fA(W,UA)

Zt = fZt
(W,A,Zt−1,Nt−1,UZt

) for t = 1, . . . ,τ

dNt = fdNt
(W,A,Zt ,Nt−1,UdNt

) for t = 1, . . . ,τ. (1)

U ≡ (UW ,UA,(UZt
,UdNt

: t)) is the set of unobserved exogenous variables, X ≡ (W,A,Z,dN)
is the set of endogenous variables, and { fX j

: j} are unspecified deterministic functions.

Counterfactuals under the Rubin Causal Model (e.g. Rubin (1978), Rosenbaum and Rubin

(1983) and Holland (1986)) can be represented as restrictions on the input of the functions

fX j
. For instance, given a and z, dNt(a,z) ≡ fdNt

(W,A = a,Zt = zt ,Nt−1(a,z),UdNt
) cor-

responds to the event process that the individual would have followed if, all else equal,

he/she had treatment A = a and mediator process Z = z. More rigorously, such a counter-

factual process ensue from a hypothetical experiment that first measures the pre-treatment

covariates W , then sets the treatment to A = a, and, at each subsequent time, sets the

mediator to take value Zt = zt and records the resulting event indicator.
The observed data structure is generated from (1) without any interventions; in other

words, O = (W,A,Z(A),dN(A)). The likelihood of O ∼ P0 can be factored according to
the time-ordering:

p0(O) = p0(W )p0(A |W )
τ

∏
t=1

p0(Zt |W,A,Zt−1,Nt−1)p0(dNt |W,A,Zt ,Nt−1). (2)

Recall that if the event occurred at T , then for all t > T , Zt are assigned a degenerate

value with probability 1, and dNt = 0 with probability 1. We adopt the notations gA,0(A |
W ) ≡ p0(A |W ), gZ,0(Zt |W,A,Zt−1,Nt−1) ≡ p0(Zt |W,A,Zt−1,Nt−1), g0 ≡ (gA,0,gZ,0),
QW,0(W ) ≡ p0(W ), QdN,0(t | W,A,Zt ,Nt−1) ≡ p0(dNt = 1 | W,A,Zt ,Nt−1), and Q0 ≡
(QW,0,QdN,0).

2.1.1 Counterfactual failure time

As argued in the introduction, since the treatment affects the mediators both directly and

through its effect on the survival history of interest, the mediation parameters should be

defined based on blocking only those paths from treatment to mediator that are not through

the survival history (see appendix A4 for more details).
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To define the pertinent counterfactual failure time, we propose to use a stochastic

interventions (SI) perspective introduced by Didelez et al. (2006). Stochastic interven-

tions (a.k.a stochastic policies, random interventions, randomized dynamic strategies; e.g.

Dawid and Didelez (2010), Pearl (2009), Tian (2008), Robins and Richardson (2010), Diaz

and van der Laan (2011)) are generalizations of the traditional static interventions or dy-

namic regimes where, instead of assigning a deterministic value, one assigns a probability

distribution to an intervention variable. Using the non-longitudinal setting as background,

Didelez et al. (2006) illustrate how the notions of various direct and indirect effects can

be formulated as sequential treatment problems by regarding the mediator as an interven-

tion variable (receiving either a deterministic or stochastic intervention). Though their

approach was based on a non-counterfactual causal framework (e.g. Dawid and Didelez

(2010)), the essence of their idea remains the same, and is easily generalizable to survival

settings.
Let a and a′ be two possible treatment levels. Let Zt(a

′) and dNt(a
′) denote the coun-

terfactual mediator and event indicator under an intervention which sets A = a′. Let gZ(a′)

denote the conditional distribution of Zt(a
′), i.e., gZ(a′)(zt | w,zt−1,nt−1)≡ p(Zt(a

′) = zt |

W = w,Zt−1(a
′) = zt−1,Nt−1(a

′) = nt−1). Consider an intervention which imposes the
following conditional distribution ga,a′ on (A,Z1, . . . ,Zτ):

ga,a′(A = a |W )≡ 1

ga,a′(Zt |W,A,Zt−1,Nt−1)≡ gZ(a′)(Zt |W,Zt−1,Nt−1). (3)

The resulting counterfactual event process is dNt(a,Z(ga,a′)), denote the resulting failure

time by T (a,Z(ga,a′)). This experiment is encoded as:

W = fW (UW )

A = a

Zt(ga,a′) = f a′

Zt
(W,A = a′,Zt−1(ga,a′),Nt−1(a,Z(ga,a′)),U

a′

Zt
), for t = 1, . . . ,τ

dNt(a,Z(ga,a′)) = fdNt
(W,A = a,Zt(ga,a′),Nt−1(a,Z(ga,a′)),UdNt

), for t = 1, . . . ,τ. (4)

In words, this experiment first sets the baseline treatment to A = a. Then, at each visit
t, for a given realization of (W,A = a,Zt−1(ga,a′),Nt−1(a,Z(ga,a′))) = (w,a,zt−1,nt−1), it

sets Zt(ga,a′) to be distributed according to

P(Zt(ga,a′) = · |W = w,A = a,Zt−1(ga,a′) = zt−1,Nt−1(a,Z(ga,a′)) = nt−1)≡ gZ(a′)(· | w,zt−1,nt−1)

(recall that if death has already occurred, i.e. nt−1 = 1, then gZ(a′) will assign the degener-

ate value with probability 1); it then measures the response dNt(a,Z(ga,a′)) under realized

history (W = w,A = a,Zt(ga,a′) = zt ,Nt−1(a,Z(ga,a′)) = nt−1). The joint distribution of

(

U ≡ (UW ,UA,UZ ≡ (UZt : t),UdN ≡ (UdNt
: t)) ,Ug

Z ≡ {(U
a′

Zt
: t) : a′ ∈A }

)

,
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together with the structural equations fX ≡ ( fW , fA,( fZt
: t),( fdNt

: t),{( f a′

Zt
: t) : a′ ∈A }),

define a full data random variable (U,Ug
Z ) ∼ P(U,U

g
Z )

on an individual. Counterfactual

variables that arise are subset of this full random variable.

Note that each Zt(ga,a′) is an intervention variable which, given a realized history,

follows the specified intervention distribution gZ(a′)(· | w,zt−1,nt−1); this is different from

a counterfactual response variable Zt(a
′) under intervention A = a′. For the former, the

event history affecting Zt(ga,a′) is Nt−1(a,Z(ga,a′)) under treatment A = a; for the latter,

the event history affecting Zt(a
′) is Nt−1(a

′) under treatment A = a′. In appendix A4.1, we

study the experiment defined using the latter.

As mentioned earlier, even if one can carry out an intervention on the mediator (sepa-

rately from the intervened treatment), the SI formulation formally requires the external

specification of the function gZ(a′)(zt | w,zt−1,nt−1), which is the conditional distribu-

tion of the counterfactual variable Zt(a
′). If this conditional distribution is not known, it

needs to be ascertained using a separate controlled experiment which sets A = a′ through-

out (1). Therefore, aside from causal assumptions needed to identify the distribution

of dNt(a,Z(ga,a′)) (for given gZ(a′)) in the main experiment, additional assumptions are

needed to identify gZ(a′) as a function of the data generating distribution (see next section).

2.1.2 Mediation formula and natural direct and indirect effects

For concreteness, suppose one is interested in the effect of a binary treatment on the

probability of the patient surviving beyond a specific time t0. We refer to the difference

P(T (1,Z(g1,1)) > t0)−P(T (1,Z(g1,0)) > t0) as the natural indirect effect (NIE) and the

difference P(T (1,Z(g1,0))> t0)−P(T (0,Z(g0,0))> t0) as the natural direct effect (NDE).

The identification and estimation of these two effects can be approached through the so-

called mediation formula (Pearl (2011)):

Ψa,a′(P(U,U
g
Z )
)≡ P(T (a,Z(ga,a′))> t0). (5)

It is important to note that while the definition of these parameters are analogous to

those in Robins and Greenland (1992), Pearl (2001), Pearl (2011) and Avin et al. (2005),

they are ultimately not the same definitions since that the mediator variables are concep-

tualized differently. In this respect, the parameters defined here aim to provide alternative

formulations to questions that arise in mediation analysis in the current survival setting.

The identifiability of these parameters is a consequence of established results regard-

ing stochastic interventions (e.g. Dawid and Didelez (2010), Pearl (2009), Robins and

Richardson (2010)).

Theorem 1. Suppose the following positivity assumptions regarding the data generating

distribution P0 hold:

7
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P1. There exists 0 < δA < 1 such that gA,0(A |W )> δA, a.e. over A ;

P2. There exists 0 < δZ < 1 such that inf
t∈{1,...,t0}

gZ,0(Zt |W,A = a,Zt−1,Nt−1 = 0)> δZ ,

a.e. over Z ;

P3. There exists 0 < δN < 1 such that inf
t∈{1,...,t0}

1−QdN,0(t |W,A = a′,Zt ,Nt−1 = 0) >

δN .

Let ga,a′ be an intervention distribution on (A,Z) as defined in (3). Let T (a,Z(ga,a′)) be

the corresponding failure time under experiment (4). Suppose the following randomization

assumptions hold for all z:

I1. (dN(a′),Z(a′))⊥ A, given W.

I2. dN(a,z)⊥ A, given W;

I3. dN j≥t(a,z)⊥ Zt , given W,A = a,Zt−1 = zt−1,Nt−1;

I4. dN j≥t(a,z)⊥ Zt(ga,a′), given W, A = a, Zt−1(ga,a′) = zt−1, Nt−1(a,Z(ga,a′));

then, (5) can be expressed as

Ψa,a′(P0)

≡ ∑
w∈W

∑
zt0
∈Z

t0

QW,0(w)
t0

∏
t=1

{

gZ,0

(

zt | w,A = a′,zt−1,Nt−1 = 0
)(

1−QdN,0(t | w,A = a,zt ,Nt−1 = 0)
)

}

,

(6)

where Z t0 ≡∏
t0
1 Z is the outcome space of the vector Zt0 .

Proof. See Appendix A2

Note that when a = a′, (6) indeed equals the g-computation formula for the parameter

P(T (a) > t0). This ensures that the g-computation formula of P(T (1) > t0)−P(T (0) >
t0) decomposes into the g-computation formulas for NIE (9) and NDE (8) below. The

parameter (6) also equals the g-computation formula for path-specific effects discussed in

Avin et al. (2005) and Robins and Richardson (2010). In fact, the non-SI based parameters

we consider in appendix A4.2 would have g-computation formulas (6), (8) and (9).

In words: Conditions I1 and I2 require randomization of the baseline treatment. Con-

dition I3 requires the mediators Z are sequentially randomized in the observed data. It is

important to note that, unlike treatment assignment, mediator variables may not always

be amenable to randomization in practice. Condition I4 requires that Z are sequentially

8

http://biostats.bepress.com/ucbbiostat/paper295



randomized in the hypothetical experiment ga,a′; in other words, each variable Zt under

distribution given by gZ(a′) needs to be conditionally independent of future potential out-

comes.

The parameter (5) can also be identified under conditional independence conditions

on the joint distribution of (U,Ug): (UZ,UdN) ⊥ UA given UW ; (UdN) j≥t ⊥ UZt
given

UW ,UA,(UZ)t−1,(UdN)t−1; (UdN) j≥t ⊥Ua′

Zt
, given UW , UA, (UZ)

a′

t−1, (UdN)t−1.

For the rest of this paper, we will suppress the outcome spaces in the subscript for
the sums. It should be understood that ∑w means ∑w∈W and ∑zt0

means ∑zt0
∈Z t0 , unless

otherwise noted. From here onward, we will adopt the notations

GZ,0(Zt |W,A))≡
t

∏
t ′=1

gZ,0 (Zt ′ |W,A,Zt ′−1,Nt ′−1 = 0)

Q̄N,0(t |W,A,Zt)≡
t

∏
t ′=1

1−QdN,0(t
′ |W,A,Zt ′ ,Nt ′−1 = 0). (7)

Natural direct and indirect effects are functions of the mediation formula, and hence
can be identified under the same conditions. More specifically, if the assumptions in theo-
rem 1 hold for a,a′ ∈{0,1}, then the natural direct effect ΨNDE(P(U,U

g
Z )
)≡P(T (1,Z(g1,0))>

t0)−P(T (0,Z(g0,0))> t0) can be expressed as

ΨNDE(P0)

≡∑
w

∑
zt0

QW,0(w)

{

t0

∏
t=1

gZ,0

(

zt | w,A = 0,zt−1,Nt−1 = 0
)(

1−QdN,0(t | w,A = 1,zt ,Nt−1 = 0)
)

−
t0

∏
t=1

gZ,0

(

zt | w,A = 0,zt−1,Nt−1 = 0
)(

1−QdN,0(t | w,A = 0,zt ,Nt−1 = 0)
)

}

= EQW,0

{

∑
zt0

GZ,0(zt0 |W,A = 0)
(

Q̄N,0(t0 |W,A = 1,zt0)− Q̄N,0(t0 |W,A = 0,zt0)
)

}

, (8)

and the natural indirect effect ΨNIE(P(U,U
g
Z )
)≡ P(T (1,Z(g1,1))> t0)−P(T (1,Z(g1,0))>

t0) can be expressed as

ΨNIE(P0)

≡∑
w

∑
zt0

QW,0(w)

{

t0

∏
t=1

gZ,0

(

zt | w,A = 1,zt−1,Nt−1 = 0
)(

1−QdN,0(t | w,A = 1,zt ,Nt−1 = 0)
)

−
t0

∏
t=1

gZ,0

(

zt | w,A = 0,zt−1,Nt−1 = 0
)(

1−QdN,0(t | w,A = 1,zt ,Nt−1 = 0)
)

}

= EQW,0

{

∑
zt0

(

GZ,0(zt0 |W,A = 1)−GZ,0(zt0 |W,A = 0)
)

Q̄N,0(t0 |W,A = 1,zt0)

}

, (9)

9
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Note that under positivity and conditions I1-I3 alone, the statistical parameter (8)
equals the population mean of a weighted average of controlled direct effects (CDE):

EW

(

∏
t0
t=1 gZ(0)(zt |W,zt−1,nt−1 = 0)

)

(P(T (1,z)> t0 |W )−P(T (0,z)> t0 |W )). With con-

dition I4, this weighted CDE equals the natural direct effect P(T (1,Z(g1,0))> t0)−P(T (0,Z(g0,0))>
t0). Moreover, the total effect can be decomposed as the sum of two effects:

P(T (1)> t0)−P(T (0)> t0)

= (P(T (1,Z(g1,1))> t0)−P(T (1,Z(g1,0))> t0))

+(P(T (1,Z(g1,0))> t0)−P(T (0,Z(g0,0))> t0)) .

Now that we have identified the statistical parameters of interest, the remaining of this

section will concern their inference.

2.2 Semiparametric inference

The statistical parameters of interest (6), (8) and (9) have meaningful interpretations under

positivity and time-ordering assumptions alone, regardless of the causal formulations and

assumptions. In this section, we develop a general semiparametric inference framework

for these parameters. In particular, we derive the Efficient Influence Functions (EIF) of (6),

(8) and (9) under a (locally saturated) semiparametric model, and establish their robust-

ness properties. For a given pathwise-differentiable parameter Ψ, under certain regularity

conditions, the variance of the EIF of Ψ is a generalized Cramer-Rao lower bound for the

variances of the influence functions of asymptotically linear estimators of Ψ. Therefore,

the variance of the EIF provides an efficiency bound for the regular and asymptotically

linear (RAL) estimators of Ψ. Moreover, under a locally saturated model, the influence

function of any RAL estimator is in fact the EIF. We refer the reader to Bickel, Klaassen,

Ritov, and Wellner (1997) for general theory of efficient semiparametric inference.

2.2.1 Efficient influence functions

Let M denote a locally saturated semiparametric model containing the true data gener-

ating distribution P0. Let Pn denote the empirical distribution of n i.i.d observations of

O∼ P0. For a function f (O), we will use P f to denote the expectation of f (O) under the

probability distribution P ∈M .

For any P ∈M , the likelihood can be factorized according to the time-ordering. We

adopt for P the analogous notations: gA(A |W ) ≡ p(A |W ), gZ(Zt |W,A,Zt−1,Nt−1) ≡
p(Zt |W,A,Zt−1,Nt−1), g≡ (gA,gZ), QW (W )≡ p(W ), QdN(t |W,A,Zt ,Nt−1)≡ p(dNt =
1 |W,A,Zt ,Nt−1), and Q ≡ (QW ,QdN). This way, P is represented by its components

10
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(g,Q). The shorthand notations GZ(Zt |W,A) and Q̄N(t |W,A,Zt) are defined similarly to

(7).
The mediation formula in (6) can be considered as the following map evaluated at P0:

Ψa,a′ :M → R

P 7→Ψa,a′(P)≡∑
w

∑
zt0

QW (w)GZ(zt0 | w,A = a′)Q̄N(t0 | w,A = a,zt0). (10)

For later convenience, let us refer to each inner expectation with respect to Zt in (10) as
the conditional mediation formula at t:

φZ,a,a′(P)(t;W,Zt−1)

≡∑
z

t0
t

t0

∏
t ′=t

gZ(zt ′ |W,A = a′,Zt−1,z
t ′−1
t ,Nt ′−1 = 0)Q̄N

(

t0 |W,A = a,Zt−1,z
t0
t

)

, for t = 1, . . . , t0,

and φZ,a,a′(P)(t0+1;W,Zt0)≡ Q̄N(t0 |W,A= a,Zt0). Recall that z
t0
t ≡ (zt , . . . ,zt0); the sum

above is taken over the outcome space ∏
t0
t Z of Z

t0
t . Note that Ψa,a′(P)=EQW

(

φZ,a,a′(P)(t = 1;W )
)

,

and φa,a′(P) satisfies the recursive relation

φZ,a,a′(P)(t−1;W,Zt−2) = EgZ,t−1

(

φZ,a,a′(P)(t;W,Zt−1) |W,A = a′,Zt−2,Nt−2 = 0
)

. (11)

In other words, φZ,a,a′(P)(t−1;W,Zt−2) is the conditional expectation of φZ,a,a′(P)(t;W,Zt−1),
conditioned on (W,A = a′,Zt−2,Nt−2 = 0), under the mediator distribution gZ of P.

Similarly, the natural direct effect in (8) and the natural indirect effect in (9) are, re-
spectively, the following maps evaluated at P0:

P 7→ΨNDE(P)

≡∑
w

∑
zt0

QW (w)GZ(zt0 | w,A = 0)
(

Q̄N(t0 | w,A = 1,zt0)− Q̄N(t0 | w,A = 0,zt0)
)

, (12)

and

P 7→ΨNIE(P)

≡∑
w

∑
zt0

QW (w)
(

GZ(zt0 | w,A = 1)−GZ(zt0 | w,A = 0)
)

Q̄N(t0 | w,A = 1,zt0). (13)

We also adopt the definition of the conditional natural direct effect at t:

φZ,NDE(P)(t;W,Zt−1)≡ φZ,1,0(P)(t;W,Zt−1)−φZ,0,0(P)(t;W,Zt−1)

= ∑
z

t0
t

{

t0

∏
t ′=t

gZ(zt ′ |W,A = 0,Zt−1,z
t ′−1
t ,Nt ′−1 = 0)

×
(

Q̄N

(

t0 |W,A = 1,Zt−1,z
t0
t

)

− Q̄N

(

t0 |W,A = 0,Zt−1,z
t0
t

)

)

}

, for t = 1, . . . , t0,

and

φZ,NDE(P)(t0 +1;W,Zt0)≡ Q̄N(t0 |W,A = 1,Zt0)− Q̄N(t0 |W,A = 0,Zt0).

11
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Note that ΨNDE(P) = EQW
(φZ,NDE(P)(t = 1;W )), and the analog of the recursive relation

in (11) applies to φZ,NDE(P).
On the other hand, for t = 1, . . . , t0, the conditional natural indirect effect at t is defined

as

φZ,NIE(P)(t;W,A = 1,Zt−1)−φZ,NIE(P)(t;W,A = 0,Zt−1),

where

φZ,NIE(P)(t;W,A,Zt−1)≡ φZ,1,A(P)(t;W,Zt−1)

= ∑
z

t0
t

t0

∏
t ′=t

gZ(zt ′ |W,A,Zt−1,z
t ′−1
t ,Nt ′−1 = 0)Q̄N

(

t0 |W,A = 1,Zt−1,z
t0
t

)

,

and for t = t0+1, we use the notation φZ,NIE(P)(t0+1;W,A,Zt0)≡ Q̄N (t0 |W,A = 1,Zt0).
It follows that ΨNIE(P) = EQW

(φZ,NIE(P)(t;W,A = 1)−φZ,NIE(P)(t;W,A = 0)). Sim-

ilar to the recursive relation in (11), φZ,NIE(P) satisfies φZ,NIE(P)(t − 1;W,A,Zt−2) =
EgZ,t−1

(φZ,NIE(P)(t;W,A,Zt−1) |W,A,Zt−2,Nt−2 = 0)

Theorem 2. Let Ψa,a′ : M → R be defined as in (10). Suppose the following are true for

P ∈M :

P1. There exists 0 < δA < 1 such that gA(A |W )> δA, a.e. over A ;

P2. There exists 0 < δZ < 1 such that inf
t∈{1,...,t0}

gZ(Zt |W,A = a,Zt−1,Nt−1 = 0) > δZ ,

a.e. over Z ;

P3. There exists 0 < δN < 1 such that inf
t∈{1,...,t0}

1−QdN(t |W,A = a′,Zt ,Nt−1 = 0)> δN .

The Efficient Influence Function of Ψa,a′ at P is given by

D∗a,a′(P)(O) =−
t0

∑
t=1

I(Nt−1 = 0)

{

I(A = a)

gA(a |W )

t

∏
t ′=1

gZ(Zt ′ |W,A = a′,Zt ′−1,Nt ′−1 = 0)

gZ(Zt ′ |W,A = a,Zt ′−1,Nt ′−1 = 0)

× ∑
z

t0
t+1

t0

∏
t ′=t+1

gZ(zt ′ |W,A = a′,Zt ,z
t ′−1
t+1 ,Nt ′−1 = 0)

(

1−QdN(t
′ |W,A = a,Zt ,z

t ′

t+1)
)

}

× (dNt −QdN(t |W,A = a,Zt))

+
t0

∑
t=1

I(Nt−1 = 0)

{

I(A = a′)

gA(a′ |W )

(

φZ,a,a′(P)(t +1;W,Zt)−φZ,a,a′(P)(t;W,Zt−1)
)

Q̄N(t−1 |W,A = a′,Zt−1)

}

+φZ,a,a′(P)(t = 1;W )−EQW
(φZ,a,a′(P)(t = 1;W )). (14)

Proof. See appendix A2.
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The EIFs of both the natural direct (12) and indirect (13) effects can be derived from

(14) by a simple application of the delta method. We state them in a corollary without

proof.

Corollary 1. Suppose the conditions P1 – P3 in theorem 2 hold for a,a′ ∈ {0,1}. The
efficient influence function of the natural direct effect (12) is given by

D∗NDE(P)(O) = D∗1,0(P)(O)−D∗0,0(P)(O)

=−
t0

∑
t=1

I(Nt−1 = 0)

{

2A−1

gA(A |W )

t

∏
t ′=1

gZ(Zt ′ |W,A = 0,Zt ′−1,Nt ′−1 = 0)

gZ(Zt ′ |W,A,Zt ′−1,Nt ′−1 = 0)

× ∑
z

t0
t+1

t0

∏
t ′=t+1

gZ(zt ′ |W,A = 0,Zt ,z
t ′−1
t+1 ,Nt ′−1 = 0)

(

1−QdN(t
′ |W,A,Zt ,z

t ′

t+1)
)

}

× (dNt −QdN(t |W,A,Zt))

+
t0

∑
t=1

I(Nt−1 = 0)

{

I(A = 0)

gA(0 |W )

(φZ,NDE(P)(t +1;W,Zt)−φZ,NDE(P)(t;W,Zt−1))

Q̄N(t−1 |W,A = 0,Zt−1)

}

+φZ,NDE(P)(t = 1;W )−EQW
(φZ,NDE(P)(t = 1;W )), (15)

and the efficient influence function of the natural indirect effect (13) is given by

D∗NIE(P)(O) = D∗1,1(P)(O)−D∗1,0(P)(O)

=−
t0

∑
t=1

I(Nt−1 = 0)
I(A = 1)

gA(1 |W )

×

{

∑
z

t0
t+1

(

GZ

(

Zt ,z
t0
t+1 |W,A = 1

)

−GZ

(

Zt ,z
t0
t+1 |W,A = 0

)

GZ (Zt |W,A = 1)

t0

∏
t ′=t+1

1−QdN(t
′ |W,A = 1,Zt ,z

t ′

t+1)

)}

× (dNt −QdN(t |W,A = 1,Zt))

+
t0

∑
t=1

I(Nt−1 = 0)

{

2A−1

gA(A |W )

(φZ,NIE(P)(t +1;W,A,Zt)−φZ,NIE(P)(t;W,A,Zt−1))

Q̄N(t−1 |W,A,Zt−1)

}

+(φZ,NIE(P)(t = 1;W,A = 1)−φZ,NIE(P)(t = 1;W,A = 0))

−EQW
(φZ,NIE(P)(t = 1;W,A = 1)−φZ,NIE(P)(t = 1;W,A = 0)) . (16)

The variances VarP0
(D∗a,a′(P0)), VarP0

(D∗NDE(P0)), and VarP0
(D∗NIE(P0)) are general-

ized Cramer-Rao lower bounds for the asymptotic variances of the RAL estimators of

Ψa,a′(P0), ΨNDE(P0), and ΨNIE(P0), respectively. Moreover, under our model, all RAL

estimators will have their influence function given by the EIFs. Therefore, the asymptotic

behavior of these estimators are governed by the EIFs.
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2.2.2 Robustness of the efficient influence functions

In practice, it is often difficult to estimate the entire distribution P0. In this section, we

study the robustness properties of the EIFs (14), (15) and (16) against certain model mis-

specifications. These will provide insight on the potential robustness that an estimator can

offer. We begin with the robustness properties of D∗a,a′ .

Lemma 1. Let Ψa,a′(P) be as defined in (10); its efficient influence function under M is

D∗a,a′(P), as given in (14).

Suppose for P0 ∈M , conditions P1 – P3 of theorem 2 hold. Then,

P0D∗a,a′(Q,g,Ψa,a′(P0)) = 0

if one of the following holds:

R1. QdN = QdN,0, and φZ,a,a′(P) = φZ,a,a′(P0).

R2. QdN = QdN,0, and gA = gA,0.

R3. (gA,gZ) = (gA,0,gZ,0) and φZ,a,a′(P) = φZ,a,a′(gZ,0,QdN).

Proof. See Appendix A2.

The robustness properties of D∗NDE and D∗NIE can be derived in an analogous manner

as lemma 1, we will omit the proofs here and state the results in this corollary:

Corollary 2. Let ΨNDE(P) be as defined in (12) and ΨNIE(P) be as defined in (13); their

efficient influence functions under M are D∗NDE(P) and D∗NIE(P), as given by (15) and

(16), respectively.

Suppose for P0 ∈M , conditions P1 – P3 of theorem 2 hold for a,a′ ∈ {0,1}. Then,

P0D∗NDE(Q,g,ΨNDE(P0)) = 0

if one of the following holds:

R1. QdN = QdN,0, and φZ,NDE(P) = φZ,NDE(P0),

R2. QdN = QdN,0, and gA = gA,0,

R3. (gA,gZ) = (gA,0,gZ,0) and φZ,NDE(P) = φZ,NDE(gZ,0,QdN);

and

P0D∗NIE(P,g,ΨNIE(P0)) = 0

if one of the following holds:
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R1. QdN = QdN,0, and φZ,NIE(P) = φZ,NIE(P0).

R2. QdN = QdN,0, and gA = gA,0,

R3. (gA,gZ) = (gA,0,gZ,0) and φZ,NIE(P) = φZ,NIE(gZ,0,QdN).

Note that in deriving these robustness properties, conditions R1 in lemma 1 and corol-

lary 2 do not require estimation of the mediator density per se, if one can estimate the true

conditional functionals φZ,−(P0) (φZ,a,a′(P0), φZ,NDE(P0), or φZ,NIE(P0)) using a regression-

based estimator which, at each t, conditions on the history recorded thus far. Similarly, the

derivation of conditions R2 only rely on the recursive property (11) of the conditional func-

tionals φZ,−(P), which can be satisfied by a regression-based estimator. On the other hand,

R3 does require gZ,0 to be correct, and φZ,−(P) to yield the true conditional expectations

over Zt , even though its integrand Q̄N may be mis-specified. These suggest that in applica-

tions where the mediator density is difficult to estimate, using a regression-based estimator

(instead of a substitution-based estimator) of the conditional functionals φZ,−(P0) may be

a viable alternative.

Estimators which satisfy the EIF equations will also inherit their robustness properties.

We will present four estimators in the next section, two of which are robust and locally

efficient.

2.3 Estimators

In this section, we develop the g-computation, IPTW, A-IPTW and TMLE estimators for

the natural direct effect (12); the corresponding estimators for the natural indirect effect

(13) follow very similar steps — we summarize them in appendix A3. The g-computation

and the IPTW (inverse probability-of-treatment weighted) estimators are consistent only

if the estimates of all the relevant components of P0 are consistent. On the other hand,

the A-IPTW (augmented IPTW) and the TMLE (targeted maximum likelihood) estima-

tors satisfy the efficient influence function equation, and hence remain unbiased under the

model mis-specifications described in corollary 2. Under appropriate regularity condi-

tions, they will be consistent and asymptotically linear (e.g. Bickel et al. (1997), van der

Laan and Robins (2003), van der Laan and Rose (2011)). If all the components needed for

evaluation of D∗(P0) are consistently estimated, these estimators will also be efficient.

Let Q̂ denote an estimating procedure for the component Q0 of P0, and Q̂n ≡ Q̂(Pn) de-

note the estimator that results from training Q̂ on the empirical distribution Pn. Similar def-

initions apply to ĝ and ĝn. Use the bar notation ¯̂QN,n(t |W,A,Zt) for the product ∏
t
t ′=1 1−

Q̂dN,n(t
′ |W,A,Zt ′ ,Nt ′−1 = 0), and use the notation ĜZ,n(Zt |W,A) for ∏

t
t ′=1 ĝZ,n(Zt ′ |

W,A,Zt ′−1,Nt ′−1 = 0). An estimator φ̂Z,NDE,n(·) of φZ,NDE(gZ,0, ·) maps an estimator

15
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Q̂dN,n of QdN,0 to an estimator φ̂Z,NDE,n(Q̂dN,n) of φZ,NDE(gZ,0,QdN,0). This estimating
procedure can be substitution- or regression-based. For a substitution-based estimator,

φ̂Z,NDE,n(Q̂dN,n)≡ φZ,NDE(ĝZ,n, Q̂dN,n). For a regression-based estimator, φ̂Z,NDE,n(Q̂dN,n)(t;W,Zt−1)
regresses the difference

(

¯̂QN,n(t0 |W,A = 1,zt0)−
¯̂QN,n(t0 |W,A = 0,zt0)

)

on (W,Zt−1) among observations with A = 0 that haven’t failed by time t−1. When Zt is

high-dimensional, a regression-based φ̂Z,NDE,n may be easier to implement.

2.3.1 g-computation

Let Q̂dN,n and ĝZ,n be estimators of QdN,0 and gZ,0, respectively. We can use these to obtain

an estimate for ΨNDE(P0) by plugging them into (12):

Ψ̂
gcomp
NDE (Pn)

≡
1

n

n

∑
i=1

(

∑
zt0

ĜZ,n(zt0 |Wi,A = 0)
(

¯̂QN,n(t0 |Wi,A = 1,zt0)−
¯̂QN,n(t0 |Wi,A = 0,zt0)

)

)

.

More generally, given estimators Q̂dN,n and φ̂Z,NDE,n, a g-computation estimate of ΨNDE(P0)
can be obtained by

Ψ̂
gcomp
NDE (Pn)≡

1

n

n

∑
i=1

φ̂Z,NDE,n(Q̂dN,n)(t = 1;Wi).

The consistency of the g-computation estimator relies on consistent estimation of QdN,0

and φZ,NDE(P0).
Compared to the IPTW estimator below, in the presence of near positivity violation,

the g-computation estimator remains bounded within the range of ΨNDE . Nonetheless,

lack of experimental support can still manifest in poor estimates of QdN and φZ,NDE .

2.3.2 IPTW

Instead of estimating the failure probability QdN,0, one may wish to employ the researcher’s

knowledge about the treatment assignment. Consider the following function:

DNDE,IPTW (P) =
2A−1

gA(A |W )

t0

∏
t=1

gZ(Zt |W,A = 0,Zt−1,Nt−1)

gZ(Zt |W,A,Zt−1,Nt−1)
I(Nt0 = 0).
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Notice that ΨNDE(P0) = P0DNDE,IPTW (P0):

P0DNDE,IPTW (P0) = EP0

(

2A−1

gA,0(A |W )

t0

∏
t=1

gZ,0(Zt |W,A = 0,Zt−1,Nt−1)

gZ,0(Zt |W,A,Zt−1,Nt−1)
I(Nt = 0)

)

= EQW

(

∑
zt0

t0

∏
t=1

gZ,0(zt |W,A = 1,zt−1,Nt−1 = 0)
gZ,0(zt |W,A = 0,zt−1,Nt−1 = 0)

gZ,0(zt |W,A = 1,zt−1,Nt−1 = 0)

× (1−QdN,0(t |W,A = 1,zt ,Nt−1 = 0))

)

−EQW

(

∑
zt0

t0

∏
t=1

gZ,0(zt |W,A = 0,zt−1,Nt−1 = 0)
gZ,0(zt |W,A = 0,zt−1,Nt−1 = 0)

gZ,0(zt |W,A = 0,zt−1,Nt−1 = 0)

× (1−QdN,0(t |W,A = 0,zt ,Nt−1 = 0))

)

= ΨNDE(P0)

Therefore, given estimators ĝA,n and ĝZ,n of gA,0 and gZ,0, respectively, an estimator of

ΨNDE(P0) can be obtained using:

Ψ̂IPTW
NDE (Pn)≡

1

n

n

∑
i=1

2Ai−1

ĝA,n(Ai |Wi)

t0

∏
t=1

ĝZ,n(Zi,t |Wi,A = 0,Zi,t−1,Ni,t−1)

ĝZ,n(Zi,t |Wi,Ai,Zi,t−1,Ni,t−1)
I(Ni,t0 = 0). (17)

As noted earlier, if Ni,t−1 6= 0, ĝZ,n(Zi,t |Wi,A,Zi,t−1,Ni,t−1) takes the value of 1, since Zi,t

would be deterministically assigned a degenerate value. This way, (17) is well-defined.

This estimator is consistent if g0 = (gZ,0,gA,0) is consistently estimated.

Compared to the g-computation estimator, the IPTW is more sensitive to near posi-

tivity violations. In particular, the parameter estimate is unsheltered from the impact of

small denominator values. One way to reduce the variance of the resulting estimate is to

truncate the values of the denominators. This option comes at the expense that the trun-

cated denominators are biased estimates of g0. Bembom and van der Laan (2008) propose

a data-adaptive selection of the truncation level to obtain an optimal finite bias-variance

tradeoff for the parameter of interest.

2.3.3 A-IPTW

To gain protection against certain model mis-specifications, one can exploit the robustness

properties of the efficient influence functions. In particular, the EIF D∗(P) of a parameter

Ψ(P) can be used as an estimating function of Ψ(P) (e.g. Robins (1999), Robins and

Rotnitzky (2001), van der Laan and Robins (2003)), if (i) D∗(P) can be expressed as a

function of Ψ and some nuisance parameter η , i.e. D∗(P) = D(Ψ(P),η(P)), for some

function D, and (ii) the solution to the resulting equation in the variable Ψ is unique.
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When these requirements hold, an estimate Ψ̂ of the parameter is defined as the solution

of the resulting estimating equation PnD∗(η̂(Pn),Ψ̂) = 0. This Ψ̂ is also known to as the

A-IPTW estimator.
For the natural direct effect parameter in (12), the efficient influence function D∗NDE

in (15) is a well-defined estimating function with nuisance parameters Q(P), g(P), and

φZ,NDE(P). Let Q̂dN,n, ĝZ,n, ĝA,n and φ̂Z,NDE,n be their respective estimators. The A-IPTW
estimator is given by

Ψ̂AIPTW
NDE (Pn)

=
1

n

n

∑
i=1

{

−
t0

∑
t=1

I(Ni,t−1 = 0)

(

(2Ai−1)

ĝA,n(Ai |Wi)

t

∏
t ′=1

ĝZ,n(Zi,t ′ |Wi,A = 0,Zi,t ′−1,Nt ′−1 = 0)

ĝZ,n(Zi,t ′ |Wi,Ai,Zi,t ′−1,Nt ′−1 = 0)

× ∑
z

t0
t+1

t0

∏
t ′=t+1

ĝZ,n(Zi,t ′ |Wi,A = 0,Zi,t−1,z
t ′−1
t+1 ,Nt ′−1 = 0)

(

1− Q̂dN,n(t
′ |Wi,Ai,Zi,t−1,z

t ′

t+1)
)

)

×
(

dNi,t−1− Q̂dN,n(t |Wi,Ai,Zi,t−1)
)

+
t0

∑
t=1

I(Ni,t−1 = 0)
I(Ai = 0)

ĝA,n(0 |Wi)

(

φ̂Z,NDE,n(Q̂dN,n)(t +1;Wi,Zi,t−1)− φ̂Z,NDE,n(Q̂dN,n)(t;Wi,Zi,t−1)
)

¯̂QN,n(t−1 |Wi,Ai = 0,Zi,t−1)

+ φ̂Z,NDE,n(Q̂dN,n)(t = 1;Wi)

}

.

This estimator is multiply robust in the sense that if either one of the conditions R1,

R2, or R3 in corollary 2 hold at the limit of these likelihood estimates, then Ψ̂AIPTW
NDE (Pn)

is an asymptotically unbiased estimator of ΨNDE(P0). Therefore, it offers more protection

against model mis-specifications than the g-computation and IPTW estimators.

When near positivity violations are present, the remarks given to the IPTW estimator

equally apply here: parameters estimates are unguarded against the impact of small de-

nominator values; truncation of the denominators can reduce variance, but the truncation

level should be selected to optimize the bias-variance tradeoff for the parameter of interest.

2.3.4 TMLE

To maximize finite sample gain and provide more stable estimates in the presence of

near positivity violations, one can make use of the substitution principle. The targeted

maximum likelihood estimation (TMLE, van der Laan and Rubin (2006)) provides a

substitution-based estimator which also satisfies the EIF equation, thereby remaining unbi-

ased under model mis-specifications. Under this framework, for each relevant component

Pj of P, one defines a uniformly bounded (w.r.t. the supremum norm) loss function L j

satisfying Pj,0 = argminPj∈P j
P0L j(Pj), and a one-dimensional parametric working sub-

model {Pj(ε j) : ε j} ⊂M , passing through Pj at ε j = 0, with score D∗j(P) at ε j = 0 that
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satisfies 〈 d
dε j

L j

(

Pj(ε j)
)

|ε j=0〉 ⊃ 〈D
∗
j(P)〉, where 〈h〉 denotes the linear span of a vector

h. These result in a least favorable parametric submodel P(ε) through P. For given initial

estimator P̂n of P0, the parameter ε is fitted to minimize the empirical risk of P̂n(ε), pro-

ducing an updated estimator P̂n(ε̂) of P0. This updating process is repeated until ε̂ ≈ 0.

The final updated estimator P̂∗n of P0 is then used to obtain a substitution estimator Ψ(P̂∗n )
of Ψ(Q0). By its construction, the estimator P̂∗n satisfies the efficient influence function

equation PnD∗(P̂∗n ) = 0.
To construct the TMLE estimator for the natural direct effect (12), we first decompose

the EIF (15) into its orthogonal components:

D∗NDE,N(P)≡
t0

∑
t=1

D∗NDE,dNt
(P)

=−
t0

∑
t=1

I(Nt−1 = 0)

{

2A−1

gA(A |W )

t

∏
t ′=1

gZ(Zt ′ |W,A = 0,Zt ′−1,Nt ′−1 = 0)

gZ(Zt ′ |W,A,Zt ′−1,Nt ′−1 = 0)

× ∑
z

t0
t+1

t0

∏
t ′=t+1

gZ(zt ′ |W,A = 0,Zt ,z
t ′−1
t+1 ,Nt ′−1 = 0)

(

1−QdN(t
′ |W,A,Zt ,z

t ′

t+1)
)

}

× (dNt −QdN(t |W,A,Zt ,Nt−1 = 0)) ,

D∗NDE,Z(P)≡
t0

∑
t=1

D∗NDE,Zt
(P)

=
t0

∑
t=1

I(Nt−1 = 0)

{

I(A = 0)

gA(0 |W )

(φZ,NDE(P)(t +1;W,Zt)−φZ,NDE(P)(t;W,Zt−1))

Q̄N(t−1 |W,A = 0,Zt−1)

}

,

D∗NDE,W (P)≡ φZ,NDE(P)(t = 1;W )−EQW
φZ,NDE(P)(t = 1;W ).

Note that the empirical marginal distribution Q̂W,n of W is a consistent estimator of QW,0

that readily satisfies the equation PnD∗NDE,W (φZ,NDE(P), Q̂W,n) = 0 for any φZ,NDE(P).
Hence, the proposed estimator will focus on targeted estimation of QdN,0 and φZ,NDE(P0).

To simplify notation, we suppress QdN(t |W,A,Zt ,Nt−1 = 0) into QdN(t) for the re-
maining of this section, it should be understood that QdN(t) is always a function of the
parents of dNt . For every t = 1, . . . , t0, let the loss function for QdN(t) be the minus-
loglikelihood:

LdNt
(QdN(t))(O) = I(Nt−1 = 0) log

(

QdN(t)
dNt (1−QdN(t))

1−dNt

)

.

Under this loss function, consider the logistic working submodel

QdN(t)(ε)≡ expit (logit (QdN(t))+ εCdN(g,QdN)(t)) ,
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where

CdN(g,QdN)(t)

≡
2A−1

gA(A |W )

t

∏
t ′=1

gZ(Zt ′ |W,A = 0,Zt ′−1,Nt ′−1 = 0)

gZ(Zt ′ |W,A,Zt ′−1,Nt ′−1 = 0)

× ∑
z

t0
t+1

t0

∏
t ′=t+1

gZ(zt ′ |W,A = 0,Zt ,z
t ′−1
t+1 ,Nt ′−1 = 0)

(

1−QdN(t
′ |W,A,Zt ,z

t ′

t+1,Nt ′−1 = 0)
)

(18)

It is suppressed in this notation that CdN(g,QdN)(t) is a function of (W,A,Zt). Note that

for a given t, CdN(g,QdN)(t) only depends on QdN( j) for j > t.
After a fixed linear transformation, we may assume that the difference

φZ,NDE(P)(t0 +1;W,Zt0)≡ Q̄N(t0 |W,1,Zt0)− Q̄N(t0 |W,0,Zt0)

is bounded in the unit interval. Recall that the conditional natural direct effects satisfy the
recursive relation

φZ,NDE(P)(t;W,Zt−1) = EgZ,t (φZ,NDE(P)(t +1;W,Zt) |W,A = 0,Zt−1,Nt−1 = 0) .

We suppress the notation φZ,NDE(P)(t;W,Zt−1) into φZ,NDE(P)(t). Consider the follow-
ing loss function for φZ,NDE(P)(t) at t = 1, . . . , t0:

LZt (φZ,NDE(P)(t))

≡−I(A = 0)I(Nt−1 = 0) log

(

(φZ,NDE(P)(t))
φZ,NDE (P)(t+1) (1−φZ,NDE(P)(t))

1−φZ,NDE (P)(t+1)

)

,

with parametric working submodel given by

φZ,NDE(P)(t)(ε) = expit (logit (φZ,NDE(P)(t))+ εCZ(g,QdN)(t)) ,

where

CZ(g,QdN)(t) =
1

gA(0|W )Q̄N(t−1 |W,A = 0,Zt−1)
. (19)

Implementation

Let ĝA,n, ĝZ,n and Q̂dN,n be initial estimators of g0, gZ,0 and QdN,0, respectively.

1. Starting with t = t0, CdN(ĝn, Q̂dN,n)(t0) ≡
(2A−1)

ĝA,n(A|W ) ∏
t0
t ′=1

ĝZ,n(Zt′ |W,A=0,Zt′−1,Nt′−1=0)

ĝZ,n(Zt′ |W,A,Zt′−1,Nt′−1=0)

and an optimal ε for Q̂dN,n(t0) is given by ε̂∗dN,t0
= argminε PnLdNt0

(

Q̂dN,n(t0)(ε)
)

.

This can be obtained using standard software by performing a generalized linear re-

gression dNt0 ∼ o f f set(Q̂dN,n(t0))+CdN(ĝn, Q̂dN,n)(t0) with logit link, where o f f set(h)
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specifies to the program that the term h is an intercept in the model, on the subpop-

ulation with N(t0− 1) = 0. The fitted coefficient for the CdN term in the model fit

is the optimal ε̂∗dN,t0
. This provides an TMLE estimate Q̂∗dN,n(t0)≡ Q̂dN,n(t0)(ε̂

∗
dN,t0

)

for QdN,0(t0).

2. For each 1≤ t < t0, let Q̂∗dN,n denote the vector of TMLE estimates

Q̂∗dN,n ≡ (Q̂∗dN,n(t0), Q̂
∗
dN,n(t0−1), . . . , Q̂∗dN,n(t +1))

obtained thus far. We use these to construct CdN(ĝn, Q̂
∗
dN,n)(t) as prescribed in (18).

The optimal ε for Q̂dN,n(t) is given by ε̂∗dN,t = argminε PnLdNt

(

Q̂dN,n(t)(ε)
)

.

The step 2 above updates Q̂dN,n(t) sequentially in the order of descending t. Once

we have obtained all the t0 updates, let Q̂∗dN,n to represent the TMLE estimator for the

function QdN,0 at times t = 1, . . . , t0. The same bar notation applies to this estimator:
¯̂Q∗N,n(t |W,A,Zt−1)≡∏

t
t ′=1 1− Q̂∗dN,n(t

′ |W,A,Zt ′−1,Nt ′−1 = 0).

Let φ̂Z,NDE,n(·) be an estimating procedure for φZ,NDE(P0) which maps the TMLE esti-

mator Q̂∗dN,n to an initial estimator φ̂Z,NDE,n(Q̂
∗
dN,n) of φZ,NDE(gZ,0,QdN,0). The next steps

will update φ̂Z,NDE,n(Q̂
∗
dN,n) towards optimal bias-variance tradeoff for the parameter of

interest. We suppress the notation φ̂Z,NDE,n(Q̂
∗
dN,n)(t;W,Zt−1) into φ̂Z,NDE,n(t), it should

be understood that at this stage we always use the updated TMLE estimator Q̂∗dN,n wher-

ever QdN is involved.

3. Define

φ̂ ∗Z,NDE,n(t0 +1;W,Zt0)≡
¯̂Q∗N,n(t0 |W,A = 1,Zt0)−

¯̂Q∗N,n(t0 |W,A = 0,Zt0)

After a proper linear transformation, we may assume that φ̂∗Z,NDE,n(t0+1;W,Zt0) is

bounded in the unit interval.

4. For each 1≤ t ≤ t0, suppose we have obtained the TMLE estimator φ̂∗Z,NDE,n(t +1)

for φZ,NDE(P0)(t + 1). The parametric submodel φ̂Z,NDE(t)(ε) is constructed using

CZ(ĝn, Q̂
∗
dN,n)(t) prescribed in (19), and the optimal ε is given by

ε̂∗Zt
= argmin

ε
PnLZt

(

φ̂Z,NDE,n(t)(ε)
)

.

This can be obtained using standard software by performing a generalized linear

regression φ̂∗Z,NDE,n(t +1)∼ o f f set(φ̂Z,NDE,n(t))+CZ(ĝn, Q̂
∗
dN,n)(t) with logit link,

on the subpopulation with Nt−1 = 0 and A = 0.

This yields the TMLE estimator φ̂∗Z,NDE,n(t)≡ φ̂Z,NDE,n(t)(ε̂
∗
Zt
) of φZ,NDE(P0)(t).
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5. We perform the updates in step 4 sequentially in order of decreasing t. Once, we

have obtained the TMLE estimator φ̂∗Z,NDE,n(t = 1;W ) (and applied the necessary

inverse linear transformation), the TMLE estimate of the natural direct effect is given
by

Ψ̂T MLE
NDE (Pn)≡

1

n

n

∑
i=1

φ̂ ∗Z,NDE,n(t = 1;Wi).

Together with the initial estimates ĝn, the updated components (Q̂∗dN,n, φ̂
∗
Z,NDE,n) sat-

isfy PnD∗NDE(ĝn, Q̂
∗
dN,n, φ̂

∗
Z,NDE,n) = 0. Therefore, the estimator Ψ̂T MLE

NDE (Pn) is multiply

robust in the sense that if either one of the conditions R1, R2 or R3 of corollary 2 hold at

the limit of these likelihood estimates, then it is asymptotically unbiased.

In terms of finite sample performance, the logistic parametric working submodels and

the substitution principle ensure that the resulting estimates are within proper bounds even

in the presence of small denominator values in the EIF. This aims to provide some finite

sample gain in the presence of near positivity violations. However, lack of experimental

support can still manifest in poor initial estimates of the likelihood and poor fits for ε .

2.3.5 Simulations

In this section, we evaluate with simulations the performance of these four estimators

under the three types of model mis-specifications in corollary 2. We expect to see A-

IPTW and TMLE provide bias reduction over a mis-specified g-computation or IPTW

estimators.
Consider the following data generating distribution

W1 ∼U(0,2);

W2 ∼ Bern(0.5);

A∼ Bern(expit(1−W1−0.5W2)) ;

Conditional on (W,A,Zt−1,Nt−1 = 0), Zt ∈ {0,1,2} ∼

Multinom
(

p(Zt = 0) = expit(0.5−A−2W1 +0.6W2 +0.2∑
t−1
t ′=1

Zt ′),

p(Zt = 1|Zt 6= 0) = expit(0.5−0.8A−2W1 +0.8W2 +0.1∑
t−1
t ′=1

Zt ′),

)

,

and

(dNt |W,A,Zt ,Nt−1 = 0)∼ Bern
(

expit(0.3t−3A−3W1 +0.8W2 +0.2
t

∑
t ′=0

Zt ′)
)

,

where ∑
t−1
t ′=1

Zt ′ ≡ 0 for t = 1.

The survival threshold of interest is t0 = 3. The parameter of interest ΨNDE(P0) for

t0 = 3 has value 0.4196206, the variance of its EIC is VarP0
(D∗) = 0.5288578.

We consider the following model mis-specifications:
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• The mis-specified model for gA only adjusts for W2.

• The mis-specified model for QdN(t |W,A,Zt ,Nt−1 = 0) only adjusts for A, W2 and

Zt .

• The mis-specified model for gZ(Zt |W,A,Zt−1,Nt−1 = 0) only adjusts for A and

Zt−1.

For each of the model specifications in corollary 2, we obtain initial estimates ĝA,n,

ĝZ,n and Q̂dN,n. A plug-in procedure φ̂Z,NDE,n(·) ≡ φZ,NDE(ĝZ,n, ·) is used to estimate

φZ,NDE(P0).

Results

For each sample size n = 500,2000, we generated 2000 datasets. Bias, variance and mse

for each sample size are estimated over the 2000 datasets. In the table 1 below, legend for

model specifications are as follows:

notation model specifications

qyc.gzc.gac correct QdN , correct gZ , correct gA

qyc.gzc.gam correct QdN , correct gZ , mis-specified gA

qyc.gzm.gac correct QdN , mis-specified gZ , correct gA

qym.gzc.gac mis-specified QdN , correct gZ , correct gA

As predicted by theory, both A-IPTW and TMLE provide bias reduction over mis-

specified g-computation estimators (qyc.gzm.gac and qym.gzc.gac) and mis-specified IPTW

estimators (qyc.gzc.gam and qyc.gzm.gac). In cases where the g-computation and IPTW

estimators are correctly specified (qyc.gzc. and gzc.gac., respectively), using A-IPTW and

TMLE with a mis-specified third component still gives estimates very close to the truth.

Therefore, without any knowledge on the consistency of the initial estimates of the like-

lihood components, applying a robust procedure (A-IPTW or TMLE) onto these initial

estimates would provide protection against certain types of misspecification. Note also

that when all relevant components of P0 are correctly specified (qyc.gzc.gac), the sample

variances of TMLE and A-IPTW are close to the semiparametric efficiency bounds after

scaling by sample size.

3 Right Censoring

Up to now, we have assumed that there is no right censoring and all failure times are ob-

served. In this section, we consider the situation where right censoring is present (e.g.
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Table 1: Sample sizes n=500, 2000. Value of parameter is ψ0 = 0.4196206.

var(D∗)/500 = 1.058×10−3, and var(D∗)/2000 = 2.644×10−4.
ψ̂n Bias Var M.S.E.

n 500 2000 500 2000 500 2000 500 2000

qyc.gzc.gac

gcomp 4.199e-01 4.194e-01 2.722e-04 -2.478e-04 5.150e-04 1.242e-04 5.151e-04 1.243e-04

iptw 4.197e-01 4.195e-01 1.132e-04 -1.289e-04 3.209e-03 7.359e-04 3.209e-03 7.359e-04

a-iptw 4.202e-01 4.193e-01 6.041e-04 -3.239e-04 1.091e-03 2.722e-04 1.092e-03 2.723e-04

tmle 4.198e-01 4.193e-01 1.637e-04 -3.395e-04 1.116e-03 2.719e-04 1.116e-03 2.720e-04

qyc.gzc.gam

gcomp 4.199e-01 4.194e-01 2.722e-04 -2.478e-04 5.150e-04 1.242e-04 5.151e-04 1.243e-04

iptw 3.136e-01 3.132e-01 -1.060e-01 -1.064e-01 3.472e-03 8.459e-04 1.471e-02 1.216e-02

a-iptw 4.202e-01 4.194e-01 5.399e-04 -2.681e-04 1.279e-03 3.189e-04 1.279e-03 3.189e-04

tmle 4.205e-01 4.195e-01 8.382e-04 -1.382e-04 1.089e-03 2.700e-04 1.089e-03 2.700e-04

qyc.gzm.gac

gcomp 4.065e-01 4.061e-01 -1.310e-02 -1.350e-02 4.997e-04 1.187e-04 6.712e-04 3.011e-04

iptw 4.174e-01 4.138e-01 -2.270e-03 -5.845e-03 2.364e-03 6.061e-04 2.369e-03 6.403e-04

a-iptw 4.201e-01 4.192e-01 4.897e-04 -4.683e-04 9.467e-04 2.409e-04 9.469e-04 2.411e-04

tmle 4.195e-01 4.190e-01 -1.506e-04 -6.192e-04 9.063e-04 2.320e-04 9.063e-04 2.324e-04

qym.gzc.gac

gcomp 2.851e-01 2.850e-01 -1.345e-01 -1.346e-01 9.253e-04 2.296e-04 1.902e-02 1.834e-02

iptw 4.197e-01 4.195e-01 1.132e-04 -1.289e-04 3.209e-03 7.359e-04 3.209e-03 7.359e-04

a-iptw 4.200e-01 4.194e-01 3.978e-04 -2.459e-04 1.176e-03 2.837e-04 1.176e-03 2.838e-04

tmle 4.199e-01 4.193e-01 2.589e-04 -3.384e-04 1.114e-03 2.751e-04 1.114e-03 2.753e-04

lost-to-follow up, or study ended before the event occurs). Ideally, one would like to

observe all the failure times; therefore, regardless of the treatment levels and mediator dis-

tributions, the interventions of interest always disallow censoring. By regarding censoring

as a intervention variables, the same concepts in section 2 can be applied here.

Let C denote the first visit where an individual is right censored. We refer to this as the

censoring time. Let T̃ ≡min(T,C) be an individual’s last observed visit, and ∆≡ I(T ≤C)
be the indicator that the failure time was observed (i.e. the subject was not censored). The

observed data structure now consists of O = (W,A,Z1, . . . ,ZT̃ , T̃ ,∆). Let Nt ≡ I(T̃ ≤ t,∆ =
1) and AC,t ≡ I(T̃ ≤ t,∆ = 0) denote two processes that jump to 1 at observed failure time

and censoring time, respectively. Let dNt ≡ I(T̃ = t,∆ = 1) and dAC,t ≡ I(T̃ = t,∆ = 0) be

the event and censoring indicators, respectively. The data structure can be represented as

O =
(

W,A,(Zt ,dNt ,dAC,t : t = 1, . . . ,τ)
)

, where for t > T̃ , Zt is given a degenerate value

that is outside of Z . Let P0 denote the distribution of O. The data consists of n i.i.d. copies

of O.
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Let the following NPSEM encode the time-ordering of the variables:

W = fW (UW )

A = fA(W,UA)

Zt = fZt (W,A,Zt−1,Nt−1,AC,t−1,UZt ), for t = 1, . . . ,τ

dNt = fdNt
(W,A,Zt ,Nt−1,AC,t−1,UdNt

), for t = 1, . . . ,τ

dAC,t = fdAC,t
(W,A,Zt ,Nt ,AC,t−1,UdAC,t

), for t = 1, . . . ,τ. (20)

To save space, we may sometimes write T̃ > t in place of (Nt = 0,AC,t = 0).
According to the time-ordering, the likelihood of the observed data distribution P0

decomposes into

p0(O) = p0(W )p0(A |W )

×
τ

∏
t=1

(

p0(Zt |W,A,Zt−1,Nt−1,AC,t−1)p0(dNt |W,A,Zt ,Nt−1,AC,t−1)

× p0(dAC,t |W,A,Zt ,Nt ,AC,t−1)
)

.

Let gC,0(t |W,A,Zt ,Nt ,AC,t−1) ≡ p0(dAC,t = 1 |W,A,Zt ,Nt ,AC,t−1). We also modify

previous notations to incorporate censoring: gZ,0(Zt |W,A,Zt−1,Nt−1,AC,t−1) ≡ p0(Zt |
W,A,Zt−1,Nt−1,AC,t−1), g0≡ (gA,0,gC,0,gZ,0), and QdN,0(t |W,A,Zt ,Nt−1,AC,t−1)≡ p0(dNt =
1 |W,A,Zt ,Nt−1,AC,t−1).

Let Zt(a
′,∆ = 1) and dNt(a

′,∆ = 1) denote the counterfactual mediator and event in-
dicator under an intervention which sets A = a′ and dAC = 0. Let gZ(a′,∆=1) denote the

conditional distribution of Zt(a
′,∆ = 1), i.e. gZ(a′,∆=1)(zt | w,zt−1,nt−1) ≡ p(Zt(a

′,∆ =

1) = zt |W = w,Zt−1(a
′,∆ = 1) = zt−1,Nt−1(a

′,∆ = 1) = nt−1). Consider an intervention
which imposes the following conditional distribution ga,a′,∆=1 on the intervention variables

(A,Z1,dAC,1, . . . ,Zτ ,dAC,τ):

ga,a′,∆=1(A = a |W ) = 1

ga,a′,∆=1(Zt |W,A,Zt−1,Nt−1)≡ gZ(a′,∆=1)(Zt |W,Zt−1,Nt−1).

ga,a′,∆=1(dAC,t = 0 |W,A,Zt ,Nt ,AC,t−1) = 1 (21)

The resulting counterfactual event process is dNt(a,Z(ga,a′,∆=1),∆ = 1). To simply no-

tation, we will use dNt(a,Z(ga,a′,∆=1)) ≡ dNt(a,Z(ga,a′,∆=1),∆ = 1). Denote the corre-

sponding failure time as T (a,Z(ga,a′,∆=1)). This experiment can be encoded as

W = fW (UW )

A = a

Zt(ga,a′,∆=1) = f
a′,∆=1
Zt

(W,A = a′,Zt−1(ga,a′,∆=1),Nt−1(a,Z(ga,a′,∆=1)),AC,t−1 = 0,Ua′,∆=1
Zt

)

dNt(a,Z(ga,a′,∆=1)) = fdNt
(W,A = a,Zt(ga,a′,∆=1),Nt−1(a,Z(ga,a′,∆=1)),AC,t−1 = 0,UdNt

)

dAC,t = 0 (22)
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In words: We first set the baseline treatment to A= a and disallow right censoring through-
out the study. At each visit t, given realization (W,A= a,Zt−1(ga,a′,∆=1),Nt−1(a,Z(ga,a′,∆=1)))=
(w,a,zt−1,nt−1), we set Zt(ga,a′,∆=1) to be distributed according to gZ(a′,∆=1)(· |w,zt−1,nt−1).
Recall that if death has already occurred (i.e. nt−1 = 1), then gZ(a′,∆=1) will assign the

degenerate value with probability 1. We then measure the response dNt(a,Z(ga,a′,∆=1))
under realized history (W = w,A = a,Zt(ga,a′,∆=1) = zt ,Nt−1(a,Z(ga,a′,∆=1)) = nt−1).
Similar to section 2, this formulation presupposes external specification of the function
gZ(a′,∆=1)(zt | w,zt−1,nt−1). If this counterfactual distribution is not known, it needs to be

ascertained through a separate controlled experiment. Together with the structural equa-
tions, the variables

(

U ≡
(

UW ,UA,UZ ≡ (UZt : t),UdN ≡ (UdNt
: t),UC ≡ (UdAC,t

: t)
)

,Ug
Z ≡ {(U

a′,∆=1
Zt

: t) : a′ ∈A }
)

,

define a full data random variable on an individual with distribution P(U,U
g
Z )

.

We define the natural indirect effect as
(

P(T (1,Z(g1,1,∆=1))> t0)−P(T (1,Z(g1,0,∆=1))> t0)
)

,

and natural direct effect as
(

P(T (1,Z(g1,0,∆=1))> t0)−P(T (0,Z(g0,0,∆=1))> t0)
)

. The

identification and estimation of these two effects can be approached through the study of

the mediation formula

Ψa,a′,∆=1(P(U,U
g
Z )
)≡ P(T (a,Z(ga,a′,∆=1))> t0), (23)

The same comments (paragraph succeeding (5)) regarding the use of these terminologies

with respect to the established literature apply here.

For the remaining of this section, we focus on the identification and the efficient in-

fluence function of the mediation formula Ψa,a′,∆=1(P(U,U
g
Z )
). The analogous results re-

garding natural direct and indirect effects (as well as the corresponding estimators) can be

derived using same steps as in section 2 — we omit those here for conciseness.

3.1 Identification of the mediation formula

Let dNt(a,z,∆ = 1) denote the event process under a deterministic intervention which sets

treatment to value A = a, mediators to value Z = z, and censoring indicators to dAC = 0.

Theorem 3. Suppose the following positivity assumptions regarding the data generating

distribution P0 hold:

P1. There exists 0 < δA < 1 such that gA,0(A |W )> δA, a.e. over A ;

P2. There exists 0 < δZ < 1 such that inf
t∈{1,...,t0}

gZ,0(Zt |W,A = a,Zt−1, T̃ > t−1)> δZ ,

a.e. over Z ;
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P3. There exists 0 < δN < 1 such that inf
t∈{1,...,t0}

1−QdN,0(t |W,A = a′,Zt , T̃ > t−1)>

δN;

P4. There exists 0 < δC < 1 such that inf
t∈{1,...,t0}

1−gC,0(t |W,A,Zt ,Nt = 0,AC,t−1 = 0)>

δC.

Let ga,a′,∆=1 be an intervention distribution on (A,Z,dAC) as defined in (21). Let T (a,Z(ga,a′,∆=1))
be the corresponding failure time under experiment (22). Suppose the following random-

ization assumptions hold for all z:

I1. (dN(a′,∆ = 1),Z(a′,∆ = 1))⊥ A, given W;

I2. (dN j>t(a
′,∆ = 1),Z j>t(a

′,∆ = 1))⊥ dAC,t , given W, A = a′, Zt , Nt , AC,t−1 = 0;

I3. dN(a,z,∆ = 1)⊥ A, given W;

I4. dN j≥t(a,z,∆ = 1)⊥ Zt , given W,A = a,Zt−1 = zt−1,Nt−1,AC,t−1 = 0;

I5. dN j>t(a,z,∆ = 1)⊥ dAC,t , given W,A = a,Zt = zt ,Nt ,AC,t−1 = 0;

I6. dN j≥t(a,z,∆= 1)⊥Zt(ga,a′,∆=1), given W, A= a, Zt−1(ga,a′,∆=1)= zt−1, Nt−1(a,Z(ga,a′,∆=1)),
AC,t−1 = 0;

then, (23) can be expressed as

Ψa,a′,∆=1(P0)

≡∑
w

∑
zt0

QW,0(w)

×
t0

∏
t=1

{

gZ,0

(

zt | w,A = a′,zt−1, T̃ > t−1
)(

1−QdN,0(t | w,A = a,zt , T̃ > t−1)
)

}

. (24)

In addition to the identifiability conditions of theorem 1, we now also require that right

censoring be sequentially randomized.

The parameter (23) can also be identified under conditional independence conditions

on the joint distribution of (U,Ug): (UZ,UdN) ⊥ UA given UW ; ((UdN) j>t ,(UZ) j>t) ⊥
UdAC,t

given UW ,UA,(UZ)t , (UdN)t , (UC)t−1; (UdN) j≥t ⊥ UZt
given UW ,UA, (UZ)t−1,

(UdN)t−1,(UC)t−1; (UdN) j≥t ⊥U
a′,∆=1
Zt

, given UW , UA, (UZ)
a′,∆=1
t−1 , (UdN)t−1, (UC)t−1.

Similar to section 2, the natural direct effect here can also be interpreted as a weighted

average of controlled direct effect, and the total effect P(T (1,∆ = 1) > t0)−P(T (0,∆ =
1)> t0) can again be decomposed into the sum of the natural effects.
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3.2 Efficient influence function of the mediation formula

Let M denote a locally saturated semiparametric model containing the true data gener-
ating distribution P0. Let g = (gA,gZ,gC) and Q = (QW ,QdN) denote the corresponding
components on a given P ∈M . The shorthand notations used in section 2 are modified to
incorporate censoring variables:

GZ(Zt |W,A)≡
t

∏
t ′=1

gZ

(

Zt ′ |W,A,Zt ′−1,Nt ′−1 = 0,AC,t ′−1 = 0
)

,

Q̄N(t |W,A,Zt)≡
t

∏
t ′=1

1−QdN(t
′ |W,A,Zt ′ ,Nt ′−1 = 0,AC,t ′−1 = 0),

ḠC(t |W,A,Zt)≡
t

∏
t ′=1

1−gC(t
′ |W,A,Zt ′ ,Nt ′ = 0,AC,t ′−1 = 0).

The parameter in (24) is the following map evaluated at P0:

Ψa,a′,∆=1 : M → R

P 7→Ψa,a′,∆=1(P)≡∑
w

∑
zt0

QW (w)GZ(zt0 | w,A = a′)Q̄N(t0 | w,A = a,zt0). (25)

Define the conditional mediation formula at t as:

φZ,a,a′,∆=1(P)(t;W,Zt−1)

≡∑
z

t0
t

t0

∏
t ′=t

gZ(zt ′ |W,A = a′,Zt−1,z
t ′−1
t , T̃ > t ′−1)Q̄N

(

t0 |W,A = a,Zt−1,z
t0
t

)

,

for t = 1, . . . , t0, and φZ,a,a′,∆=1(P)(t0+1;W,Zt0)≡ Q̄N(t0 |W,A = a,Zt0). Note again that

Ψa,a′,∆=1(P) = EQW

(

φZ,a,a′,∆=1(P)(t = 1;W )
)

, and that φZ,a,a′,∆=1(P) satisfies the recur-
sive relation

φZ,a,a′,∆=1(P)(t−1;W,Zt−2) = EgZ,t−1

(

φZ,a,a′,∆=1(P)(t;W,Zt−1) |W,A = a′,Zt−2, T̃ > t−2
)

.

Theorem 4. Let Ψa,a′,∆=1 : M → R be defined as in (25). Suppose the following are true

for P ∈M :

P1. There exists 0 < δA < 1 such that gA(A |W )> δA, a.e. over A ;

P2. There exists 0 < δZ < 1 such that inf
t∈{1,...,t0}

gZ(Zt |W,A = a,Zt−1, T̃ > t− 1) > δZ ,

a.e. over Z ;

P3. There exists 0< δN < 1 such that inf
t∈{1,...,t0}

1−QdN(t |W,A= a′,Zt , T̃ > t−1)> δN;
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P4. There exists 0 < δC < 1 such that inf
t∈{1,...,t0}

1−gC(t |W,A,Zt ,Nt = 0,AC,t−1 = 0)>

δC.

The Efficient Influence Function of Ψa,a′,∆=1 at P is given by

D∗a,a′,∆=1(P)(O)

=−
t0

∑
t=1

I(T̃ > t−1)

{

I(A = a)

gA(a |W )ḠC(t−1 |W,A = a,Zt−1)

t

∏
t ′=1

gZ(Zt ′ |W,A = a′,Zt ′−1, T̃ > t ′−1)

gZ(Zt ′ |W,A = a,Zt ′−1, T̃ > t ′−1)

× ∑
z

t0
t+1

t0

∏
t ′=t+1

gZ(zt ′ |W,A = a′,Zt ,z
t ′−1
t+1 , T̃ > t ′−1)

(

1−QdN(t
′ |W,A = a,Zt ,z

t ′

t+1)
)

}

× (dNt −QdN(t |W,A = a,Zt))

+
t0

∑
t=1

I(T̃ > t−1)

{

I(A = a′)

gA(a′ |W )ḠC(t−1 |W,A = a′,Zt−1)

φZ,a,a′,∆=1(P)(t +1;W,Zt)−φZ,a,a′,∆=1(P)(t;W,Zt−1)

Q̄N(t−1 |W,A = a′,Zt−1)

}

+φZ,a,a′,∆=1(P)(t = 1;W )−EQW
(φZ,a,a′,∆=1(P)(t = 1;W )) (26)

The proof of theorem 2 can be modified to prove theorem 4 by incorporating tangent

subspaces corresponding to the conditional probabilities of censoring at each time t given

observed history.

The difference between the EIFs (14) and (26) is that when right censoring is present,

the static treatment mechanism gA(A |W ) is replaced by the static treatment and censoring

mechanism gA(A |W )ḠC(t−1 |W,A,Zt−1).
The robustness properties of (26) is summarized in the following lemma.

Lemma 2. Let Ψa,a′,∆=1(P) be as defined in (25); its efficient influence function under M

is D∗a,a′,∆=1(P), as given in (26).

Suppose for P0 ∈M , conditions of theorem 4 hold. Then,

P0D∗a,a′,∆=1(Q,g,Ψa,a′,∆=1(P0)) = 0

if one of the following holds:

R1. QdN = QdN,0, and φZ,a,a′,∆=1(P) = φZ,a,a′,∆=1(P0).

R2. QdN = QdN,0, and gA = gA,0 and gC = gC,0.

R3. (gA,gC,gZ) = (gA,0,gC,0,gZ,0) and φZ,a,a′,∆=1(P) = φZ,a,a′,∆=1(gZ,0,QdN).

The proof of this lemma is also very similar to the proof of lemma 2, since the key

steps are not effected by the inverse weighting by censoring probabilities.
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4 Summary and Discussion

In this paper, we argued that in a survival setting with time-dependent mediators, the nat-

ural effects should be defined based on blocking only those paths from treatment to me-

diator that are not through the survival history of interest (We illustrate in appendix A4.1

that blocking all paths from treatment to mediator would yield parameters that are not in-

terpretable for the goal of survival mediation). In extending the traditional formulation of

the corresponding effects—where the mediator is considered an intermediate outcome—

to the current setting, we encountered identifiability conditions that are too strong for the

purpose of this study (appendix A4.2). As an alternative, we proposed to adopt the stochas-

tic interventions (SI) approach of Didelez et al. (2006), where the mediator is considered

an intervention variable, onto which a given distribution is enforced. The second con-

tribution of this paper is a general semiparametric inference framework for the resulting

effect parameters. More specifically, efficient influence functions under a locally saturated

semiparametric model are derived, and their robustness properties are established. Note

that in parameters arising from mediation analysis, the mediator densities play the role of

probability weights in iterated expectations (which we referred to as conditional mediation

formula, conditional natural direct and indirect effects). In many applications where the

mediator densities are difficult to estimate, regression-based estimators of these iterated

expectations are viable alternatives to substitution-based estimators that rely on consis-

tent estimation of the mediator densities. We also developed the g-computation, IPTW,

A-IPTW and TMLE estimators for the natural effect parameters; of these, the A-IPTW

and TMLE are locally semiparametric efficient and remain unbiased under certain types

of model mis-specifications.

Under the SI formulation, the treatment of interest as well as the mediator variables

are regarded as intervention variables. One can obtain a total effect decomposition and

the subsequent definition of natural direct and indirect effects that are analogous to those

in Pearl (2001). The natural direct effect (NDE) under this formulation has an intrinsic

interpretation as a weighted average of controlled direct effects (CDE), since the CDE

can be considered as a deterministic intervention on the treatment and mediator variables.

By regarding the mediator variables as intervention variables, the SI formulation requires

external specification of a counterfactual mediator distribution. It is important to note that

causal mediation, under either SI or non-SI approaches, presupposes that the mediator of

interest is amenable to external manipulation. In applications where such manipulations

are not conceivable, we should be cautious that causal mediation can only offer answers

to purely mechanistic questions defined under hypothetical experiments.

The mediation formula and its efficient influence function presented here are applicable

to general multilevel treatments. In these applications, one can still use the mediation
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formula to define certain direct and indirect effects of interest (e.g. through marginal

structural models: Robins, Hernan, and Brumback (2000), Neugebauer and van der Laan

(2007)). The efficient influence functions for those parameters can be derived using the

delta method.

The setting we used in this paper is based on discrete time points. In situations where

one is willing to approximate a continuous failure time by discrete time points, the methods

presented here can be applied. Otherwise, formal generalizations are needed to handle the

analytic subtleties in a continuous time context.
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Appendix A1

Identifying the distribution of observations under intervention ga,a′ is an application of

general identifiability results for stochastic interventions. This appendix takes a brief de-

tour to review these results.

Stochastic Interventions over Time-Dependent Treatment

Stochastic interventions (a.k.a stochastic policies, random interventions, randomized dy-

namic strategies, etc.) impose pre-specified probability distributions to the intervention

variables. The traditional static interventions or dynamic treatment regimes can be con-

sidered as special cases of stochastic interventions where the imposed probability distribu-

tions have mass at only one point. The identification of stochastic interventions have been

addressed in the literature (e.g. Dawid and Didelez (2010), Pearl (2009), Tian (2008),

Robins and Richardson (2010) , Diaz and van der Laan (2011)). For self-containment, this

appendix paraphrases these results as applicable to the current setting.

Consider a general longitudinal data structure O = (L0,A1,L1, . . . ,AK,LK), for some

K > 0, with time- ordering encoded as

L0 = fL0
(UL0

)

At = fAt
(L0,At−1,Lt−1,UAt

) for t = 1, . . . ,K

Lt = fLt
(L0,At ,Lt−1,ULt

) for t = 1, . . . ,K. (27)

Let A≡ (A1, . . . ,AK) be the intervention variables. Without any interventions, this NPSEM

generates the observed data O∼ P0. The likelihood of O∼ P0 can be factored as

p0(O) = p0(L0)
K

∏
t=1

p0(At | L0,At−1,Lt−1)p0(Lt | L0,At ,Lt−1)

≡ Q0(L0)
K

∏
t=1

g0(At | L0,At−1,Lt−1)Q0(Lt | L0,At ,Lt−1).

Let g(· | L0,Ak−1,Lk−1) : A → [0,1] be a conditional distribution for the intervention

variables Ak. We say that g is permissible for the NPSEM (27) if the intervention to impose

distribution g on the variables A does not change the way the non-intervention variables

respond to a given history. This intervention experiment is encoded as

L0 = fL0
(UL0

)

At(g) = f
g
At
(L0,At−1(g),Lt−1(A(g)),U

g
At
) for t = 1, . . . ,K

Lt(A(g)) = fLt
(L0,At(g),Lt−1(A(g)),ULt

) for t = 1, . . . ,K. (28)
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Let G denote the set of permissible conditional distributions for the intervention vari-

ables A. Let Pg denote the distribution of Og. Note that g0 ∈ G by definition of permis-

sibility. The observed data is O = Og0
and Pg0

= P0. For a given stochastic intervention

g∗ ∈ G , we wish to identify Pg∗ as a function of Pg0
and g∗.

For a fixed vector a = (a1, . . . ,aK), let L(a) denote the counterfactual outcomes under

a static intervention that sets all A = a, i.e.

L0 = fL0
(UL0

)

At = at

Lt(a) = fLt
(L0,At = at ,Lt−1(a),ULt

) for t = 1, . . . ,K

Theorem 5. Given g∗ ∈ G , the likelihood Pg∗ of Og∗ can be identified as

Pg∗(l,a) = Pg0
(l0)

K

∏
t=1

g∗(at | l0,at−1, lt−1)Pg0
(lt | l0,at , lt−1), (29)

for all (l,a) ∈L K×A K , if the following sequential randomization assumption holds for
g ∈ {g∗,g0}:

L j≥k(a)⊥ Ak(g), given L0, Lk−1(A(g)),Ak−1(g) = ak−1. (30)

In words, if for data generated under Pg0
and data generated under Pg∗ , the treatment

at each stage is randomized given its past history (no unmeasured confounders), then (29)

is true. This is a rephrasing of the results in the literature which stated that to identify

any stochastic intervention on the distribution of A, it suffices to identify the conditional

densities of L(a) under static (a.k.a. atomic) interventions. For self-containment, we detail

a proof here.

Proof. The likelihood Pg∗ can be factorized according to the time ordering in (28) into

Pg∗(l,a) = Pg∗(l0)
K

∏
t=1

Pg∗(at | l0,at−1, lt−1)Pg∗(lt | l0,at , lt−1)

≡ Pg∗(l0)
K

∏
t=1

g∗(at | l0,at−1, lt−1)Pg∗(lt | l0,at , lt−1).

Since L0 is not affected by the intervention variables, its marginal distribution is in-

variant under the choice of g. Therefore, Pg∗(l0) = Pg0
(l0). It remains to show that

Pg∗(lt | l0,at , lt−1) = Pg0
(lt | l0,at , lt−1) under the SRA.
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Suppose for g ∈ {g0,g
∗}, the assumption (30) holds. Then we can write

P(Lt(a) = lt | L0 = l0,Lt−1(a) = lt−1)

=
P(Lt(a) = lt | L0 = l0)

P(Lt−1(a) = lt−1 | L0 = l0)

=
P(Lt(a) = lt | L0 = l0,A1(g) = a1)

P(Lt−1(a) = lt−1 | L0 = l0,A1(g) = a1)
by applying assumption to k = 1

=
P(Lt

2(a) = lt2,L1(A(g)) = l1 | L0 = l0,A1(g) = a1)

P(Lt−1
2 (a) = lt−1

2 ,L1(A(g)) = l1 | L0 = l0,A1(g) = a1)

=
P(Lt

2(a) = lt2 | L0 = l0,A1(g) = a1,L1(A(g)) = l1)

P(Lt−1
2 (a) = lt−1

2 | L0 = l0,A1(g) = a1,L1(A(g)) = l1)

=
P(Lt

2(a) = lt2 | L0 = l0,L1(A(g)) = l1,A2(g) = a(2))

P(Lt−1
2 (a) = lt−1

2 | L0 = l0,L1(A(g)) = l1,A2(g) = a(2))
by applying assumption to k = 2

=
P(Lt

3(a) = lt3,L2(A(g)) = l2 | L0 = l0,L1(A(g)) = l1,A2(g) = a(2))

P(Lt−1
3 (a) = lt−1

3 ,L2(A(g)) = l2 | L0 = l0,L1(A(g)) = l1,A2(g) = a(2))

=
P(Lt

3(a) = lt3 | L0 = l0,L2(A(g)) = l2,A2(g) = a(2))

P(Lt−1
3 (a) = lt−1

3 | L0 = l0,L2(A(g)) = l2,A2(g) = a(2))

=
... repeat the same reasoning till k = t−1

= P(Lt(a) = lt | L0 = l0,Lt−1(A(g)) = lt−1,At−1(g) = at−1)

= P(Lt(a) = lt | L0 = l0,Lt−1(A(g)) = lt−1,At(g) = at)by applying assumption to k = t

= P(Lt(A(g)) = lt | L0 = l0,Lt−1(A(g)) = lt−1,At(g) = at).

Applying this result to both g = g0 and g = g∗, it follows that

P(Lt(A(g
∗)) = lt | L0 = l0,Lt−1(A(g

∗)) = lt−1,At(g
∗) = at)

= P(Lt(a) = lt | L0 = l0,Lt−1(a) = lt−1)

= P(Lt(A(g0)) = lt | L0 = l0,Lt−1(A(g0)) = lt−1,At(g0) = at)

Stronger but more general identifiability conditions in terms of the joint distribution of

(U=(UL≡ (ULt
: t),UA≡ (UAt

: t)),Ug
A≡ (Ug

At
: t)) are: (UL) j≥t ⊥UAt

, given (UA)t−1,(UL)t−1,

and (UL) j≥t ⊥U
g
At

, given (UA)
g
t−1,(UL)t−1. In particular, if g is defined so that U

g
A ⊥ UL,

then only randomization of A under P0 is needed.

Corollary 3. If g is defined such that U
g
A ⊥ UL, then Pg is identified under the usual SRA

L j≥k(a)⊥ Ak, given L0, Lk−1,Ak−1 = ak−1.
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Appendix A2

Proof of Theorem 1

Part of the proof is a simple consequence of theorem 5 in appendix A1. By definition of
this intervention,

P(T (a,Z(ga,a′ ))> t0)

= ∑
w

Q0(w)∑
zt0

t0

∏
t=1

gZ(a′)(zt | w,zt−1,nt−1 = 0)P(dNt(a,Z(ga,a′ )) = 0 |W = w,Zt(ga,a′ ) = zt ,Nt−1(a,Z(ga,a′ )) = 0)

= ∑
w

Q0(w)∑
zt0

t0

∏
t=1

gZ(a′)(zt | w,zt−1,nt−1 = 0)P(dNt(a,z) = 0 |W = w,Nt−1(a,z)) = 0)

= ∑
w

Q0(w)∑
zt0

t0

∏
t=1

gZ(a′)(zt | w,zt−1,nt−1 = 0)P(dNt = 0 |W = w,A = a,Zt = zt ,Nt−1 = 0).

The first equality is by the definition of the stochastic intervention. The second equality is

by theorem 5 and conditions I4; the third equality is implied by theorem 5 and conditions

I2-I3..

Applying I1 and the usual randomization argument, gZ(a′)(zt | w,zt−1,nt−1 = 0) ≡
P(Zt(a

′) = zt |W = w,Zt−1(a
′) = zt−1,Nt−1(a

′) = 0) is identified as gZ,0(zt |W = w,A =
a′,Zt−1 = zt−1,Nt−1 = 0).

Proof of Theorem 2

For any P ∈M , we may factor the likelihood according to the time ordering of (1):

p(O) = pW (W )pA(A |W )
τ

∏
t=1

pZt (Zt |W,A,Zt−1,Nt−1)pdNt
(dNt |W,A,Zt−1,Nt). (31)

For O j ∈ {W,A,Zt ,dNt : t = 1,τ}, let Pa(O j) denote the parent of O j (i.e. all the endoge-

nous variables that are inputs of O j in (1)), and let Pj denote the conditional probability of

PO j
(O j | Pa(O j).

Let L2
0(P) denote the Hilbert space of mean zero functions of O, endowed with the

covariance operator. Consider a rich class of one-dimensional parametric submodels P(ε)
that are generated by only fluctuating Pj. Under our model, no restrictions are imposed on

the conditional probabilities Pj. As a result, given any function SO j
∈L2

0(P) of (O j,Pa(O j))
with finite variance and EP(SO j

(O j,Pa(O j)) | Pa(O j)) = 0, the fluctuation Pj(ε) = (1+
εSO j

(O j,Pa(O j)))Pj is a valid one-dimensional submodel with score SO j
. Therefore, the
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tangent subspaces corresponding to fluctuations of each Pj are given by

T (PW ) = {SW (W ) : EP(SW ) = 0}

T (PA|W ) = {SA(A,W ) : EP(SA |W ) = 0}

T (PZt |Pa(Zt )) = {SZt (Zt ,W,A,Zt−1,Nt−1) : EP(SZt |W,A,Zt−1,Nt−1) = 0}

T (PdNt |Pa(dNt )) = {SdNt
(dNt ,W,A,Zt ,Nt−1) : EP(SdNt

|W,A,Zt ,Nt−1) = 0}.

Due to the factorization in (31), T (Pi) is orthogonal to T (Pj) for Oi 6= O j. Moreover,

the tangent space T (P), corresponding to fluctuations of the entire likelihood, is given

by the orthogonal sum of these tangent subspaces, i.e. T (P) =
⊕

j T (Pj), and any score

S(O) ∈ T (P) can be decomposed as ∑ j SO j
(O).

Under this generous definition of the tangent subspaces, any function S(O) that has

zero mean and finite variance under P is contained in T (P). This implies in particular that

any gradient for the pathwise derivative of Ψa,a′(·) is contained in T (P), and is thus in fact

the canonical gradient. Therefore, it suffices to show that D∗a,a′(·) in (14) is a gradient for

the pathwise derivative of Ψa,a′(·).
Consider the three summands of (14):

D∗N,a,a′(P)(O)≡−
t0

∑
t=1

I(Nt−1 = 0)

{

I(A = a)

gA(a |W )

t

∏
t ′=1

gZ(Zt ′ |W,A = a′,Zt ′−1,Nt ′−1 = 0)

gZ(Zt ′ |W,A = a,Zt ′−1,Nt ′−1 = 0)

× ∑
z

t0
t+1

t0

∏
t ′=t+1

gZ(zt ′ |W,A = a′,Zt ,z
t ′−1
t+1 ,Nt ′−1 = 0)

(

1−QdN(t
′ |W,A = a,Zt ,z

t ′

t+1)
)

}

× (dNt −QdN(t |W,A = a,Zt)) ,

D∗Z,a,a′(P)(O)

≡
t0

∑
t=1

I(Nt−1 = 0)

{

I(A = a′)

gA(a′ |W )

(

φZ,a,a′(P)(t +1;W,Zt)−φZ,a,a′(P)(t;W,Zt−1)
)

Q̄N(t−1 |W,A = a′,Zt−1)

}

,

and

DW,a,a′(P)(O)≡ φZ,a,a′(P)(t = 1;W )−EQW
(φZ,a,a′(P)(t = 1;W )).

For any S(O) = ∑ j SO j
(O) ∈ T (P), let PS(ε) denote the fluctuation of P with score S.
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Under appropriate regularity conditions, the pathwise derivative at P can be expressed as

d

dε
Ψa,a′ (PS(ε)) |ε=0

=
d

dε

{

∑
w

∑
zt0

(

((1+ εSW )QW )(w)

×
t0

∏
t=1

((1+ εSZt )PZt )(zt | w,A = a′,zt−1,Nt−1 = 0)(1− ((1+ εSdNt
)PdNt

)(dNt = 1 | w,A = a,zt ,Nt−1 = 0))

)}

|ε=0

= ∑
w

∑
zt0

(

QW (w)GZ(zt0 | w,a
′)Q̄N(t0 | w,a,zt0 )

×
t0

∑
t=1

−SdNt
(dNt = 1,Nt−1 = 0,w,a,zt)QdN(t | w,a,zt ,Nt−1 = 0)

1−QdN(t | w,a,zt ,Nt−1 = 0)

)

(32)

+∑
w

∑
zt0

QW (w)GZ(zt0 | w,A = a′)Q̄N(t0 | w,a,zt0 )
t0

∑
t=1

SZt (zt ,w,a
′,Nt−1 = 0) (33)

+∑
w

∑
zt0

SW (w)QW (w)GZ(zt0 | w,A = a′)Q̄N(t0 | w,a,zt0 ). (34)

Note firstly that for every t = 1, . . . , t0,

EP

(

D∗N,a,a′ (P)(O)SdNt
(Nt ,W,A,Zt)

)

= ∑
w

∑
zt0

(

QW (w)GZ(zt0 | w,a
′)Q̄N(t0 | w,a,zt0 )

−SdNt
(dNt = 1,Nt−1 = 0,w,a,zt)QdN(t | w,a,zt ,Nt−1 = 0)

1−QdN(t | w,a,zt ,Nt−1 = 0)

)

.

Therefore, (32) can be written as

EP

{

D∗N,a,a(P)(O)

(

t0

∑
t=1

SdNt
(Nt ,W,A,Zt)

)}

.

Moreover, DN,a,a′(P)(O) ∈∑t T (PdNt |Pa(dNt)) by the definition of these tangent subspaces.

It thus follows from the orthogonal decomposition of T (P) that

EP

{

D∗N,a,a(P)(O)

(

t0

∑
t=1

SdNt
(Nt ,W,A,Zt)

)}

= EP

{

D∗N,a,a(P)(O)

(

SW (W )+SA(A,W )+
t0

∑
t=1

SZt (Zt ,W,A,Nt−1)+
t0

∑
t=1

SdNt
(Nt ,W,A,Zt)

)}

.

By similar arguments, (33) can be written as

EP

{

D∗Z,a,a′(P)(O)

(

t0

∑
t=1

SZt (Zt ,W,A,Nt−1)

)}

= EP

{

D∗Z,a,a′(P)(O)

(

SW (W )+SA(A,W )+
t0

∑
t=1

SZt (Zt ,W,A,Nt−1)+
t0

∑
t=1

SdNt
(Nt ,W,A,Zt)

)}

,
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and (34) can be written as

EP

{

D∗W,a,a′(P)(O)SW (W )
}

= EP

{

D∗W,a,a′(P)(O)

(

SW (W )+SA(A,W )+
t0

∑
t=1

SZt (Zt ,W,A,Nt−1)+
t0

∑
t=1

SdNt
(Nt ,W,A,Zt)

)}

.

Combining these results, one concludes that

d

dε
Ψa,a′(PS(ε)) |ε=0

= EP

{(

D∗N,a,a′(P)(O)+D∗Z,a,a′(P)(O)+D∗W,a,a′(P)(O)
)

S(O)
}

Therefore, D∗a,a′(P) = D∗N,a,a′(P) + D∗Z,a,a′(P) + D∗W,a,a′(P) is a gradient for the partial

derivative of Ψa,a′ at P. As discussed above, under the nonparametric model, D∗a,a′(P) is

in fact the canonical gradient.

Proof of Lemma 1

Consider the efficient influence function D∗a,a′(P,Ψa,a′(P0)) as a function of the functionals

(Q,g,φZ,a,a′) of P.

P0D∗a,a′
(

Q,g,φZ,a,a′ ,Ψa,a′(P0)
)

=−P0
gA,0(A = a |W )

gA(a |W ) ∑
zt0

(

Q̄N(t0 |W,A = a,zt0)GZ(zt0 |W,A = a′)

×
t0

∑
t=1

GZ,0(zt |W,a)

GZ(zt |W,a)

Q̄N,0(t−1 |W,a,zt−1)

Q̄N(t |W,a,zt)

(

QdN,0(t |W,a,zt)−QdN(t |W,a,zt)
)

)

(35)

+P0
gA,0(A = a′ |W )

gA(a′ |W )

t0

∑
t=1

∑
zt−1

{

Q̄N,0(t−1 |W,A = a′,zt−1)

Q̄N(t−1 |W,A = a′,zt−1)
GZ,0(zt−1 |W,a′)

×

(

∑
zt

gZ,0(zt |W,a′,zt−1,Nt−1 = 0)φZ,a,a′(P)(t +1;W,zt)−φZ,a,a′(P)(t;W,zt−1)

)}

(36)

+P0φZ,a,a′(P)(t = 1;W )−Ψa,a′(P0) (37)

Suppose that QdN = QdN,0, and φZ,a,a′(P) = φZ,a,a′(P0). Then, φZ,a,a′(P)(t;W,zt−1)) =
EgZ,0(φZ,a,a′(P)(t + 1;W,zt) | W,A = a′,zt−1,Nt−1 = 0)). Therefore, each of the terms

(35), (36) and (37) is exactly zero.
On the other hand, if QdN = QdN,0 and gA = gA,0, then (35) is zero, and (36) can be
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written as a telescopic sum. Therefore, (36) plus (37) can be expressed as

P0

t0

∑
t=1

(

∑
zt

GZ,0(zt |W,a′)φZ,a,a′(P)(t +1;W,zt)− ∑
zt−1

GZ,0(zt−1 |W,a′)φZ,a,a′(P)(t;W,zt−1)

)

+P0φZ,a,a′(P)(t = 1;W )−Ψa,a′(P0)

= P0

(

∑
zt0

GZ,0(zt0 |W,a′)Q̄N,0(t0;W,A = a,zt0)−φZ,a,a′(P)(t = 1;W )

)

+P0φZ,a,a′(P)(t = 1;W )−Ψa,a′(P0)

= 0.

Finally, if gA = gA,0, gZ = gZ,0, and φZ,a,a′(P) = φZ,a,a′(gZ,0,QdN), then (36) is exactly
zero, and (35) can be written as

−P0 ∑
zt0

(

Q̄N(t0 |W,A = a,zt0)GZ,0(zt0 |W,A = a′)

×
t0

∑
t=1

Q̄N,0(t−1 |W,a,zt−1)

Q̄N(t |W,a,zt)

(

QdN,0(t |W,a,zt)−QdN(t |W,a,zt)
)

)

. (38)

Define h(t |W,a,zt)≡ Q̄N(t |W,a,zt)− Q̄N(t−1 |W,a,zt−1). Define h0 analogously for

Q̄N,0. It follows from this definition that

QdN(t |W,a,zt) =−
h(t |W,a,zt)

Q̄N(t−1 |W,a,zt−1)
.

Therefore, we may rewrite the inner sum in (38) as

t0

∑
t=1

Q̄N,0(t−1 |W,a,zt−1)

Q̄N(t |W,a,zt)

(

QdN,0(t |W,a,zt)−QdN(t |W,a,zt)
)

=
t0

∑
t=1

Q̄N,0(t−1 |W,a,zt−1)

Q̄N(t |W,a,zt)

(

h(t |W,a,zt)

Q̄N(t−1 |W,a,zt−1)
−

h0(t |W,a,zt)

Q̄N,0(t−1 |W,a,zt−1)

)

=
t0

∑
t=1

(

h(t |W,a,zt)Q̄N,0(t−1 |W,a,zt−1)−h0(t |W,a,zt)Q̄N(t−1 |W,a,zt−1)

Q̄N(t |W,a,zt)Q̄N(t−1 |W,a,zt−1)

)

=
t0

∑
t=1









(

Q̄N(t |W,a,zt)− Q̄N(t−1 |W,a,zt−1)

)

Q̄N,0(t−1 |W,a,zt−1)−

(

Q̄N,0(t |W,a,zt)− Q̄N,0(t−1 |W,a,zt−1)

)

Q̄N(t−1 |W,a,zt−1)

Q̄N(t |W,a,zt)Q̄N(t−1 |W,a,zt−1)









=
t0

∑
t=1

(

Q̄N(t |W,a,zt)− Q̄N,0(t |W,a,zt)

Q̄N(t |W,a,zt)
−

Q̄N(t−1 |W,a,zt−1)− Q̄N,0(t−1 |W,a,zt−1)

Q̄N(t−1 |W,a,zt−1)

)

=
Q̄N(t0 |W,a,zt0 )− Q̄N,0(t0 |W,a,zt0 )

Q̄N(t0 |W,a,zt0 )
−

Q̄N(0 |W,a)− Q̄N,0(0 |W,a)

Q̄N(0 |W,a)

=
Q̄N(t0 |W,a,zt0 )− Q̄N,0(t0 |W,a,zt0 )

Q̄N(t0 |W,a,zt0 )
.
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Hence, (38) is simplified into

−P0 ∑
zt0

(

Q̄N(t0 |W,A = a,zt0)GZ,0(zt0 |W,A = a′)
Q̄N(t0 |W,a,zt0)− Q̄N,0(t0 |W,a,zt0)

Q̄N(t0 |W,a,zt0)

)

= Ψa,a′(P0)−P0 ∑
zt0

GZ,0(zt0 |W,A = a′)Q̄N(t0 |W,a,zt0)

= Ψa,a′(P0)−P0φZ,a,a′(gZ,0,QdN)(t = 1;W ),

which cancels with (37).

Appendix A3

In this appendix, we consider estimators for the NIE parameter (9). Analogous to the

NDE case in section 2.3, an estimator φ̂Z,NIE,n(·) of φZ,NIE(gZ,0, ·) maps an estimator

Q̂dN,n of QdN,0 to an estimator φ̂Z,NIE,n(Q̂dN,n) of φZ,NIE(gZ,0,QdN,0). This estimating

procedure can be plug-in or regression-based. For a plug-in estimator, φ̂Z,NIE,n(Q̂dN,n) ≡

φZ,NIE(ĝZ,n, Q̂dN,n). For a regression-based estimator, φ̂Z,NIE,n(Q̂dN,n)(t;W,A,Zt−1) re-

gresses ¯̂QN,n(t0 |W,A = 1,Zt0) on (W,A,Zt−1) among observations that haven’t failed by

time t−1.

The tools for defining the g-computation and A-IPTW estimators are readily provided

in the main section. We will only discuss the IPTW and TMLE estimators here.

IPTW

Consider the following function:

DNIE,IPTW (P) =
I(A = 1)

g(1 |W )

(

1−
t0

∏
t=1

gZ(Zt |W,A = 0,Zt−1,Nt−1)

gZ(Zt |W,1,Zt−1,Nt−1)

)

I(Nt0 = 0).

Note firstly that I(Nt0 = 0) if and only if I(Nt = 0) for t = 1, . . . , t0). Next,

P0DNIE,IPTW (P0) =

= EQW,0

(

∑
zt0

t0

∏
t=1

gZ,0(zt |W,A = 1,zt−1,Nt−1 = 0)
(

1−QdN,0(t |W,A = 1,zt ,Nt−1 = 0)
)

−∑
zt0

t0

∏
t=1

gZ,0(zt |W,A = 0,zt−1,Nt−1 = 0)
(

1−QdN,0(t |W,A = 1,zt ,Nt−1 = 0)
)

)

= ΨNIE(P0)
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Given estimators ĝA,n and ĝZ,n of gA,0 and gZ,0, respectively, an estimator of the natural
indirect effect can be obtained using DNIE,IPTW :

Ψ̂IPTW
NIE (Pn)≡

1

n

n

∑
i=1

I(Ai = 1)

ĝA,n(1 |Wi)

(

1−
t0

∏
t=1

ĝZ,n(Zi,t |Wi,A = 0,Zi,t−1,Ni,t−1)

ĝZ,n(Zi,t |Wi,A = 1,Zi,t−1,Ni,t−1)

)

I(Ni,t0 = 0)

As noted earlier, if Ni,t−1 6= 0, we assign ĝZ,n(Zi,t |Wi,A,Zi,t−1,Ni,t−1) the value of 1. This

way the estimator is well-defined.

TMLE

To construct the TMLE estimator for the natural indirect effect (13), we first decompose
the EIF (16) into its components on the tangent subspaces:

D∗NIE,N(P)≡
t0

∑
t=1

D∗NIE,dNt
(P)

=−
t0

∑
t=1

I(Nt−1 = 0)
I(A = 1)

gA(1 |W )GZ (Zt |W,A = 1))

×

{

∑
z

t0
t+1

(

(

GZ

(

Zt ,z
t0
t+1 |W,A = 1

)

−GZ

(

Zt ,z
t0
t+1 |W,A = 0

)) t0

∏
t′=t+1

1−QdN(t
′ |W,A = 1,Zt ,z

t′

t+1)

)}

× (dNt −QdN(t |W,A = 1,Zt)) ,

D∗NIE,Z(P)≡
t0

∑
t=0

D∗NIE,Zt
(P)

=
t0

∑
t=1

I(Nt−1 = 0)

{

2A−1

gA(A |W )

1

Q̄N(t−1 |W,A,Zt−1)
(φZ,NIE (P)(t +1;W,A,Zt)−φZ,NIE (P)(t;W,A,Zt−1))

}

,

D∗NIE,W (P)

= (φZ,NIE (P)(t = 1;W,A = 1)−φZ,NIE (P)(t = 1;W,A = 0))−EQW
(φZ,NIE (P)(t = 1;W,A = 1)−φZ,NIE (P)(t = 1;W,A = 0)) .

We note that the empirical marginal distribution Q̂W,n of W is a consistent estimator of

QW,0 that readily satisfies the equation PnD∗NIE,W (φZ,NIE(P), Q̂W,n) = 0 for any φZ,NIE(P).
Hence, the proposed estimator will focus on targeted estimation of QdN,0, and φZ,NIE(P0).

To simplify notation, we will use QdN(t) to denote QdN(t |W,A = 1,Zt ,Nt−1). We use
the minus loglikelihood function

LdNt
(QdN(t))(O) = I(Nt−1 = 0)I(A = 1) log

(

QdN(t)
dNt (1−QdN(t))

1−dNt

)

.

Under this loss function, consider the logistic working submodel

QdN(t)(ε)≡ expit (logit (QdN(t))+ εCdN(g,QdN)(t)) ,
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where

CdN(g,QdN)(t)

≡
1

gA(1 |W )GZ (Zt |W,A = 1)

× ∑
z

t0
t+1

(

(

GZ

(

Zt ,z
t0
t+1 |W,A = 1

)

−GZ

(

Zt ,z
t0
t+1 |W,A = 0

))

t0

∏
t ′=t+1

1−QdN(t
′ |W,A = 1,Zt ,z

t ′

t+1)

)

(39)

It is suppressed in this notation that CdN(g,QdN)(t) is a function of (W,Zt). Note that for

a given t, CdN(g,QdN)(t) only depends on QdN( j) for j > t.

Recall the recursive relation

φZ,NIE(P)(t;W,A,Zt−1) = EgZ,t (φZ,NIE(P)(t +1;W,A,Zt) |W,A,Zt−1,Nt−1 = 0) .

We suppress the notation φZ,NIE(P)(t;W,A,Zt−1) into φZ,NIE(P)t . Consider the following
loss function for φZ,NIE(P)t :

LZt (φZ,NIE(P)t)

≡−I(Nt−1 = 0) log

(

(φZ,NIE(P)(t))
φZ,NIE (P)(t+1) (1−φZ,NIE(P)(t))

1−φZ,NIE (P)(t+1)

)

,

with parametric working submodel given by

φZ,NIE(P)t(ε) = expit (logit (φZ,NIE(P)t)+ εCZ(g,QdN)(t)) ,

where

CZ(g,QdN)t =
2A−1

gA(A|W )Q̄N(t−1 |W,A,Zt−1)
. (40)

Implementation

Let ĝA,n, Q̂dN,n and ĝZ,n, be initial estimators of gA,0, QdN,0 and gZ,0, respectively.

1. Starting with t = t0, CdN(ĝn, Q̂dN,n)(t0) ≡
1

ĝA,n(1|W )ĜZ,n(Zt0
|W,A=1)

. Obtain an ε for

Q̂dN,n(t0) given by

ε̂∗dN,t0 = argmin
ε

PnLdNt0

(

Q̂dN,n(t0)(ε)
)

.

This provides an TMLE estimate Q̂∗dN,n(t0)≡ Q̂dN,n(t0)(ε̂
∗
dN,t0

) for QdN(t0 |W,A =

1,Z(t0)).
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2. For each 1≤ t < t0, let Q̂∗dN,n denote the vector of TMLE estimates

Q̂∗dN,n ≡ (Q̂∗dN,n(t0), Q̂
∗
dN,n(t0−1), . . . , Q̂∗dN,n(t +1))

obtained thus far. We use these and ĜZ,n to construct CdN(ĝn, Q̂
∗
dN,n)(t) as prescribed

in (39). The optimal ε for Q̂dN,n(t) is thus given by ε̂∗dN,t = argminε PnLdNt

(

Q̂dN,n(t)(ε)
)

.

The step 2 above updates Q̂dN,n(t) sequentially in the order of descending t. Once we have

obtained all the t0 updates, let Q̂∗dN,n to represent the TMLE estimator for the function

QdN,0 at times t = 1, . . . , t0.

Let φ̂Z,NIE,n(·) be an estimating procedure for φZ,NIE(P0) which maps the TMLE es-

timator Q̂∗dN,n to an estimator φ̂Z,NIE,n(Q̂
∗
dN,n) of φZ,NIE(P0). Our next steps will update

φ̂Z,NIE,n(·) towards optimal bias-variance tradeoff for the parameter of interest. We sup-

press the notation φ̂Z,NIE,n(Q̂
∗
dN,n)(t;W,A,Zt−1) into φ̂Z,NIE,n(t).

3. Define
φ̂ ∗Z,NIE,n(t0 +1;W,A,Zt0)≡

¯̂Q∗N,n(t0 |W,A = 1,Zt0)

4. For each 1 ≤ t ≤ t0, suppose we have obtained the TMLE estimator φ̂∗Z,NIE,n(t +1)

for φZ,NIE(P0)(t+1;W,A,Zt). The parametric submodel φ̂Z,NIE(t)(ε) is constructed

using CZ(ĝ, Q̂
∗
dN,n)(t) as given in (40), and the optimal ε is given by

ε̂∗Zt
= argmin

ε
PnLZt

(

φ̂Z,NIE,n(t)(ε)
)

.

This yields the TMLE estimator φ̂∗Z,NIE,n(t)≡ φ̂Z,NIE,n(t)(ε̂
∗
Zt
) of φZ,NIE(P0)(t;W,A,Zt−1).

5. We perform the updates in step 4 sequentially in order of decreasing t. Once, we

have obtained the TMLE estimator φ̂∗Z,NIE,n(t = 1;W,A), the TMLE estimate of the

natural indirect effect is given by

Ψ̂T MLE
NIE (Pn)≡

1

n

n

∑
i=1

φ̂∗Z,NIE,n(t = 1;Wi,A = 1)− φ̂∗Z,NIE,n(t = 1;Wi,A = 0).

This estimator is substitution-based and the relevant components of the likelihood (QdN,0

and φZ,NIE(P0)) are estimated so that PnD∗NIE(ĝn, Q̂
∗
dN,n, φ̂

∗
Z,NIE,n,Ψ̂

T MLE
NIE ) = 0. Therefore,

this estimator also inherit the robustness properties of corollary 2.
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Appendix A4

In this appendix, we evaluate the various options to formulate the causal mediation prob-

lem in the survival setting with time-dependent mediator, without regarding mediators as

intervention variables. The first option is a simple extension of the traditional natural

effects definition in the existing literature (e.g. van der Laan and Petersen (2004), Van-

derWeele (2010), Robins and Richardson (2010), Tchetgen Tchetgen and VanderWeele

(2012)), where all the paths from the treatment to the mediators are blocked. We shall

see that the resulting ideal experiment is not well-defined for the purpose of mediating the

effect on the event process. The second option leaves the paths from treatment to media-

tor through survival history unblocked. However, the sufficient identifiability conditions,

while reasonable in other applications, may be too strong for survival study. As a result,

we argue that a SI-based perspective of causal mediation offers an attractive alternative to

formulate the effect parameters.

We begin by reviewing the one time-point setting. Under the non-SI approach intro-

duced by Robins and Greenland (1992) and Pearl (2001), one defines a counterfactual

event indicator dN(a,Z(a′)) according to the following experiment

W = fW (UW )

Z(a′) = fZ(W,A = a′,UZ),

dN(a,Z(a′)) = fdN(W,A = a,Z(a′),UdN). (41)

dN(a,Z(a′)) is the event indicator in an ideal experiment where A is set to a, and the

intermediate variable Z takes its value under the influence of A = a′. The identifiability

conditions (Pearl (2001)) for P(dN(a,Z(a′)) = 0) are dN(a,z) ⊥ (A,Z) |W , dN(a,z) ⊥
Z(a′) |W , and Z(a′)⊥ A |W .

A4.1: Blocking all paths from treatment to mediators

A direct extension of (41) is to conceptualize the mediator process as being defined entirely

in a world with A= a′. The counterfactual survival time of interest would be T (a,Z(a′)) =
T (A = a,dN(A = a),Z(A = a′,dN(A = a′))). The hypothetical experiment generating this

survival time is:

W = fW (UW )

A = a

Zt(a
′) = fZt

(W,A = a′,Zt−1(a
′),Nt−1(a

′),UZt
),

dNt(a
′) = fdNt

(W,A = a′,Zt(a
′),Nt−1(a

′),UdNt
),

dNt(a,Z(a
′)) = fdNt

(W,A = a,Zt(a
′),Nt−1(a,Z(a

′)),UdNt
). (42)
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The experiment can be run by either drawing variables subsequently according to the order

above, or by first drawing (Z(a′),dN(a′)), and then draw dN(a,z) with the given realiza-

tion of Z(a′) = z. Either way, if one draws dNt(a
′) = 1, i.e. event happens at time t

under treatment A = a′, the next mediator Zt+1(a
′) is assigned the degenerate value at time

t + 1. Then, drawing dNt+1(a,Z(a
′)), when the latest mediator has the degenerate value

but Nt(a,Z(a
′)) = 0, is not defined. One could deterministically set dNt+1(a,Z(a

′)) = 1

in this case and still obtain a well-defined survival time, but this would allow the effect of

treatment A = a′ on survival to influence the effect of treatment A = a on survival, which

is contrary to the purpose of mediating the effect of A = a on the survival process.

In this light, well-defined mediation formulas and natural effects in the current setting

should not block the paths of treatment to mediator through the survival history. In other

words, the direct effect questions should be rephrased to ”what is the effect of treatment on

survival, if treatment had no other effect on the mediators other than through the survival

history?”.

A4.2: Only blocking those paths from treatment to mediators that are

not through survival history

Due to the considerations above, we wish to define mediation effects where the paths from
treatment to mediator through the outcome process is left unblocked. These effects of in-
terest are extension of the path-specific effects discussed in Pearl (2001), Avin et al. (2005)
and Robins and Richardson (2010). Consider the following hypothetical experiment:

W = fW (UW )

A = a

Zt(a
′,N(a))≡ fZt (W,A = a′,Zt−1(a

′,N(a)),Nt−1(a,Z(a
′)),UZt ),

dNt(a,Z(a
′))≡ fdNt

(W,A = a,Zt−1(a
′,N(a)),Nt−1(a,Z(a

′)),UdNt
). (43)

Note the simplified notation for the counterfactuals Zt(a
′,N(a)) and dNt(a,Z(a

′)): for

instance, at t = 2, Z2(a
′,N(a)) is in fact Z2(a

′,N1(a,Z1(a
′))), and dN2(a,Z(a

′)) is in fact

dN2(a,(Z2(a
′,N1(a,Z1(a

′))),Z1(a
′))). This experiment differs from the (42) in that the

event process affecting each mediator response is the outcome process of interest. More

specifically, under (43) the experiment first sets A = a; at each visit, given realization

(W = w,A = a,Zt−1(a
′,N(a)) = zt−1,Nt−1(a,Z(a

′)) = nt−1), it measures the response Zt

would have had if the treatment were A = a′ while the rest of the history remained the

same; then, with given realization (W = w,A = a,Zt(a
′,a) = zt ,Nt−1(a,Z(a

′)) = nt−1), it

measures the event indicator dNt . Abusing the notation, let T (a,a′) denote the survival

time resulting from (43).

The difference between the experiment in (43) and the SI-based experiment in (4)

lies in that under the SI formulation, the conditional probability P(Zt(ga,a′) = zt |W,A =
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a,Zt−1(ga,a′),Nt−1(a,Z(ga,a′))) is known (intervened) to be gZ(a′)(zt |W,Zt−1(ga,a′),Nt−1(a,Z(ga,a′))),
therefore, one only needs to identify the function gZ(a′). Under (43), the conditional prob-

ability P(Zt(a
′,N(a)) |W,Zt−1(a

′,N(a)),Nt−1(a,Z(a
′))) is not known and remains to be

identified. Therefore, even though the SI-based parameter P(T (a,Z(ga,a′)) > t0) and this

non-SI parameter P(T (a,a′)> t0) would identify to the same statistical parameter (6), they

are differently formulated causal parameters.

P(T (a,a′) > t0) is identified to (6) if the following independences hold for the distri-

bution of U : (UZ,UdN)⊥UA given UW , (UdN) j≥t ⊥UZt
given UW ,UA,(UZ)t−1,(UdN)t−1,

and (UZ) j>t ⊥UdNt
given UW ,UA,(UZ)t ,(UdN)t−1. The last assumption would imply that

the event indicator at a given time t be independent of future potential mediators — this

condition is too strong for the purpose of effect mediation in a survival study. We note,

however, that these are only sufficient conditions for identification, whether weaker con-

ditions are possible for (43) (perhaps under additional assumptions on the model), is an

important topic of investigation.
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